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Abstract

We study a broad class of dynamic consumer problems and characterize the short

and long-run response of the demand for a good to a permanent increase in its market

price. Such response can be non-monotonic over time, and the short and long-run

price-elasticity of demand may have opposite sign. This is a testable prediction and

can arise even in the absence of income effects. Our results are robust to a variety

of settings that are commonly used in the economic literature, and have relevant

policy implications. We provide illustrative applications to models of human capital

and labor supply, addiction, habit and taste formation, health capital, and renewable

resources.
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1 Introduction

Consider a subsidy to schooling financed through labor income taxes. Will households

respond to its introduction by investing more in human capital accumulation due to the

current lower opportunity cost of schooling, or will they invest less because they anticipate

the lower future returns to human capital? Is it possible that schooling increases in the

short run but decreases in the long run, or the other way around? Under which conditions

does this happen? Would such policy eventually result in higher or lower human capital?

Answering this kind of questions is not only relevant for explaining dynamic consumer

behavior in situations that involve a trade-off between short and long run, as it is commonly

the case in areas ranging from macro to public economics, from labor to health economics,

and from cultural to environmental economics, but it is also relevant for an appropriate

design of price-based policies, which may in principle produce opposite consumer behavior

in the short and in the long run, and may generate non-obvious dynamic effects on stock

variables such as human capital, health or natural resources, whose long-run externalities

are often the motivation for policy intervention.

More generally, while price effects in static consumer theory are well established, less is

known about short and long-run price effects in dynamic consumer theory. We provide a

theoretical answer to the following simple but fundamental questions. Do standard static

results, such as the validity of the law of demand for non-Giffen goods, extend to a dynamic

framework? Do they hold over different time horizons? Has the elasticity of demand the

same sign in the short as in the long run? Is demand more rigid in the short than in the

long run?

To address these questions, we study a broad and abstract class of dynamic consumer

problems, and we characterize the short and long-run response of the demand for a good to

a permanent increase in its market price. The class of problems we consider allows for the

effect of past actions on current choices, for either static or dynamic budget constraints,

and for resource allocation to consumption goods as well as for time allocation to labor

and leisure. Our results do not rely on specific functional forms but rather depend on the

general dynamic structure of intertemporal consumer problems.

We show that price effects have two components, which are the dynamic counterparts

of income and substitution effects in static problems. As it is true in a static framework,

income effects can lead to violations of the law of demand. Differently from a static frame-

work, however, the dynamic counterpart of the substitution effect can lead by itself to

violations of the law of demand, which can arise even in the absence of income effects.

As a permanent price increase modifies the optimal path of consumption, we say that

the law of demand holds at a given time if the quantity demanded at that time is lower
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along the new than along the old optimal path.

We establish conditions under which consumer response to price change is non-monotonic

over time, and the law of demand holds in the short run, but is violated in the long run,

or the other way around. We also show conditions under which the law of demand holds

both in the short and in the long run. Even when this is the case, we find that demand

can respond non monotonically over time and can be more elastic in the short than in the

long run, contrary to common intuition.

Despite the complexity of dynamic models, the above conditions can be surprisingly

simple. Under a set of assumptions that are common in the economic literature, we show

that the sign of price effects only depends on the relation between impatience and state

dynamics: the dynamic technology of the problem determines how current choices generate

future consequences, and time preferences determine the subjective balance between present

and future. If the future consequences of current behavior are amplified over time, as it

easily happens in models of human capital and renewable resources, we have the non-

monotonicity result whereby the short and long-run elasticity of demand have opposite

sign, which means that the law of demand is violated at some point in time. In particular,

for patient consumers the law of demand is violated in the short run but holds in the long

run, whereas for impatient consumers the reverse is true. If instead the future consequences

of current behavior are dampened, as it easily happens in models with capital depreciation,

a price increase reduces demand at every point in time. Still, in this case there can be

overshooting in the short-run relative to the long run, and thus non-monotonicity over

time.1

The prediction of a non-monotonic response over time is empirically testable with in-

dividual level panel data, for instance by looking at exogenous sources of price variation

such as taxes and subsidies. If at a given point in time patient and impatient consumers

respond in opposite ways to a price change, unobserved heterogeneity in time preferences

produces an attenuation bias in estimated price responses, due to a composition effect.

The possibility that the short and long-run elasticity of demand have opposite sign is

also relevant for policy and for the interpretation of the empirical evidence on violations of

the law of demand. Whether a price-based policy that affects behavior in opposite ways

in the short and in the long run is qualitatively ‘right’ or ‘wrong’ depends on the time

1Using the formalization introduced below and denoting by ρ the discount rate and by fS the marginal
effect of the state variable S on its own speed of change, an amplification effect obtains if fS > 0, because
an initial behavior that raises S leads to a subsequent increase in the speed of growth of S; a stabilization
effect instead obtains if fS < 0. Under a dynamic amplifier, consumers respond to a price increase in
opposite ways over time depending on whether they are patient (ρ < fS) or impatient (ρ > fS); and if
consumption reduces S, a price increase triggers a reduction of S over time for patient consumers and an
increase of S for impatient ones. Under a dynamic stabilizer, short-run overshooting occurs if fS is not too
negative; and if consumption reduces S, a price increase triggers an increse of S over time.
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horizon over which it is evaluated. Shortsighted policymakers may then adopt policies that

seem ‘right’ in the short run, but prove ‘wrong’ in the long run. Further, since patient

and impatient consumers may react to price changes in opposite ways over time, policies

designed for either type of consumer may have undesired consequences for the other type.

Finally, since we show that the law of demand can be violated at some point in time even

by non-Giffen goods, our results provide a new possible dynamic interpretation for the

evidence of violations of the law of demand, which has been so far interpreted as Giffen

behavior, among other things, for the lack of a clear alternative theoretical framework.2

To present the consumer dynamic behavior in the most transparent way, Section 2

develops an illustrative model that is simple, rules out income effects by construction, and

allows for a closed form solution. It generates non-monotonic dynamic responses to a price

increase, with short and long run price elasticities of opposite sign. For patient consumers

demand initially rises and then falls; eventually, consumption and the state variable reach

a level that is lower in the new steady state than in the old one. For impatient consumers

the reverse is true.3

Sections 3 to 5 generalize the analysis and consider an abstract class of intertemporal

consumer problems that encompass the workhorse models used in a variety of fields in

economic research, including static and dynamic budget constraint, as well as labor supply.4

We characterize price effects on consumption and on the state variable of interest, and we

highlight how violations of the law of demand can emerge at different points in time, even

in the absence of income effects.

In Section 6 we illustrate the applicability of our results by considering classic intertem-

poral models of human capital accumulation, addiction, habit and taste formation, health,

and exploitation of natural resources (Ben-Porath, 1967; Heckman, 1976; Blinder and Weiss,

1976; Arrow, 1962; Weiss, 1972; Becker and Murphy, 1988; Stigler and Becker, 1977; Abel,

1990; Carroll et al., 2000; Grossman, 1972; Clark et al., 1979). This selection of applications

is clearly not exhaustive: it just shows how our results can be applied to a broad range

of economic research in different fields, for which intertemporal consumer problems are a

building block. Section 7 concludes.

2For instance, Jensen and Miller (2008) report evidence of a decrease in rice demand in China after a
temporary reduction in its price and interpret it as Giffen behavior.

3The illustrative model assumes a dynamic amplifier, with fS = 1, so that patient and impatient
consumers are identified by ρ < 1 and ρ > 1, respectively.

4The comparative statics and comparative dynamics properties of dynamic optimization models have
been studied, among others, by Oniki (1973), Epstein (1978), Otani (1982), and Caputo (1990, 1997). Our
work is related to this literature, but our focus on consumer problems allows for an explicit analysis of
price effects, and our investigation covers classes of models that are not considered in this literature, but
are relevant in economic research.
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2 An illustrative example

In this Section we consider an illustrative dynamic consumer problem that rules out income

effects and is simple enough to be solved in close form. This example illustrates three

notable features concerning short and long-run price effects in a dynamic consumer problem:

(i) price effects can be non-monotonic over time, (ii) price effects can have different sign

over different time horizons, and (iii) price increases can lead to an increase in demand at

some point in time, thereby violating the law of demand, even in absence of income effects.

Let the instantaneous utility function be defined over two goods x and y and a state

variable S :

U(x, y, S) = x− x2

2
+ y + S − S2

2
. (1)

Given a market price p, income M , an initial state S0, and a discount rate ρ, the consumer

chooses the time path of x and y that solves the following problem:

max
{x,y}

∫ ∞
0

e−ρt
(
x− x2

2
+ y + S − S2

2

)
dt (2)

s.t. M = px+ y (3)

Ṡ = S − x. (4)

We present here the essential elements of the solution, and display full details in Appendix

A.1. The corresponding static problem, in which S is taken as given, is analyzed for

comparability in Appendix A.2. Replacing the budget constraint, the associated current-

value Hamiltonian function is

H(x, S, µ; p,M) =

(
x− x2

2
+ S − S2

2
+M − px

)
+ µ(S − x)

where µ represents the shadow price of the state variable. Let us focus on the case in which

p, M and S0 are such that x and y are positive along the optimal path. The necessary and

sufficient conditions for an internal solution are:

Hx = 1− x− p− µ = 0 (5)

µ̇ = µ(ρ− 1) + S − 1 (6)

Ṡ = S − x (7)

together with the transversality condition limt→∞ e
−ρtµS = 0.5 Note that the first order

condition (FOC) Hx = 0 equates the marginal utility of consumption to its full price, which

5Throughout the paper subscripts denote partial derivatives.
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is given by the sum of the market price of x and the shadow value of the state variable, so

that Ux = p+µ. In the corresponding static problem the relevant FOC simply equates the

marginal utility of x to its market price (Ux = p).

