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Abstract

We show that the standard argument according to which supply function

equilibria rank intermediate between Bertrand and Cournot equilibria may

be reversed. We prove this result within a static oligopolistic game in which

both supply function competition and Cournot competition yield a unique

Nash equilibrium, whereas price setting yields a continuum of Nash equi-

libria. There are parameter regions in which Bertrand pro�ts are higher

than Cournot ones, with the latter being higher than in the supply function

equilibrium. Such reversal of the typical ranking occurs when price-setting

mimics collusion. We then show that the reversal in pro�ts is responsible for

a reversal in the welfare performance of the industry.

JEL Codes: D43, L13
Keywords: convex costs; supply function; price competition; quantity

competition



1 Introduction

There is little doubt about Cournot and Bertrand models being considered

the most popular stylised representations of market games. However, there

are markets characterised by sellers (and/or buyers) competing in supply

(and/or demand) schedules: wholesale electricity, for instance, well �ts such

a setting in many countries.1 Despite the by now huge literature, it is still

an open question �whether the price or quantity competition model is the

better �t for di¤erent oligopolistic markets, and the supply function model

appears to be an attractive model�(Vives, 2011, pp. 1919-20).

When modelling oligopolistic industries, an interesting question deals

with ranking equilibria associated to di¤erent types of market competition.

More precisely, one is likely interested in detecting and comparing predic-

tions stemming - coeteris paribus - from equilibria in di¤erent strategies. If

we con�ne the attention to Nash equilibria under the three aforementioned

types of oligopolistic competition (quantities, prices, supply functions), since

Klemperer and Meyer (1989) it has been claimed that the supply function

equilibrium ranks intermediate between Bertrand and Cournot ones. Within

static models of industries populated by identical �rms producing homoge-

neous output, pro�ts have been shown higher under quantity competition

than under supply function competition, and higher in the latter setting

than under Bertrand rules.

In this paper, we challenge such conclusion within a simple oligopoly

game where Bertrand competition yields a continuum of Nash equilibria. We

show that there exist parameter regions in which Bertrand pro�ts are higher

than Cournot ones, which in turn are higher than in the supply function

equilibrium. the reversal in pro�t ranking drives a reversal in the standard

welfare ranking. Intuitively, the reversals occur the higher the marginal cost

and larger the departure from marginal cost pricing in the Bertrand game.

In such a parameter constellation price-setting mimics collusive behaviour.

1See Klemperer and Meyer (1989) for other examples, and Grossman (1981). An ex-

cellent introduction to supply function equilibria is Vives (1999, ch. 7).
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The remainder of the paper is organised as follows. Section 2 summarises

the related literature and locates our contribution in the research �eld. Sec-

tion 3 presents the setup and the equilibria generated by the three di¤erent

types of competition. Section 4 compares equilibrium pro�ts and section 5

compares equilibrium levels of social welfare. Section 6 concludes.

2 Related literature

We may group the contributions closest to ours into three streams. The �rst

one, starting from the mid 1980s, focusses on the comparison between the

properties of Nash equilibria under price- and quantity-setting behaviour un-

der di¤erent speci�cation of technologies, demand and symmetry (or the lack

thereof) across �rms. A selection of the most quoted papers includes Singh

and Vives (1984), Cheng (1985), Vives (1985), Okuguchi (1987), Qiu (1997),

Häckner (2000), Zanchettin (2006). The focus of this discussion is about

the relative performance of prices vs quantities in terms of pro�tability and

social welfare, and the pivotal issue is the degree of symmetry across �rms,

especially in terms of productive technology, demand level and their interplay

with product di¤erentiation. The usual conclusion whereby Bertrand is less

pro�table and more e¢ cient than Cournot can �ip over in presence of a suf-

�ciently high degree of cost and demand asymmetry (see Zanchettin, 2006).2

The entire discussion taking place in this subset of the literature considers

models delivering unique equilibria in the relevant strategic variable.

The second stream of literature has been pioneered by Dastidar (1995)

who has proved the existence of a continuum of pure-strategy equilibrium

prices in an homogeneous oligopoly. The properties of Bertrand-Nash equi-

libria have been investigated also by Dastidar (1997, 2011) under di¤erent

speci�cations of the cost functions, under the assumption of product homo-

geneity. The interesting paper by Saporiti and Coloma (2010) presents new

2An analogous reversal obtains in dynamic games, for instance when resource extraction

enters the picture, as in Colombo and Labrecciosa (2015).
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results and an extremely helpful taxonomy of the most recent contributions

on price competition. The focus of this portion of the literature is about the

uniqueness of pure (or mixed) strategy equilibrium price depending on the

speci�cation of the cost function, also including �xed components.