Differentiating Hx = 0 with respect to time and replacing µ = 1−x−p from (5) one can

express the necessary and sufficient conditions in terms of the dynamics of the (optimal)

control variable x and the state variable S:

ẋ = 1− S + (x+ p− 1) (ρ− 1) (8)

Ṡ = S − x. (9)

Setting ẋ = Ṡ = 0 yields the steady state values of the optimal solution

xss = Sss = 1 +
1− ρ
|J |

p (10)

where |J | = ρ − 2 is the determinant of the Jacobian matrix J associated to (8) and (9).

Saddle point stability requires |J | < 0, which holds if ρ ∈ (0, 2). The policy function leading

to the steady state is

x (S) = xss + (1− ε) (S − Sss) (11)

where ε, which only depends on ρ, is the negative eigenvalue of J .

Since both the policy function and the related steady state are independent of income

(∂x (S) /∂M = ∂xss/∂M = 0), this simple dynamic consumer problem rules out income

effects.6 Yet, differently from the static case, the optimal solution displays a non-monotonic

dynamic response to price changes, with short and long run price elasticities of opposite

sign and the consequent violation of the law of demand at some point in time.

Remark 1 (Dynamic price effect: illustrative example) In a steady state with sad-

dle point stability of problem (2)–(4), a permanent increase in p affects the consumption of

x in opposite directions in the short and in the long run:

• when the consumer is sufficiently impatient (ρ > 1) , consumption of x decreases on

impact and increases in the long run;

• when the consumer is sufficiently patient (ρ < 1) , consumption of x increases on

impact and decreases in the long run.

6In a static problem a quasi-linear utility function is sufficient to rule out income effects. In the
corresponding dynamic problem the absence of income effects on x is not only due to the quasi-linear
utility function, but also to the dynamics of S being independent of y, as shown in the next Section.
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Figure 1: Short and long-run price effects. A permanent price increase makes the policy function x(S)

shift downward for an impatient consumer (ρ > 1, left panel), and upward for a patient consumer (ρ < 1,

right panel). Consumption of x on impact jumps from A to B, then it follows the new policy function

x(S)new until the new steady state C is reached.

Figure 1 provides a graphical illustration of Remark 1. It displays the response of x to

a permanent increase in its price p occurring at a stable steady state for an impatient

consumer (left panel, ρ > 1) and for a more patient consumer (right panel, ρ < 1). In

the former case, the policy function shifts downward and the demand for x initially drops,

subsequently increases, and eventually reaches a higher level in the new steady state than

the initial one. In the latter case the time pattern is reversed.

The economic intuition is the following. In a dynamic environment, a forward looking

consumer must balance short and long-run considerations when choosing the optimal con-

sumption path. The balance depends on the intertemporal discount rate ρ, among other

factors. If the agent is impatient (ρ > 1), short run considerations are relatively more

important than long run ones. On impact, she behaves as in a static environment where,

absent income effects, the substitution effect induces a reduction in x after a rise in p. A

lower x determines an increase in the state variable S, which progressively lowers the full

price of x and thus raises its consumption, eventually resulting in a higher steady state level

of both x and S. An impatient consumer heavily discounts these long run consequences and

reacts on impact as she would in a static model.

If instead the agent is patient (ρ < 1), long run considerations are relatively more

important than short run ones. In steady state, as the full price of x increases when its

market price increases, a patient consumer aims at reducing x. To achieve this goal, she

reacts on impact in a way that is opposite to what she would do in a static environment,

by initially consuming more x in order to reduce S over time and thus allow herself a lower

consumption of x in the future.
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After showing that impatience, and the related trade-off between short and long run

considerations can produce interesting dynamic behavior even in a simple problem, in the

following Sections we consider a general set-up where we characterize short and long run

price effects without relying on specific functional forms.

3 A dynamic consumer problem without saving

Let us now consider a general dynamic consumer maximization problem. In this Section we

consider the case with a static budget constraint, which is the simplest dynamic extension

of static consumer theory.7 In the next Section we relax such constraint and include the

possibility of saving, borrowing and lending.

Consider an instantaneous utility function U (x (t) , y (t) , S (t)) and a budget constraint

M + w(S (t)) ≥ px (t) + y (t) , where x (t) ≥ 0 and y (t) ≥ 0 are consumption goods and

S (t) is a state variable that may affect utility and income. Good y is the numeraire, p

is the market price of good x, M is the exogenous component of income and w (S) is its

endogenous (state-dependent) component, assumed to be continuously differentiable and

concave. The state variable evolves according to Ṡ = f (x (t) , y (t) , S (t)) . Omitting the

time arguments for brevity, we assume that U (x, y, S) and f (x, y, S) are continuously

differentiable and concave functions in (x, y, S) , with Uxx < 0. We will focus on the case

in which the budget constraint is binding and the non-negativity constraints are not.

Given an intertemporal discount rate ρ > 0 and initial state S(0) = S0, the consumer’s

dynamic problem consists in determining the time path of x and y that solves:

max
{x,y}

∫ ∞
0

e−ρtU (x, y, S) dt (12)

s.t. M + w(S) = px+ y (13)

Ṡ = f (x, y, S) . (14)

The corresponding current-value Hamiltonian function is

H(x, y, λ, S, µ; p,M) = U (x, y, S) + λ[M + w(S)− px− y] + µf (x, y, S) (15)

where λ is the Lagrange multiplier of the budget constraint and µ is the costate variable

associated to state S. If the Hamiltonian function is concave in state and control variables,

the following conditions are necessary and sufficient for an internal solution (Mangasarian,

7For comparability, the static counterpart of the current model is provided in Appendix A.3.
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1966; Seierstad and Sydsaeter, 1977):

Hx = Ux (x, y, S)− λp+ µfx (x, y, S) = 0 (16)

Hy = Uy (x, y, S)− λ+ µfy (x, y, S) = 0 (17)

Hλ = M + w(S)− px− y = 0 (18)

µ̇ = ρµ−HS (x, y, S) (19)

Ṡ = f (x, y, S) (20)

with the transversality condition limt→∞ e
−ρtµ (t)S (t) = 0.8

Assuming strict concavity of the Hamiltonian function with respect to x, the FOCs

(16)-(18) determine the optimal value of x, y and λ as functions of the state and costate

variable, of the market price and the exogenous component of income:

x∗ = x∗(S, µ; p,M) (21)

y∗ = y∗(S, µ; p,M) (22)

λ∗ = λ∗(S, µ; p,M). (23)

Replacing (x∗, y∗, λ∗) in (19)-(20) yields the optimal state and costate dynamics:

µ̇ = ρµ−HS (x∗, y∗, λ∗, S, µ; p,M) (24)

Ṡ = f (x∗, y∗, S) . (25)

Given the initial state and the transversality condition, the solution {S (t) , µ (t)} of the

above system of differential equations represents the optimal trajectories of the state and

costate variables, which depend on p and M and determines the time-path of x, y and λ.

We now focus on trajectories leading to a steady state (Sss, µss), and on the consumption

of x. For later use, and with a slight abuse of notation, let us write steady state variables

as functions of p and M : Sss = Sss(p,M), µss = µss(p,M), and xss = xss(p,M) =

x∗(Sss, µss; p,M). Consumer behavior along the optimal trajectories leading to a steady

state is captured by a function µ(S), which, plugged into (21), yields the policy function

x (S) = x∗(S, µ(S); p,M) (26)

8If f (x, y, S) is non linear, the above conditions are necessary and sufficient for a maximum provided
along the optimal solution µ (t) ≥ 0 for all t. The budget constraint is binding if, along the optimal path,
λ is positive, which occurs when Ux (x, y, S) + µfx (x, y, S) > 0 and Uy (x, y, S) + µfy (x, y, S) > 0 at all t.
We focus on this case. An alternative way of solving the problem would be to substitute away the budget
constraint and obtain a Hamiltonian function with one control and one state variable, as in the illustrative
example and, for instance, in Caputo (1997).
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Consider a permanent change in p, assuming that the consumer is already in steady state.

On impact, its effect on the consumption of x is captured by the change in the policy

function (26), given S = Sss:

dx(Sss)

dp
=
∂x∗

∂p
+
∂x∗

∂µ

dµ(Sss)

dp
. (27)

The change in steady state consumption captures the long-run effect:

∂xss

∂p
=
∂x∗

∂p
+
∂x∗

∂S

∂Sss

∂p
+
∂x∗

∂µ

∂µss

∂p
. (28)

The first element ∂x∗/∂p in (27) and (28) is a static price effect that describes how consump-

tion changes given S and µ. The overall response, however, includes a dynamic component,

which on impact accounts for the adjustment in the policy function, given S, and in the

long run also takes into account the effect of p on the state variable.

With respect to the illustrative example of Section 2, this general model allows for

considerably richer interactions, both in the utility function and in the law of motion,

and produces short and long-run price effects that are in principle more complex. Yet,

they admit a surprisingly compact representation, as shown below (all proofs are in the

Appendix):

Proposition 1 (Price effect, no saving) At a steady state with saddle point stability of

problem (12)–(14), a permanent increase in p affects the consumption of x as follows:

• On impact, the change in x is

dx (Sss)

dp
=

λss

Ω(H) |J(H)|
ε (fS + fywS − ρ)− xssdx (Sss)

dM
; (29)

• In the long run, the change in steady state consumption of x is

∂xss

∂p
=

λss

Ω (H) |J (H)|
(fS + fywS) (fS + fywS − ρ)− xss∂x

ss

∂M
(30)

where Ω (H) , |J (H) |, ε, ∂xss

∂M
and dx(Sss)

dM
are defined in equations (84), (85), (86), (95)

and (99) in the Appendix, respectively.

Equations (29) and (30) characterize price effects in the short and in the long run for a

dynamic consumer problem without saving. Similar to static price effects, also dynamic

price effects can be distinguished into two components, both when considering the response
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on impact and in steady state. The first component is the dynamic counterpart of the

substitution effect, represented by the first term in equations (29) and (30); the second

component, represented by the terms −xssdx (Sss) /dM and −xss∂xss/∂M , respectively, is

the dynamic counterpart of the income effect.

Two novel results arise in an intertemporal setting. First, the law of demand can hold

on impact, but not in steady state (dx (Sss) /dp < 0 and ∂xss/∂p > 0), or instead be

violated on impact but hold in steady state (dx (Sss) /dp > 0 and ∂xss/∂p < 0). Second,

both on impact and in steady state the dynamic counterpart of the substitution effect can

be positive, and can therefore be by itself a source of violation of the law of demand. To

focus on this new channel, the following Remark provides sufficient conditions under which

there are no exogenous income effects:

Remark 2 (No income effects: sufficient conditions) In a stable steady state of prob-

lem (12)–(14), if the utility function is quasi linear in y, and y does not affect the evolution

of S, then there are no exogenous income effects: if fy = HyS = Hxy = Hyy = 0, then
dx(Sss)

dM
= ∂xss

∂M
= 0.

The conditions presented in Remark 2 are commonly assumed in the economic literature.

They imply that λ∗ > 0 along the optimal path (and hence in steady state, see equation

(17) above). Since |J (H)| , the determinant of the Jacobian matrix associated to (24)-(25),

is negative in a steady state with saddle point stability, Ω (H) is positive by concavity and

ε is the negative eigenvalue of J (H), the following holds:

Proposition 2 (Price effect absent income effect, no saving) Under the conditions

of Remark 2, which rule out income effects, after a permanent increase in p:

• If fS > 0 the consumption of x responds non-monotonically over time:

– x decreases on impact
(

dx(Sss)
dp

< 0
)

and increases in steady state
(
∂xss

∂p
> 0
)

if

fS ∈ (0, ρ),

– x increases on impact
(

dx(Sss)
dp

> 0
)

and decreases in steady state
(
∂xss

∂p
< 0
)

if

fS > ρ;

• If fS < 0:

– x decreases both on impact and in steady state,

– x is more elastic on impact than in steady state (hence it responds non-monotonically

over time) if fS > ε, that is if f 2
xHSS + fxHxS (ρ− 2fS) < 0, and it is more

rigid than in steady state (thus responding monotonically) otherwise.
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Absent income effects, the above Proposition emphasizes the role of time discounting and

of the marginal effect of S on its speed of change for dynamic price effects.

When fS is negative, the future consequences of current behavior are dampened. Condi-

tion fS < 0 is common in the economic literature, as it holds in models with a law of motion

of the form Ṡ = g(x)− δS. In such models, depreciation acts as a stabilizer because an ini-

tial increase in S due to current choices raises depreciation and therefore slows down future

growth of S. This adds to the effect of time discounting in making the future consequences

of current actions less relevant. For this reason, when fS < 0 the dynamic behavior at any

time horizon qualitatively resembles consumer behavior in a static set-up, where, absent

income effects, demand falls in response to a price increase (see Appendix A.3). While the

law of demand holds both on impact and in steady state, demand can have different price

elasticity over different time horizons, according to the sign of f 2
xHSS + fxHxS (ρ− 2fS). If

this expression is positive, which occurs when fxHxS is positive and large, the response to a

permanent price increase is monotonic and demand is more rigid on impact than in steady

state.9 If instead the above expression is negative, demand on impact is more elastic than

in the long run (i.e. there is overshooting in the short run) and the response of x over time

follows a non-monotonic path.

When fS is positive, instead, the future consequences of current behavior are amplified

over time.10 This creates a trade-off between short and long run, to which consumers with

different time preferences react in different ways. If fS ∈ (0, ρ) , the amplification effect is

small relative to the degree of impatience and the consumer favors the short over the long

run, initially responding to a price increase as she would do in a static set-up, namely, in

the absence of income effects, by reducing demand. In the long run, this initial choice has

the costly consequence of leading to an increase in the steady state consumption of x, a

consequence that is accepted precisely because long run effects are heavily discounted.

If instead fS > ρ, the amplification effect is large relative to impatience and the con-

sumer pays more attention to the long than to the short run. Accordingly, she is willing to

accept an initial increase in consumption in response to a higher price, in order to follow a

dynamic path leading to lower steady state consumption.

Notably, when fS is positive, the short and the long-run price effect have opposite sign

and consumption of x exhibits a non-monotonic time path in response to a rise in p: either

the law of demand holds on impact, and is violated in the long run, or the other way around.

Hence a price-based policy can deter consumption of x in the short run, but stimulate it

9This condition is met, for instance, in models of rational addiction, such as the one considered in Section
6.2, where consumption of the addictive good increases addiction (fx > 0) and endogenously reinforces the
taste for the addictive good (HxS > 0), if the good is sufficiently addictive, i.e. if HxS is large.

10Condition fS > 0 may hold, for instance, in models of human capital accumulation and renewable
resources.The illustrative example displayed in Section 2 is a simple case in which fS = 1.
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in the long run, or the other way around.

In view of its relevance for many economic problems, and in particular for the related

policy implications, we now consider the steady state response of the state variable to a

change in price.11

Proposition 3 (Price effect on Sss, no saving) The steady state response of the state

variable S to a permanent increase in the market price p of good x is described by

∂Sss

∂p
=

λss

Ω (H) |J (H)|
(pfy − fx) (fS + fywS − ρ)− xss∂S

ss

∂M
(31)

where Ω (H) , |J (H) | and ∂Sss

∂M
are defined in equations (84), (85) and (93) in the Appendix,

respectively.

In analogy to the previous analysis, we now present the steady state price response of

S when income effects are absent.12

Remark 3 (Price effect on Sss absent income effects, no saving) Under the condi-

tions of Remark 2, the following holds:

• ∂Sss

∂p
= − fx

fS

∂xss

∂p
,

• ∂Sss

∂p
> 0 if and only if fx (fS − ρ) > 0.

4 A dynamic consumer problem with saving

In this Section we extend the analysis to allow for the possibility of saving, lending and

borrowing. We first consider the case in which the interest rate is endogenous, then we

consider the case in which it is exogenously given.

4.1 Endogenous interest rate

When the agent can save or borrow, the static budget constraint considered in the previous

Section is replaced by a dynamic budget constraint. Here we consider the case in which

11Equations (29), (30) and (31) can be related to expressions (18e), (12b) and (12a), respectively, in
Caputo (1997). We differ from his analysis by explicitly considering price effects in a dynamic consumer
problem and by also investigating, in the next Sections, problems with saving and time allocation.

12Under the conditions of Remark 2, also the steady state level of S does not depend on exogenous
income (∂Sss/∂M = 0), see equation (93) in the Appendix.
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returns on assets r(A) are increasing and strictly concave. The dynamic consumer problem

now is

max
{x,y}

∫ ∞
0

e−ρtU (x, y, S) dt (32)

s.t. Ȧ = r(A) +M + w(S)− px− y (33)

Ṡ = f (x, y, S) (34)

with S (0) = S0, A (0) = A0, x (t) ≥ 0 and y (t) ≥ 0. The corresponding current-value

Hamiltonian function is:

H̃(x, y, S, A, µ, λ; p,M) = U (x, y, S) + λ [r(A) +M + w (S)− px− y] + µf (x, y, S) (35)

where λ and µ are the costate variables associated to the states A and S, respectively.13

The following conditions are necessary for an internal solution:

H̃x = Ux (x, y, S)− λp+ µfx (x, y, S) = 0 (36)

H̃y = Uy (x, y, S)− λ+ µfy (x, y, S) = 0 (37)

λ̇ = λ (ρ− rA) (38)

µ̇ = ρµ− H̃S(x, y, S, A, µ, λ; p,M) (39)

Ȧ = r(A) +M + w(S)− px− y (40)

Ṡ = f (x, y, S) (41)

with transversality conditions limt→∞ e
−ρtµ (t)S (t) = 0 and limt→∞ e

−ρtλ (t)A (t) = 0. The

above conditions are also sufficient for a maximum if H̃(x, y, S, A, µ, λ; p,M) is concave in

the state and control variables (Mangasarian, 1966; Seierstad and Sydsaeter, 1977). We

additionally assume H̃xx and H̃yy to be strictly negative.

Proceeding as in the previous Section allows obtaining the steady state consumption of

x and the corresponding policy function:

xss = xss (p,M) = x∗(Sss, Ass, µss, λss; p,M) (42)

x (S,A) = x∗(S,A, µ(S,A), λ(S,A); p,M) (43)

where x∗ represents the value of x that satisfies the first order conditions (36) and (37).

13In the previous Section λ was the Lagrange multiplier associated to the static budget constraint.
Here, with a slight abuse of notation, it represents the costate variable associated to the dynamic budget
constraint. We focus on the economically relevant case in which the shadow value of wealth λ is positive
along the optimal path.
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The following holds:

Proposition 4 (Price effect with saving) At a steady state with saddle point stability

of problem (32)–(34), a permanent increase in p affects the consumption of x as follows:

• On impact, the change in x is

dx (Sss, Ass)

dp
=

(λss)2 rAA

Ω̃ |J̃ |
ε̃ (fS + fywS − ρ)− xssdx (Sss, Ass)

dM
; (44)

• In the long run, the change in steady state consumption of x is

∂xss

∂p
=

(λss)2 rAA

Ω̃ |J̃ |
(fS + fywS) (fS + fywS − ρ)− xss∂x

ss

∂M
(45)

where |J̃ |, Ω̃, ∂xss

∂M
, dx(Sss,Ass)

dM
and ε̃ are defined in equations (112), (113), (129), (137)

and (138) in the Appendix, respectively.