Finally, there is a smaller group of papers concerned with competition

in supply functions. This literature was initiated by Grossman (1981) and

especially Klemperer and Meyer (1989), who consider an oligopolistic game

with demand uncertainty. More recent papers include Delgado and Moreno

(2004) and Ciarreta and Gutierrez-Hita (2006), to which we shall refer again

later.

Our contribution crosses the aforementioned streams as we compare Bertrand,

Cournot and supply functions equilibria in an industry where price-setting

yields a continuum of Bertrand equilibria in pure strategies, the good is

homogeneous, all �rms are endowed with the same technology displaying

increasing variable costs and no �xed ones.

3 Setup and the three games

Here we describe an industry by means of assumptions that make tractable a

model otherwise very complex, especially as for then case in which strategies

are functions (the supply function case). Moreover, our functional speci�ca-

tion of demand and technology will allow us a complete comparison of the

three types of market games equilibria.

Consider a market supplied by a set N = 1; 2; 3; :::; n of identical �rms

producing a homogeneous good whose direct demand function isQ = max f0; 1� pg ;
where Q = �ni=1qi is aggregate output, qi is �rm i�s output and p is price.

Production takes place at decreasing returns to scale, and technology, shared

by all �rms, is summarised by the strictly convex cost function Ci = cq2i =2.

Accordingly, the pro�t function of �rm i is

�i =
�
p� cqi

2

�
qi =

�
1� qi �Q�i �

cqi
2

�
qi (1)

where Q�i = �j 6=iqj.
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Firms play simultaneously a non-cooperative one-shot game under com-

plete, symmetric and imperfect information. The solution concept is the

Nash equilibrium.

� Under Cournot competition, the relevant �rst order condition (FOC)
for �rm i is the following:

@�i
@qi

= 1� 2qi �Q�i � cqi = 0 (2)

and the symmetry condition (qj = qi = q for all i and j) yields the

unique Cournot-Nash individual equilibrium output and price

qCN =
1

n+ 1 + c
; pCN =

1 + c

n+ 1 + c
(3)

The resulting equilibrium pro�ts are

�CN =
2 + c

2 (n+ 1 + c)2
(4)

� In modelling the price-setting game, we follow Dastidar (1995), where
it is shown that, if costs are strictly convex in output levels and de-

mand is decreasing in price, Bertrand competition yields a continuum

of Nash equilibria when �rms are identical. More precisely, the Nash

equilibrium in pure strategies involves all �rms setting the same price

p� 2 [pavc; pu] : At the lower bound pavc; equilibrium price equals aver-

age variable costs, so that �rms would be indi¤erent between producing

or not. At the upper bound pu; the equilibrium price is such that �rms

would be indi¤erent between playing pu or marginally undercutting it

in order to serve the entire market demand.

Without delving further into the details of the derivation of the continuum

of price equilibria (see Dastidar, 1995, pp. 27-28; and Gori et al. 2014, pp.

373-75), the spectrum of equilibrium prices is identi�ed by

pBN =
c

c+ 2 (n� �) (5)
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where � is a non-negative parameter whose range, to be speci�ed below,

determines the continuum of equilibrium prices. The associated individual

output is

qBN =
2 (n� �)

n [c+ 2 (n� �)] (6)

and pro�ts are

�BN =
2�c (n� �)

n2 [c+ 2 (n� �)]2
: (7)

As far as parameter � is concerned, it is worth noting that:

1. in � = 0; the equilibrium price equals average variable cost;

2. at � = n=2; marginal cost pricing obtains;

3. if � = n2= (1 + n) ; pBN reaches the highest level above which under-

cutting takes place.

Consequently, the admissible range is � 2 [0; n2= (1 + n)] : For future

reference, we de�ne �sup := n2= (1 + n) :

The following result will become useful in the remainder:

Lemma 1 pBN > pCN for all � > �pBC � n (2 + c) = [2 (1 + c)] ; with �
p
BC 2

(n=2; n2= (n+ 1)] for all c � 2= (n� 1).

Proof. The di¤erence between the two equilibrium prices is

pBN � pCN = 2� (1 + c)� n (2 + c)
(n+ 1 + c) [2 (n� �) + c] (8)

where the denominator is positive since � � �sup < n. Hence, the sign of (8)
is the sign of the expression appearing at the numerator, which is positive

for all � > n (2 + c) = [2 (1 + c)] � �pBC . It is then easily ascertained that

�pBC 2 (n=2; n2= (n+ 1)] for all c � 2= (n� 1).
The interpretation of the above Lemma is that Bertrand equilibrium price

exceeds the Cournot one in the admissible range of � when the cost function is

su¢ ciently steep and � is such that the Bertrand-Nash price departs enough

from marginal cost.
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� In modelling supply function competition, we adopt the same approach
used by Ciarreta and Gutierrez-Hita (2006), which o¤ers a simple tool

for solving the supply function game originally formulated by Klem-

perer and Meyer (1989). Given the linear-quadratic form of the pro�t

function (1), one may formulate the conjecture that supply functions

are linear in price. Therefore, we de�ne the supply function of �rm i

as si = �ip; �i > 0. The market clearing price solves

1� p =
nX
i=1

si (9)

from which we have

p =
1

1 +
Pn

i=1 �i
(10)