Proposition 4 shows that price effects in a dynamic consumer’s problem with saving at

an endogenous interest rate closely parallel the price effects presented in Proposition 1 for

the problem without saving, except for the fact that all terms are now derived from a

different Hamiltonian function, that saddle point stability requires |J̃ | > 0, and that there

is an additional term λssrAA to account for the dynamic budget constraint. Hence, even in

presence of borrowing and lending, price effects can still be decomposed into an exogenous

income effect and a dynamic analogue of the substitution effect. They can also produce

monotonic and non-monotonic patterns of consumption, price responses that have different

sign over different time horizons, and possible violations of the law of demand at some

point in time, as it is clearly shown in the case considered below.14

Proposition 5 (Price effect in a simple case with saving) In a stable steady state of

problem (32)–(34), if fy = H̃yS = H̃xy = wS = 0 and ε̃ < 0, then after a permanent increase

in the market price p:

• If fS > 0 the consumption of x responds non-monotonically over time:

14For the problem without saving, in Remark 2 we stated that fy = HyS = Hxy = Hyy = 0 are sufficient
conditions for the absence of income effects. In the current problem this set of conditions is not admissible
because strict concavity in both controls precludes H̃yy = 0 (and implies Ω̃ > 0). Replacing wS = 0 for

H̃yy = 0 we obtain a simple case in which income effects are non nil. Proposition 5 adds condition ε̃ < 0,
which always holds in our numerical simulations.
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– x decreases on impact
(

dx(Sss,Ass)
dp

< 0
)

and increases in steady state
(
∂xss

∂p
> 0
)

if fS ∈ (0, ρ),

– x increases on impact
(

dx(Sss,Ass)
dp

> 0
)

and decreases in steady state
(
∂xss

∂p
< 0
)

if fS > ρ;

• If fS < 0:

– x decreases both on impact an in steady state,

– x is more elastic on impact than in steady state (hence it responds non-monotonically

over time) if fS > ε̃, and it is more rigid than in steady state (thus responding

monotonically) otherwise.

Let us now consider the long run response of the state variable S to price changes:

Proposition 6 (Price effect on Sss with saving) The steady state response of the state

variable S to a permanent increase in the market price p of good x is described by

∂Sss

∂p
=

(λss)2 rAA

Ω̃ |J̃ |
(pfy − fx) (fS + fywS − ρ)− xss∂S

ss

∂M
(46)

where |J̃ |, Ω̃, and ∂Sss

∂M
are defined in equations (112), (113) and (124) in the Appendix,

respectively.

In the simple case, the response of S to a price change satisfies the properties described

below:15

Remark 4 (Price effect on Sss in a simple case with saving) In a stable steady state

of problem (32)–(34), if fy = H̃yS = H̃xy = wS = 0, the following holds:

• ∂Sss

∂p
= − fx

fS

∂xss

∂p

• ∂Sss

∂p
> 0 if and only if fx (fS − ρ) > 0.

15In the simple case, the steady state value of S increases with exogenous income (∂Sss/∂M > 0) if and
only if fx (fS − ρ) < 0, see equation (124).
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4.2 Exogenous interest rate

After considering the case of saving with decreasing marginal returns to assets, an assump-

tion that is reasonable and common in macroeconomic modeling, we now consider the

microeconomic perspective in which individual consumers take the market interest rate as

given. In such a case, the literature often focuses on linear asset returns and studies Frisch

demand functions, in which price changes are compensated to keep the shadow value of

assets constant. Following this literature, we now assume that asset income is r(A) = rA,

where r = ρ > 0 (see, e.g., Heckman, 1974; Becker and Murphy, 1988). Under these

conditions, equation (38) implies that the costate variable λ associated to the dynamic

budget constraint is constant, hence the dynamic system reduces to equations (39)–(41),

once the FOCs (36)–(37) are satisfied. Since expression (43) is now independent of A (see

Appendix), we can write the policy function simply as x (S) and state the following:

Proposition 7 (Price effect for Frisch demand functions) At a steady state with sad-

dle point stability of problem (32)–(34), with r (A) = rA and r = ρ, a permanent increase

in p that is compensated to maintain the shadow value of assets λ0 constant affects the

consumption of x as follows:

• On impact, the change in x is:

dx (Sss)

dp
=

λ0ρ

Φ Ω̃ |J0|
ε0 (fS − ρ)

(
fyH̃xy − fxH̃yy

)2

+
λ0fy

Φ

[
ρ

Ω̃ |J0|
ε0

(
fyH̃xy − fxH̃yy

)(
fxH̃yS − fyH̃xS

)
− fy

]
; (47)

• In the long run, the change in steady state consumption of x is

∂xss

∂p
= − ρλ0

Ω̃ |J0|

{
fS (fS − ρ) H̃yy + fy

[
fyH̃SS + (ρ− 2fS) H̃yS

]}
(48)

where Ω̃, |J0|, ε0, and Φ are defined in equations (113), (154), (164) and (166) in the

Appendix, respectively.

A main difference between Proposition 7 and Propositions 1 and 4 is that, for Frisch demand

functions, the income effect is nil both on impact and in steady state (dx (Sss) /dM = 0

and ∂xss/∂M = 0). The price effects in equations (47) and (48) are therefore only due

to intertemporal substitution. Such intertemporal substitution effect is however different

from the ones computed in the previous models because it considers a compensation that

keeps the marginal utility of assets constant.
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Since λ0 > 0, Φ > 0, and since Ω̃ is positive by concavity and |J0| is negative in a

steady state with saddle point stability (now the Jacobian matrix is 3-dimensional and has

at most one negative eigenvalue), in the special case in which the dynamics of state S is

not affected by control y one obtains:

Proposition 8 (Price effect for Frisch demand functions when fy = 0) In a steady

state with saddle point stability of problem (32)–(34), with r (A) = rA, r = ρ and fy = 0,

after a permanent increase in the market price p :

• If fS > 0 the consumption of x responds non-monotonically over time:

– x decreases on impact
(

dx(Sss)
dp

< 0
)

and increases in steady state
(
∂xss

∂p
> 0
)

if

fS ∈ (0, ρ),

– x increases on impact
(

dx(Sss)
dp

> 0
)

and decreases in steady state
(
∂xss

∂p
< 0
)

if

fS > ρ;

• If fS < 0:

– x decreases both on impact an in steady state,

– x is more elastic on impact than in steady state (hence it responds non-monotonically

over time) if fS > ε0, and it is more rigid than in steady state (thus responding

monotonically) otherwise.

We thus have that, when y does not affect the evolution of the state variable S, the same

simple conditions on fS and ρ already obtained in the absence of income effects in Proposi-

tion 2, and in the simple case with endogenous interest rate in Proposition 5, characterize

short and long-run (Frisch) price effects, and they can produce non-monotonic consumption

paths in response to price changes, price effects of different sign over different time horizons

and violations of the law of demand at some point in time.16

Let us now consider the long run response of the state variable S to price changes:

Proposition 9 (Price effect on Sss for Frisch demand functions) The steady state

response of the state variable S to a permanent increase in the market price p of good x is

described by

∂Sss

∂p
=

ρλ0

Ω̃|J0|

{
fx (fS − ρ) H̃yy + fy

[
fyH̃xS − (fS − ρ) H̃xy − fxH̃yS

]}
(49)

16If the dynamics of state S is also affected by control y, another possible source of violations comes from
the term fy (ρ− 2fS) H̃yS (notice that the term f2y H̃SS cannot be positive). As we know from the static
theory of Giffen goods, and as already discussed above, interactions in the objective function can be a
source of violation of the law of demand. What is interesting to notice here is that the relevant interaction
is now between state S and control y.
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where Ω̃ and |J0| are defined in equations (113) and (154) in the Appendix, respectively.

When fy = 0, the response of S to a change in p satisfies the following properties:

Remark 5 (Price effect on Sss for Frisch demand functions when fy = 0) In a sta-

ble steady state of problem (32)–(34), with r (A) = rA and r = ρ, if fy = 0, then

• ∂Sss

∂p
= − fx

fS

∂xss

∂p
,

• ∂Sss

∂p
> 0 if and only if fx (fS − ρ) > 0.

5 A dynamic labor supply problem

In this Section we consider an important class of intertemporal consumer problems, involv-

ing the choice between consumption and time allocation to labor and other activities. To

study how labor supply responds over time to wage changes we use a slight modification

of the problem with saving and exogenous interest rate just discussed in Section 4.2.

Let x be the share of time devoted to non-labor activities (leisure, training or other

activities, depending on the application of interest), and y be consumption. The natural

counterpart of price effects are now wage effects. We will characterize the short and long-run

response of Frisch labor supply in the following individual problem:

max
{x,y}

∫ ∞
0

e−ρtU (x, y, S) dt (50)

s.t. Ṡ = f (x, y, S) (51)

Ȧ = rA+M + wg(x, S)− y, (52)

where g(x, S) represents effective labor and w is its exogenous return. To accommodate for

a variety of models that are commonly used in the economic literature, including human

capital, health, addiction and natural resources, we assume g (x, S) to be continuously

differentiable and decreasing in non-labor time, gx < 0, but we make no specific assumption

on the effect of state S on effective labor. The main formal difference with respect to

the previous Section is that now state S and control x do not enter the dynamic budget

constraint in an additively separable way, but can potentially interact. We also make no

specific assumptions on how instantaneous utility depends on S. The time endowment is

normalized to one, so that the share of labor time is ` = 1− x.

The current-value Hamiltonian is

Ȟ(x, y, S, A, µ, λ;w,M) = U (x, y, S) + λ [rA+M + wg (x, S)− y] + µf (x, y, S) (53)

18



which is assumed to be concave in state and control variables, with Ȟxx < 0 and Ȟyy < 0.

Proceeding as in the previous Sections one obtains:

Proposition 10 (Wage effect for Frisch labor supply) In a steady state with saddle

point stability of problem (50)–(52), with r (A) = rA and r = ρ, a permanent increase in

the wage w paid per unit of effective labor that is compensated to maintain the shadow value

of assets λ0 constant affects Frisch labor supply ` as follows:

• On impact, the change in ` is:

d` (Sss)

dw
= −λ0

Φ̌
f 2
y gx +

ρλ0

Ω̌ |J̌ |
ε̌
(
fxȞyy − fyȞxy

)
[gS

+gx

(
fxȞyy − fyȞxy

)
(fS − ρ) + fy

(
fyȞxS − fxȞyS

)
Φ̌

]
; (54)

• In the long run, the change in steady state labor supply ` is:

∂`ss

∂w
=

ρλ0

Ω̌ |J̌ |
gS
[
fSfxȞyy + fy

(
fyȞxS − fSȞxy − fxȞyS

)]
− ρλ0

Ω̌ |J̌ |
gx
{
fS (fS − ρ) Ȟyy + fy

[
fyȞSS + (ρ− 2fS) ȞyS

]}
(55)

where Φ̌, Ω̌, |J̌ | and ε̌ are defined in equations (178), (179), (180) and (181) in the

Appendix, respectively.

Proposition 10 shows that, in a dynamic problem, labor supply can respond non-monotonically

to wage changes and that, in general, the sign of the response to wage is ambiguous, despite

income effects being nil both on impact and in steady state (d` (Sss) /dM = ∂`ss/∂M =

0).17 This can be immediately appreciated when state S is not influenced by consumption

y. In such a case, given λ0 > 0, and since Ω̌ and Φ̌ are positive by concavity, and |J̌ | and

ε̌ are negative in a steady state with saddle point stability, the following holds:

Proposition 11 (Wage effect for Frisch labor supply when fy = 0) In a steady state

with saddle point stability of problem (32)–(34), with r (A) = rA, r = ρ and fy = 0, after

a permanent increase in the wage w :

• If fS > 0 labor supply ` responds non-monotonically over time:

17If effective labor does not depend on state S (i.e. gS = 0) and gx = −1, then, mutatis mutandis,
expressions (54) and (55) reduce to (47) and (48), obviously with the opposite sign since we are now
looking at labor supply rather than at leisure (or training) demand.
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– ` increases on impact
(

d`(Sss)
dw

> 0
)

and decreases in steady state
(
∂`ss

∂w
< 0
)

if

fS < ρ̌,

– ` decreases on impact
(

d`(Sss)
dw

< 0
)

and increases in steady state
(
∂`ss

∂w
> 0
)

if

fS > ρ̌;

• If fS < 0:

– ` increases both on impact an in steady state if fS < ρ̌, and it decreases both on

impact an in steady state if fS > ρ̌;

– ` is more elastic on impact than in steady state (hence it responds non-monotonically

over time) if fS > ε̌, and it is more rigid than in steady state (thus responding

monotonically) otherwise

where ρ̌ = ρ+ gSfx/gx.

Once again, despite the complexity of an intertemporal model of labor supply, the short

and long-run response of labor supply to wage changes can depend on surprisingly compact

conditions. Consistent with the results presented in Proposition 8, if fS > 0, labor supply

responds non-monotonically over time and the sign of the short-run reaction is opposite to

the long-run response. Labor supply increases on impact but decreases in the long run, or

the other way around, depending on whether fS is smaller or larger than ρ̌, respectively.

Since the threshold value ρ̌ increases with impatience ρ, the intuition behind this result is

similar to the one proposed in the previous Sections, with the only difference that now ρ̌

also incorporates the role of effective labor.18

If instead fS < 0, the short and long-run wage responses of labor supply have the same

sign. In particular, if impatience is large (fS < ρ̌), the qualitative reaction parallels the

one obtained in a static labor supply model, in which, absent income effects, an increase

in the opportunity cost of leisure induces to work more. If instead the agent is patient

(fS ∈ (ρ̌, 0)), an increase in the returns to effective labor induces the agent to work less,

both in the short and in the long run. As in the previous Sections, when fS < 0 it remains

true that the monotonicity of the time path of the wage response of labor supply depends

on whether fS > ε̌ or the other way around.

In the context of the models discussed in Section 6.1, Proposition 11 implies that labor

supply increases both in the short and in the long run if human capital is accumulated

through learning-by-doing. If instead human capital is accumulated through training, pa-

tient agents can respond to higher returns to effective labor by working less and investing

18Note that ρ̌ can be either positive or negative. If gS = 0, then ρ̌ = ρ and the wage effect depends on
fS ≶ ρ, as the price effect in Proposition 8.
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more in training. In the absence of income effects, this negative response of labor supply

to a wage increase runs against the predictions based on the static substitution effect: now

the agent chooses to dynamically raise effective labor supply through more training and

higher human capital, rather than by working more.

As done in the previous Sections, the long run response of the state variable S to a

wage change can be explicitly assessed:

Proposition 12 (Wage effect on Sss for Frisch labor supply) The steady state response

of the state variable S to a permanent increase in wage w is described by

∂Sss

∂w
= − ρλ0

Ω̌|J̌ |
{
gSΦ̌ + gx

[
(fS − ρ)

(
fxȞyy − fyȞxy

)
+ f 2

y ȞxS − fxfyȞyS

]}
(56)

When fy = 0, the response to a wage change satisfies the following properties:

Remark 6 (Wage effect on Sss for Frisch labor supply when fy = 0) At a stable steady

state of problem (50)–(52), with r (A) = rA and r = ρ, if fy = 0, then

• ∂Sss

∂w
= fx

fS

∂`ss

∂w
,

• ∂Sss

∂w
> 0 if and only if either fx > 0 and fS > ρ̌, or fx < 0 and fS < ρ̌.

6 Applications

The dynamic consumer problems analyzed in the previous Sections encompass a number

of models commonly used in the economic literature. To appreciate it, in this Section we

consider classic workhorse models of human capital accumulation, addiction, habit and

taste formation, health, and exploitation of natural resources. This selection illustrates the

wide applicability of our results to a variety of fields in economic research, but is clearly

not exhaustive.19

6.1 Human capital accumulation

Models of human capital accumulation can be distinguished in two broad classes: training

models, which focus on the direct investment in human capital accumulation through either

schooling or on-the-job training (see, e.g., Ben-Porath, 1967; Heckman, 1976; Blinder and

Weiss, 1976), and learning by doing (or experience) models, which consider human capital

19For each application we have verified through numerical simulations that there is a non-empty param-
eter set such that a stable steady state exists, concavity and non-negativity assumptions are satisfied, and
the conditions identifying short and long run responses in each case hold.
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accumulation as a byproduct of work activity (see, e.g., Arrow, 1962; Weiss, 1972). The

essence of both classes is captured by model (50)-(52), where S is human capital, effective

labor increases in S (gS > 0), and y is a consumption good. A common assumption is

that y does not affect human capital accumulation (fy = 0) and that human capital does

not affect instantaneous utility (US = 0). The main difference between the two classes

of models is that x is either interpreted as a training investment, which contributes to

human capital accumulation, or as leisure, which yields utility but reduces labor time and

consequently learning by doing.20 Thus in training models fx > 0, whereas in learning

models fx < 0.21

Let us set r = ρ for simplicity and focus on Frisch supply function, which rules out

income effects. Since consumption y does not affect human capital accumulation, Propo-

sition 11 and Remark 6 apply and allow identifying short and long run responses of labor

supply to a wage increase, as well as predicting the evolution of human capital over time,

both for training and for learning models.

Let us focus on ρ̌ > 0, a condition that always holds in learning models and also holds in

training models for sufficiently impatient agents (recall that ρ̌ = ρ+ fxgS/gx). If in steady

state fS > 0, labor supply responds to a wage increase with opposite sign in the short

and in the long run. Such response is heterogeneous and depends on the agent’s degree of

impatience. Impatient workers (fS ∈ (0, ρ̌)) initially increase and then decrease their labor

supply. The initial increase in fact mimics the standard response one would expect in a

static framework where, absent income effects, substitution effects drive the reaction to a

wage increase. When considering training models, the higher initial labor supply leaves

less time for training, so that human capital and productivity start decreasing. Given

that fS > 0, this initial fall in human capital feeds back and amplifies over time. To

prevent this from happening, an impatient worker progressively increases the time devoted

to training, eventually reaching a new steady state in which both labor supply and human

capital are lower than in the old steady state, as the higher subsequent training investment

only partially compensates for the initial fall in human capital. When considering learning

models, by contrast, the short run increase in labor supply leads a progressive accumulation

20A minor difference, immaterial for our results, is that instantaneous utility increases in leisure but
decreases in training investment.

21In the literature, there are two main aspects in which human capital accumulation models may differ
from the present setup: existing models may consider a finite time horizon, and they may allow for more
than two control variables. On the one hand, an infinite time horizon model can represent a setting in which
life is finite, but its duration is uncertain, along the lines of Yaari (1965). On the other hand, the model
with two control variables captures in the simplest way the trade-off in the allocation of time between labor
and either training or leisure. Killingsworth (1982) shows how training and learning can be combined into
a broader model. It is easy to extend the analysis to the case of three control variables (consumption and
the allocation of time among leisure, labor and training). A full analysis of finite-horizon life cycle models
is also possible, but is beyond the scope of this article.
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of human capital. Again, with fS > 0, this initial change in human capital feeds back and

amplifies over time as it leads to faster learning. Higher productivity allows the worker to

subsequently reduce labor supply until reaching a new steady state where labor supply is

lower than in the old one, but human capital is higher. Patient workers (fS > ρ̌) display

exactly the opposite pattern.

If instead fS < 0, then after a permanent rise in wage both short and long run labor

supply increase. If fS < ε̌, labor supply jumps up on impact and keeps increasing over time.

This monotonic response is due to labor supply being more rigid in the short than in the

long run. If instead fS > ε̌, labor supply is more elastic in the short than in the long run.

This results in an initial overshooting relative to the long run labor supply increase, and in

a non-monotonic path. As above, this is true in both training and learning models, with

the difference that in the former human capital decreases, while in the latter it increases.