Hence, we may rewrite the individual pro�t function as follows:

�i =
�i

(1 +
Pn

i=1 �i)
2

�
1� c�i

2

�
(11)

This amounts to saying that, if �rms compete in supply functions, their

set of strategic variables is the vector of �i�s, one for each �rm. The

FOC is:

@�i
@�i

=
1 +

P
j 6=i �j � �i

h
1 + c

�
1 +

P
j 6=i �j

�i
(1 +

Pn
i=1 �i)

3 = 0 (12)

Imposing symmetry across �rms, as the second order condition is met,

the unique equilibrium strategy solving the above equation is

�SFN =
n� 2� c+

q
(n� 2)2 + c (2n+ c)

2c (n� 1) (13)

which is clearly positive for all admissible values of c and n. The

associated equilibrium price, individual output and pro�ts are

pSFN =
2c (n� 1)

c (n� 2) + n
�
n� 2 +

q
(n� 2)2 + c (2n+ c)

� (14)

6



qSFN =
n+ 2 + c�

q
(n� 2)2 + c (2n+ c)

2 (2n+ c)
(15)

�SFN =

2n+ (n+ c)

�q
(n� 2)2 + c (2n+ c)� n� c

�
4 (2n+ c)

(16)

with qSFN and �SFN being strictly positive over the entire parameter

range.

4 Ranking equilibrium pro�ts

In Klemperer and Meyer (1989, pp. 1258-59), it is shown that the equilib-

rium pro�ts generated by competition in supply functions are intermediate

between those generated by Cournot and Bertrand behaviour, when the lat-

ter is restricted to marginal cost pricing.3

Proposition 2 (Klemperer and Meyer, 1984, p. 1259) �CN > �SFN

for all n � 2.

Without repeating the full proof, it su¢ ces to note that, in our model,

the sign of �CN � �SFN is the sign of

(n� 1)2 (2n+ c)
�
2c2 + 2n (n+ 2) + c (4n+ 3)

�
(17)

as can be easily ascertained using (4) and (16); the sign of the above expres-

sion is clearly positive.

Under marginal cost pricing, it would also be true that �CN > �SFN >

�BN for all n � 2, as in Klemperer and Meyer (1989). However, here we

are dealing with a continuum of price equilibria ranging well above marginal

3A similar conclusion is reached by Delgado and Moreno (2014, Theorem 2.2), in a

model without uncertainty where supply functions are bound to be non-decreasing, de-

mand is strictly decreasing and convex, costs are non-drecreasing, convex and identical

across �rms.
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cost pricing. Since Betrand-Nash equilibrium pro�ts �BN are a function of

�, our strategy consists in searching for admissible intervals of � in which

�BN overcomes �SFN and even �CN .

We start by comparing �BN and �CN : The expression

�BN��CN = �
[(2 + c)n� 2 (1 + c)�]

�
n (2n+ c)2 � 2 (c (1 + c) + 2n (c+ n))�

�
2n2 (n+ 1 + c)2 [c+ 2 (n� �)]2

(18)

is positive for all � 2 (��BC1; ��BC2) ; with

��BC1 =
(2 + c)n

2 (1 + c)
; ��BC2 =

n (2n+ c)2

2 [c (1 + c) + 2n (c+ n)]
(19)

Now note that

lim
c!0

��BC1 = lim
c!0

��BC2 = n (20)

�sup > �
�
BC1 8 c > cBC1 =

2

n� 1 (21)

and

�sup > �
�
BC2 8 c > cBC2 =

n
�
1 +

p
4n� 3

�
n� 1 > cBC1: (22)

Since �CN > �SFN from Proposition 1, this immediately implies:

Proposition 3 �BN > �CN > �SFN for all � 2 (��BC1;min f��BC2; �supg) :

The relevant region is drawn in Figure 1, in the space (c; �).
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Figure 1 �BN > �CN > �SFN in the space (c; �)

6

-

�

c

��BC2

��BC1

�sup

cBC1 cBC2

�BN > �CN > �SFN

n

We now show that the region in which �BN > �CN > �SFN is a proper

subset of the parameter range wherein �BN > �SFN . To do so, we have to

compare �BN and �SFN . Tedious algebra is needed to verify that

�BN > �SFN 8� 2 (��BSF1;min f��BSF2; �supg) (23)

with

��BSF1 =
n (2n+ c) [c2n+ n2 (n� 2� x)� c (2� y � n (2n� x))]
2 [c2 (n2 � 2) + n3 (n� 2� x) + nc (n (2n� x)� 4)] (24)