6.2 Addiction, habit and taste formation

Becker and Murphy (1988) develop a rational addiction model in which the consumer

chooses between an addictive good x and a non-addictive good y. Consumption of the

addictive good contributes to the accumulation of addiction capital S, which in turn makes

x more desirable (UxS > 0). Their model is a special case of model (32) to (34), in which

f(x, y, S) = x− δS, the utility function is quadratic, M = 0, and r = ρ. Since fy = 0 and

fS = −δ < 0, according to Proposition 8 and Remark 5, in response to a price increase

consumption of the addictive good decreases both on impact and in steady state, leading

to a lower level of addiction.

Becker and Murphy mention, but do not formally develop, the possibility of an invest-

ment in addiction reduction (for instance, participation in a rehabilitation program). Sup-

pose y is interpreted as such an investment and for simplicity assume f(x, y, S) = x−y−δS.

One can imagine that participating to the rehab program not only involves expenditures,

but is also physically or mentally costly, and that it is more costly the higher the level of

addiction, that is Uy < 0 and UyS < 0. According to Proposition 7, if UyS is sufficiently

large in absolute value (and the marginal utility of wealth is positive), then an increase in

the price of the addictive good can lead to a long-run increase in its consumption (possibly

through a non monotonic path).22 It can be shown that the steady state rise in consump-

tion of the addictive good x is accompanied by an increase in rehab expenditure y, so

that the overall effect is a lower steady state stock of addiction S.23 A higher price of the

22Formally, ∂xss/∂p > 0 if λ0 > 0 and UyS < [δ (δ + ρ)Uyy + USS + λ0wSS ] / (2δ + ρ) < 0.
23By combining Propositions 7 and 9, the condition for steady state stability and the expression for

∂yss/∂p, which can be computed in analogy to ∂xss/∂p, one finds that in a stable steady state ∂xss/∂p > 0
implies ∂yss/∂p > 0 and ∂Sss/∂p < 0.
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addictive good (e.g., higher taxes on alcohol) may thus eventually reduce addiction but,

paradoxically, through an increase in the consumption of both alcohol and rehab services.

Alternatively, consider a variation of the model in which y is also addictive (i.e. UyS > 0)

and contributes to the addiction stock S (e.g., x is beer and y is vodka). According to

Proposition 7, in a stable steady state the consumption of x increases in its price when

good y is sufficiently more addictive than good x.24 In this case, responding to an increase in

the price of x by substituting y for x would excessively increase addiction. To avoid it, the

consumer reduces y and increases x (as the latter is less addictive) and ultimately the stock

of addiction decreases. A higher tax on beer may thus reduce alcoholism but, paradoxically,

through a reduction in vodka consumption and an increase in beer consumption.

With appropriate adaptations, models such as (12)-(14) in the absence of savings, or

(32)-(34) when there is a credit market, can also capture taste formation or habit formation

along the lines proposed by Stigler and Becker (1977) and by Abel (1990) and Carroll

et al. (2000), respectively. In such situations consumption of good x contributes to the

accumulation of a specific consumption capital S, which feeds back into the demand for

that good. The main difference is that consumption capital raises the marginal utility of

x in taste formation models (UxS > 0: the more I listen to music the more I appreciate

it), while it reduces it in habit formation models (UxS < 0: the more I get used to a

good, the less I value it). However, if the specific consumption capital does not affect

income (wS = 0) and is only accumulated through x (fy = 0), and if the utility function is

additively separable in y, then this difference is not relevant for the sign of the steady state

price effect and either Proposition 2, or 5 or 8, depending on the specification, applies. In

particular, if in steady state fS > 0, then the consumption of x responds in opposite ways

to a price increase in the short and in the long run.

6.3 Health capital

Grossman (1972) proposes a health accumulation model in discrete-time. Its essence is

captured by the continuous-time model (32)-(34), where S is health capital, x is a health

investment (say, medical care) and y is a consumption good, with U (x, y, S) = V (y, S)

and f(x, y, S) = h (x)− δS, M = 0, where h (·) is an increasing and concave function and

r = ρ. Since fy = 0 and fS = −δ < 0, according to Proposition 8 the investment in health

satisfies the law of demand both on impact and in steady state.

Consider now a variation of the model in which the consumer can increase health

through medical care x and physical activity y. For simplicity, consider f(x, y, S) = h (x)+

24Formally, ∂xss/∂p > 0 if λ0 > 0 and UyS > − [δ (δ + ρ)Uyy + USS + λ0wSS ] / (2δ + ρ) > 0, which in a
stable steady state implies UyS > kUxS , where k > 1.
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y − δS. It is natural to assume that physical activity is more enjoyable (or less costly) for

healthier people, that is UyS > 0. This effect has the potential to lead to violations of the

law of demand in the long run: when it is sufficiently strong, according to Proposition

7, in a stable steady state an increase in the price of medical care leads to an increase

in the consumption of medical care.25 It can also be shown that this is accompanied by

a decrease in physical activity and a decrease in health. A higher price of medical care

may thus reduce health but, surprisingly, through a reduction in physical exercise and an

increase in the consumption of medical care.

6.4 Natural resources

In the tradition of Clark et al. (1979), environmental economics has devoted substantial

attention to the problem of optimal exploitation of renewable resources. Depending on the

application of interest, these problems may be considered from the point of view of a social

planner, an extracting firm, or an individual. In the current framework it is natural to

consider the last perspective.

Consider a model of natural resources, where an individual (say, a fisherman or a lum-

berjack) decides upon extractive effort, anticipating that extracted resources will be sold

on the market but will also reduce the stock available for the future. This situation can

be described by model (50)-(52), where S is the stock of natural resources, ` is extractive

effort, x = 1− ` is an alternative time use (say, leisure), and y is a consumption good. Ef-

fort ` increases the flow of extracted resources g(x, S) sold on the market at the exogenous

price w, but it reduces the stock S. Since ` = 1− x, this means gx < 0 and fx > 0. These

are exactly the key features of the training models discussed above, with only a difference

in interpretation: in the present model of natural resources an increase in x amounts to

a reduction in extractive effort, whereas in those models of human capital it amounts to

training. Hence, as above, if r = ρ, then Propositions 10 and 12 apply. In the present

context it is plausible to assume that fy = 0, in which case Propositions 11 and Remark

6 apply.26 If in steady state fS ∈ (0, ρ̌), which is more likely the higher the degree of

impatience, then an increase in the price of extracted resources leads to an initial increase

and a long-run reduction in extractive effort, which is accompanied by a long-run reduction

in the stock of natural resources.

25Formally, ∂xss/∂p > 0 if and only if UyS > − [δ (δ + ρ)Uyy + USS + λ0wSS ] / (2δ + ρ) > 0.
26In this case the slope of the steady state Frisch supply of extractive effort is again ∂`ss

∂w =

−ρλ0fS [(fS − ρ) gx − fxgS ] Ȟyy/
(
|J̌ | Ω̌

)
.
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7 Conclusion

When consumers are forward-looking, price-based policies such as taxes and subsidies may

affect demand in different ways in the short and in the long run, possibly generating ‘per-

verse’ effects over some time horizon. This paper studies short and long-run price effects

for a broad class of dynamic consumer problems. We characterize the response of demand

to a permanent price increase (both on impact and in steady state), as well as the long-

run response of the relevant state variable. Price-based policies may indeed target either

flow variables, such as consumption or schooling, or stock variables, such as human cap-

ital, health or natural resources, whose externalities are often the motivation for policy

intervention.

The abstract setup we consider allows for the effect of past actions on current choices,

for either static or dynamic budget constraints, and for resource allocation to consumption

goods as well as for time allocation to labor and leisure. Our characterization provides

results that are general, simple, widely applicable, empirically testable and policy relevant.

We show that both in the short and in the long run, price effects may be decomposed

into the dynamic counterparts of income and substitution effect. Contrary to the case of

Giffen goods in static consumer theory, we prove that, in response to a permanent price

increase, demand can increase at some point in time even in the absence of income effects.

We find that short and long-run price effects may have opposite sign. This is due to the

fact that consumers may face a trade-off between present and future consumption. Such

trade-off essentially arises when the dynamic technology amplifies over time the effects of

current choices on the relevant state variable, and this leads to counterbalancing choices in

the future.

Under assumptions that are commonly used in the literature, this possibility material-

izes when a simple condition is satisfied, namely when the steady state impact of the state

variable on its own speed of change is positive. This condition can be satisfied, for instance,

in models of human capital accumulation, endogenous preferences or renewable resources,

in which ‘capital’ is an input for its own accumulation.

After a permanent price increase, consumers with different time preferences react dif-

ferently to the trade-off between present and future consumption created by such dynamic

amplifier. Impatient consumers attach more weight to the present and reduce consump-

tion today, accepting an increase tomorrow; patient consumers instead prefer to reduce

consumption in the long run, and accept a short-run increase.

The above trade-off between present and future consumption does not arise when the

dynamic technology acts as a stabilizer, dampening over time the effects of current choices

on the state variable, and therefore allowing the short and long-run response of demand to
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a price increase to have the same sign. Under the common assumptions mentioned above,

this possibility arises when the steady state impact of the state variable on its own speed

of change is negative, as it easily happens in models with capital depreciation. Yet, even

when the short and long-run price elasticity have the same sign, we find that the initial

consumer response to a price increase may overshoot relative to the long-run response: if

the dynamic stabilization effect is weak, demand is more elastic in the short than in the

long run, whereas if it is strong, the reverse is true.

We illustrate the relevance of our results by applying them to the workhorse models used

in different fields of economic research. We consider intertemporal models of human capital

accumulation, addiction, habit and taste formation, health, and exploitation of natural

resources. In each case, we show how price-based policies may have non-trivial effects over

time. Our theoretical predictions, and in particular the non-monotonicity of the response

of demand over time to a permanent price increase, can in principle be empirically tested

in each of these domains.

Our framework can be extended to incorporate additional state and control variables,

which may produce oscillatory and cyclical dynamic patterns (Becker and Murphy, 1988;

Dockner and Feichtinger, 1993; Wirl, 1996). As intertemporal consumer problems are a

building block of dynamic macroeconomic models, our results are also relevant for business

cycle and growth theories, although an explicit analysis of general equilibrium models,

possibly with a stochastic component, is outside the scope of the present paper.