9



��BSF2 =
n (2n+ c) [c2n+ n2 (n� 2� x)� c (2 + y � n (2n� x))]
2 [c2 (n2 � 2) + n3 (n� 2� x) + nc (n (2n� x)� 4)] (25)

where

x :=

q
c (c+ 2n) + (n� 2)2 (26)

y :=
p
2 [(n+ c) (n+ c� x)� 2 (n� 1)] (27)

in such a way that, indeed, ��BSF2 > �
�
BSF1 and limc!0 �

�
BSF1 = limc!0 �

�
BSF2 =

n: The region where �BN > �SFN ; identi�ed in (23), is drawn in Figure 2.

Figure 2 �BN > �SFN in the space (c; �)

6

-

�

c

��BSF2

��BSF1

�sup

�BN > �SFN

n
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We may now order the critical thresholds of � appearing in Figures 1-2.

The di¤erence between ��BSF2 and �
�
BC2 is:

��BSF2���BC2 =
cn (c+ 2n) y

cn (nx+ 4� 2n2)� n3 (n� 2� x)� c2 (n2 � 2) > 08 c > 0; n � 2:

(28)

By the same token, one can verify that ��BC1 > ��BSF1 in the same space

fc; ng. This delivers Figure 3, where the set of curves f��BSF1; ��BSF2; ��BC1; ��BC2g
are drawn.

Figure 3 Ranking equilibrium pro�ts in the space (c; �)

6

-

�

c

��BSF2

��BSF1

�sup

I
II

II

III

III

n

��BC2

��BC1
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In Figure 3, we identify three regions:

� Region I, where �BN > �CN > �SFN

� Region II, where �CN > �BN > �SFN

� Region III, where �CN > �SFN > �BN

Region III hosts the familiar ranking seeing the supply function equilib-

rium as intermediate between Bertrand and Cournot equilibria. In Region

II, Bertrand equilibrium pro�ts overcome those generated by supply func-

tion competition. In region I, we have a full reversal of the traditional pro�t

ranking.

The intuition behind the ranking in region I can be explained as fol-

lows. This region is featured by (comparatively) high values of both � and

c. Recalling Lemma 1, one may explain the chain of inequalities emerging in

region I on the basis of the inequality between pBN and pCN . When � and

c are high enough, the Bertrand-Nash price ranks �rst, price-setting �rms

implementing a quasi-collusive outcome.

In region I, Bertrand behaviour outperforms both Cournot and supply

function competition from the �rms�standpoint. One may then conjecture

that, for any c > cBC1; if � is larger than ��BC1; welfare levels rank opposite

to pro�ts. This is indeed what we are about to show in the next section.

5 Ranking equilibrium welfare levels

De�ne social welfare as SWKN = n�KN + CSKN ; where K = B;C; SF and

CSKN =
�
QKN

�2
=2 is consumer surplus, de�ned in terms of industry output

QKN = nqKN . Since the welfare level is proportional to the industry output,

for the sake of simplicity we may restrict our attention to industry outputs

across equilibria. To begin with, we compare QSFN against QCN :

sign
�
QSFN �QCN

	
= sign f(n� 1) (2n+ c)g (29)
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which is positive everywhere. Then,

QBN R QCN for all � Q (2 + c)n

2 (1 + c)
= ��BC1 (30)

Taken together, (29-30) imply:

Proposition 4 Take c > cBC1. As soon as �rms set � > ��BC1; we have

QSFN > QCN > QBN : As a result, SW SFN > SWCN > SWBN :

The above Proposition has a natural explanation, in that when Bertrand

pro�ts rank �rst, this happens through an output restriction and a price

increase, which of course is detrimental to welfare.

6 Concluding remarks

In this paper, we have presented a simple linear-quadratic model of homo-

geneous oligopoly allowing a fully-�edged comparative analysis of di¤erent

market games. We have shown that the standard ranking among, price,

quantity and supply function equilibria may be reversed for pro�ts as well

as social welfare levels. The reason why equilibrium pro�ts (welfare) may

be higher (lower) under price competition than under quantity and supply

function competition lies in �rms being able to price well above marginal

cost in the Bertrand game. Such an ability stems from the convexity of

the cost function and the resulting continuum of pure-strategy equilibrium

prices. This reversal of the standard pro�t and welfare rankings occur when

price competition mimics collusive behaviour. Hence, the convexity of the

cost function may prevent ranking the supply function equilibrium as inter-

mediate between price and quantity equilibria.
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