A Appendix

A.1 Illustrative example

The steady state values of the illustrative example are found solving (8) and (9) and using

the budget constraint (3) and FOC (5):

xss = Sss =
(ρ− 1)(1− p)− 1

|J |
(57)

µss =
p

|J |
, yss = M − pxss. (58)

The Jacobian matrix associated to (8) and (9) is

J =

(
ρ− 1 −1

−1 1

)
. (59)
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Denote by ε = (ρ−
√

8− 4ρ+ ρ2)/2 < 0 the smaller eigenvalue of J , and by ξ = (1− ε, 1)

the associated eigenvector. Note that neither |J | = ρ − 2, nor ε depend on the market

price, and that stability requires ρ < 2, which is assumed to hold hereafter.

Solving the system of linear ordinary differential equations (8) and (9), given S (0) = S0,

S (∞) = Sss and x (∞) = xss, yields

x (t) = xss + (S0 − Sss) (1− ε) eεt (60)

S (t) = Sss + (S0 − Sss) eεt (61)

Rearrange (60) and (61) to obtain the policy function:

x (S) = xss + (1− ε) (S − Sss) . (62)

After an increase in p the whole policy function shifts downward when ρ > 1, and upward

when ρ < 1, as
∂x (S)

∂p
= ε

1− ρ
|J |

(63)

The steady state response of x to an increase in p is:

∂xss

∂p
=

1− ρ
|J |

=
1

ε

∂x (S)

∂p
. (64)

Since ε is negative, the responses of x to p on impact and in steady state have opposite

sign. Income effects, instead, are nil both on impact and in steady state:

∂x (S)

∂M
=
∂xss

∂M
= 0. (65)

To understand the effect of a change in the market price p along the transition to the new

steady state, remember that FOC (5) requires

Ux = Π (66)

where Π := p + µ denotes the full price of x (see, e.g., Becker and Murphy, 1988). Since

the problem is additively separable, an increase in the full price leads to a decrease in x:
∂x
∂Π

= 1
Uxx

< 0. Yet, the full price does not increase monotonically in the market price p.

To see this, consider the value of the costate variable along an optimal path leading to the

steady state:

µ (S) = µss + (ε− 1) (S − Sss) . (67)
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Hence

Π (S) = p+ µss + (ε− 1) (S − Sss) (68)

and, in steady state,

Π (Sss) = p+ µss. (69)

On impact (i.e. given S), the response of Π to a rise in p is

∂Π (S)

∂p
= 1 +

∂µss

∂p
− (ε− 1)

∂Sss

∂p
=
ε (ρ− 1)

|J |
(70)

and, in steady state,

∂Πss

∂p
= 1 +

∂µss

∂p
=
ρ− 1

|J |
= ε

∂Π (S)

∂p
. (71)

Since ε is negative, the full price response to p on impact and in steady state have opposite

sign. Over time, irrespective of the degree of impatience, the full price of x decreases in S:

Π′ (S) = ε− 1 < 0. Thus, when the agent is impatient (ρ > 1), after a permanent increase

in p, Π first rises and then progressively falls. In the new steady state, despite the fact that

the market price p is higher, the full price Π is lower than in the initial steady state, which

explains why xss is higher. The reverse pattern holds for ρ < 1.

A.2 Static counterpart of the illustrative example

For the sake of comparability, we present here the static counterpart of the illustrative

example considered in Section 2. Given S, p and M , the consumer solves the following

problem:

max
x,y

U(x, y, S) = max
x,y

(
x− x2

2
+ y + S − S2

2

)
(72)

s.t. M = px+ y. (73)

Let p ∈ (0, 1) and M > p(1− p), so as to grant an internal solution. Replacing the budget

constraint, the problem can be re-written in terms of V (x;S, p,M) = U(x,M−px, S), with

first order condition Vx = 1− x− p = 0. The corresponding optimal consumption choices

are x∗ = 1− p and y∗ = M − p(1− p). The quasi-linear specification of the utility function

ensures that all income effects are captured by y and that ∂x∗/∂M = 0, so that changes in

p only determine substitution effects on the demand for x and ∂x∗

∂p
= −1.
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A.3 Static consumer problem

We now briefly remind well known results from static consumer theory, to emphasize that,

in a static environment, violations of the law of demand require a strong and negative

interaction between consumption goods in the utility function and cannot occur absent

income effects.

Consider a utility function U(x, y), where x ≥ 0 and y ≥ 0 are two consumption goods.

The utility function is assumed to be concave, continuously differentiable and non satiated.

Given income M > 0 and market price p > 0, the problem is the following

max
x,y

U(x, y) (74)

s.t. M = px+ y. (75)

The Lagrangian function corresponding to this problem is

L = U (x, y) + λ [M − px− y] (76)

where λ is the Lagrangian multiplier associated to the static budget constraint.

In an internal solution the following FOCs hold:

Lx = Ux − pλ = 0 (77)

Ly = Uy − λ = 0 (78)

Lλ = M − px− y = 0 (79)

which implicitly determine the optimal values x̂, ŷ and λ̂ as functions of p and M. As it is

well known, applying the implicit function theorem, the static price effect is

∂x̂

∂p
= − λ̂

Ω̂
− x̂ ∂x̂

∂M
(80)

where Ω̂ = −Uxx + 2pUxy − p2Uyy > 0 by concavity. The first term of (80) represents the

static substitution effect, which is negative under non satiation (see Lx and Ly), while the

second term represents the static income effect, with

∂x̂

∂M
=
Uxy − pUyy

Ω̂
. (81)

Hence Uxy, the interaction between x and y in the utility function, crucially determines the

sign of the static income effect. If such interaction is sufficiently negative (Uxy < pUyy),
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good x is inferior; if it is below an even lower threshold (Uxy < −λ̂/x̂+ pUyy), good x is a

Giffen good and the law of demand is violated. The reason is that, at the optimum, the

FOCs imply MRSxy = Ux/Uy = p. When p increases, for ordinary goods the MRS is raised

by consuming less x and more y, thus reducing Ux and increasing Uy. For Giffen goods,

instead, the increase in the MRS is indeed obtained by consuming more x in response to

an increase in its price, because increasing the consumption of x reduces Ux, but it also

reduces Uy more than proportionally. With a quasi-linear utility function, such as the one

assumed in Appendix A.2, Uxy = Uyy = 0 and income effects are nil because ∂x̂/∂M = 0.

A.4 Dynamic consumer problem without saving

We are interested in assessing the elements of (27) and (28), which we report here for

convenience:

dx(Sss)

dp
=

∂x∗

∂p
+
∂x∗

∂µ

dµ(Sss)

dp
(82)

∂xss

∂p
=

∂x∗

∂p
+
∂x∗

∂S

∂Sss

∂p
+
∂x∗

∂µ

∂µss

∂p
. (83)

Let

Ω (H) = −Hxx + 2pHxy − p2Hyy (84)

which is positive by concavity (with strict concavity in x). The determinant of the Jacobian

matrix associated to (24)-(25) is

|J (H)| = fS (ρ− fS) +
fx − pfy
Ω (H)

[(2fS − ρ) (pHyS −HxS) + (fx − pfy)HSS]

+
wS

Ω (H)
{2(fx − pfy)(fxHyS − fyHxS) + [fx(pHyy −Hxy) + fy(Hxx − pHxy)](2fS − ρ)}

+
w2
S

Ω (H)

(
f 2
yHxx − 2fxfyHxy + f 2

xHyy

)
. (85)

For ease of notation, in the following we omit the argument H and simply write J and Ω.

The negative eigenvalue of J is

ε =
ρ−

√
ρ2 − 4|J |
2

. (86)

From the FOCs (16)-(18) one obtains:

∂x∗

∂p
= −λ

∗

Ω
− x∗ ∂x

∗

∂M
(87)
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where
∂x∗

∂M
=
Hxy − pHyy

Ω
. (88)

In general expression (87) is different from the static price effect (80) and from the overall

price effect of a dynamic consumer’s maximization problem (which we will compute below)

because it identifies the slope of the demand function keeping the state and its shadow

price (i.e. the costate) fixed.27 Moreover:

∂x∗

∂S
=
HxS − pHyS

Ω
+ wS

Hxy − pHyy

Ω
(89)

∂x∗

∂µ
=

fx − pfy
Ω

. (90)

The terms ∂Sss/∂p and ∂µss/∂p can be computed by applying the implicit function theorem

to (24)-(25), which yields:

∂Sss

∂p
= −λssfS + fywS − ρ

|J |
∂x∗

∂µ
− xss∂S

ss

∂M
(91)

∂µ
ss

∂p
=

λss

|J |

(
HSS

∂x∗

∂µ
− fS

∂x∗

∂S

)
− xss∂µ

ss

∂M

−wSλss
fy (HxS + pHyS)− 2fxHyS + (fyHxy − fxHyy)wS

Ω|J |
(92)

where

∂S
SS

∂M
=

1

Ω |J |
{(fx − pfy) (fyHxS − fxHyS) + (fS − ρ) [fy (pHxy −Hxx) + fx (Hxy − pHyy)]

−wS
(
f 2
xHyy − 2fxfyHxy + f 2

yHxx

)
(93)

∂µss

∂M
=

1

Ω |J |
{
fx
[
HxSHyS −HxyHSS + p

(
HSSHyy −H2

yS

)]
+fy

[
HxxHSS −H2

xS − p (HSSHxy −HxSHyS)
]

+fS [HxyHxS −HxxHyS + p (HxyHyS −HxSHyy)]

+wS
[
fx (HxSHyy −HxyHyS) + fy (HxxHyS −HxSHxy)− fS

(
HxxHyy −H2

xy

)]}
.(94)

27As for the dynamic price effects reported in Proposition 1 and for the static price effect reported in
(80), expression (87) can be interpreted as the sum of substitution and income effects. Note that (87)
takes into account the role of state and costate variables (which makes it different from the static price
effect), but it takes them as given (which makes it different from the dynamic price effects). If µ = 0, then
∂x∗/∂p = ∂x̂/∂p. If the evolution of the state variable is linear and additively separable in the controls
(fxx = fyy = fxy = 0), then ∂x∗/∂M = ∂x̂/∂M .
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Rearranging yields expressions (30) in Proposition 1 and (31) in Proposition 3, where

∂xss

∂M
=
∂x∗

∂M
+
∂x∗

∂S

∂S
ss

∂M
+
∂x∗

∂µ

∂µss

∂M
=

1

Ω |J |
{(fS − ρ) [fy (HxS − pHyS)− fS (Hxy − pHyy)]

+ (fx − pfy) (fSHyS − fyHSS) + wS
[
f 2
yHxS − fy(fSHxy + fxHyS) + fSfxHyy

]
.

(95)

To appreciate the role of interactions in the utility function in generating income effects and

being a possible source of violation of the law of demand, let us focus on the steady state

and consider the first order condition (16). Define the full price as Π := Ux − Hx. As in

the illustrative example, FOC (16) requires Ux = Π along the optimal path, although now

Π = λp− µfx. Differentiate (16) to get Uxx dx+ Uxy dy + UxS dS = dΠ. If Uxy = UxS = 0,

as assumed in the illustrative model, then along the optimal path x is inversely related to

Π. Thus, in that model violations of the law of demand in steady state can only be due

to the fact that Πss is decreasing in p. In general, however, the law of demand can be

violated in steady state even if Πss is not decreasing in p, due to the fact that Uxy and UxS

can be different from zero. The role of Uxy closely resembles the mechanism behind Giffen

goods emphasized in Appendix A.3: in a static consumer problem violations of the law of

demand are due to a sufficiently negative Uxy (i.e. Uxy < −λ̂/x̂+ pUyy) which implies that,

in response to a rise in p, Ux increases through a rise in x and a reduction in y. The role

of UxS is instead specific to a dynamic environment.

Finally, to compute (82) we need dµ(Sss)/dp. First we determine µ(S), which depends

on (Sss, µss), by taking a first-order linear expansion of (24)-(25) around the steady state:(
µ̇

Ṡ

)
= J

(
µ− µss

S − Sss

)
. (96)

The solution of this system of ordinary linear differential equations yields

µ(S) = µss + ξ(S − Sss) (97)

where (ξ, 1) is the eigenvector associated to the negative eigenvalue ε of J . A price change

occurring when the system is already in steady state implies:28

dµ (Sss)

dp
=
∂µss

∂p
− ξ ∂S

ss

∂p
. (98)

28In principle the derivative of (97) by p also includes the term ∂ξ
∂p (S−Sss), which vanishes for S = Sss.
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Rearranging (82) yields expression (29) and completes the proof of Proposition 1, where

dx (Sss)

dM
=
∂x∗

∂M
+
∂x∗

∂µ

dµ (Sss)

dM
(99)

and
dµ (Sss)

dM
=
∂µss

∂M
− ξ ∂S

ss

∂M
. (100)

Under the conditions of Remark 2, ∂x∗/∂M = dx (Sss) /dM = ∂xss/∂M = ∂Sss/∂M = 0

and the price responses on impact and in steady state are, respectively

dx (Sss)

dp
=

λss

Ω(H) |J(H)|
ε (fS − ρ) > 0 ⇔ fS > ρ (101)

∂xss

∂p
=

λss

Ω (H) |J (H)|
fS (fS − ρ) > 0 ⇔ fS ∈ (0, ρ) (102)

∂Sss

∂p
= − λss

Ω (H) |J (H)|
fx (fS − ρ) = −fx

fS

∂xss

∂p
. (103)

This proves Remarks 2 and 3, and the non monotonicity result stated for fS > 0 in the

first part of Proposition 2. For fS < 0, x decreases both on impact and in steady state.

Demand then is more elastic on impact if ε < fS, which holds if

ρ− 2fS <
√
ρ2 − 4|J | =

√
(ρ− 2fS)2 + 4

f 2
xHSS + fxHxS (ρ− 2fS)

Hxx

⇔ f 2
xHSS + fxHxS (ρ− 2fS) < 0.

This completes the proof of Proposition 2.

A.5 Dynamic consumer problem with saving

A.5.1 Endogenous interest rate

The FOCs (36)-(37) determine the optimal value of x, y as functions of the state and

costate variables, of the market price and income:

x∗ = x∗(S,A, µ, λ; p,M) (104)

y∗ = y∗(S,A, µ, λ; p,M). (105)
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Replacing (x∗, y∗) in (38)-(41) yields the optimal state and costate dynamics

Ṡ = f (x∗, y∗, S) (106)

Ȧ = r (A) +M + w(S)− px∗ − y∗ (107)

µ̇ = ρµ− H̃S (x∗, y∗, S, A, µ, λ; p,M) (108)

λ̇ = λ (ρ− rA) . (109)

Proceeding as in the previous Section, steady state consumption of x is

xss = x∗(Sss, Ass, µss, λss; p,M). (110)

The change of steady state consumption of x after an increase in its price p is

∂xss

∂p
=
∂x∗

∂p
+
∂x∗

∂S

∂Sss

∂p
+
∂x∗

∂A

∂Ass

∂p
+
∂x∗

∂µ

∂µss

∂p
+
∂x∗

∂λ

∂λss

∂p
. (111)

In steady state, the determinant of the Jacobian associated to (106)-(109), is

|J̃ | =
λssrAA

Ω̃

(
H̃xx − 2pH̃xy + p2H̃yy

)
fS (fS − ρ)

+
λssrAA

Ω̃
(fx − pfy)

[
(2fS − ρ)

(
pH̃yS − H̃xS

)
+ (fx − pfy) H̃SS

]
+wS

λssrAA

Ω̃

{
2(fx − pfy)(fxH̃yS − fyH̃xS) + [fx(pH̃yy − H̃xy) + fy(H̃xx − pH̃xy)](2fS − ρ)

}
+w2

S

λssrAA

Ω̃

(
f 2
y H̃xx − 2fxfyH̃xy + f 2

xH̃yy

)
(112)

where and λss is the steady state value of the costate variable associated to the dynamic

budget constraint and

Ω̃ = H̃xxH̃yy − H̃2
xy (113)

which is positive by strict concavity. Note that

|J̃ | = λssrAA

Ω̃
Ω(H̃) |J(H̃)| (114)
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where Ω(H̃) and |J(H̃)| are defined in equations (84) and (85), but now applied to H̃
instead of H. Application of Cramer’s rule to (36)-(37) yields

∂x∗

∂p
=
λ

Ω̃
H̃yy (115)

∂x∗

∂S
=
H̃xyH̃yS − H̃xSH̃yy

Ω̃
(116)

∂x∗

∂A
=
∂x∗

∂M
= 0 (117)

∂x∗

∂µ
=
fyH̃xy − fxH̃yy

Ω̃
(118)

∂x∗

∂λ
=
pH̃yy − H̃xy

Ω̃
. (119)

Analogously, from (106)-(109), one derives

∂Sss

∂p
=

(λss)2 rAA

Ω̃|J̃ |
(pfy − fx) (fS − ρ+ fywS)− xss∂S

ss

∂M
(120)

∂Ass

∂p
= 0 (121)

∂µss

∂p
= −(λss)2 rAA

Ω̃|J̃ |

{
H̃SS (pfy − fx) + fS

(
H̃xS − pH̃yS

)
+
[
fS

(
H̃xy − pH̃yy

)
− 2fxH̃yS + fy

(
H̃xS + pH̃yS

)
+ wS

(
fyH̃xy − fxH̃yy

)]
wS

}
−xss∂µ

ss

∂M
(122)

∂λss

∂p
=

(λss)2 rAA

Ω̃|J̃ |

{
f 2
S(H̃xy − pH̃yy)− pfy

(
fyH̃SS + ρH̃yS

)
−fS

[
fy

(
H̃xS − 2pH̃yS

)
+ ρ

(
H̃xy − pH̃yy

)]
− fx

[
H̃yS (fS − ρ)− fyH̃SS

]
−
[
f 2
y H̃xS + fxH̃yy (fS − ρ)− fy

(
fSH̃xy + fxH̃yS − ρH̃xy

)]
wS

}
− xss∂λ

ss

∂M
(123)
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and

∂S
SS

∂M
=

λssrAA

Ω̃|J̃ |
{(fx − pfy) (fyHxS − fxHyS)

+ (fS − ρ)
[
fx

(
H̃xy − pH̃yy

)
+ fy

(
pH̃xy − H̃xx

)]
−wS

(
f 2
xH̃yy − 2fxfyH̃xy + f 2

y H̃xx

)}
(124)

∂A
SS

∂M
= 0 (125)

∂µ
SS

∂M
=

λssrAA

Ω̃|J̃ |

{
fx

[
H̃xSH̃yS − H̃xyH̃SS + p

(
H̃SSH̃yy − H̃

2

yS

)]
+fy

[
H̃xxH̃SS − H̃

2

xS + p
(
H̃xSH̃yS − H̃xyH̃SS

)]
+fS

[
H̃xSH̃xy − H̃xxH̃yS + p

(
H̃xyH̃yS − H̃xSH̃yy

)]
+wS

[
fx

(
H̃yyH̃xS − H̃xyH̃yS

)
+ fy

(
H̃xxH̃yS − H̃xyH̃xS

)
− fSΩ̃

]}
. (126)

∂λ
SS

∂M
=

λssrAA

Ω̃|J̃ |

{
f 2
y

(
H̃SSH̃xx − H̃2

xS

)
+ f 2

x

(
H̃SSH̃yy − H̃

2

yS

)
+ fS (fS − ρ) Ω̃

+fy

[
2fx(H̃xSH̃yS − H̃SSH̃xy) + (H̃xSH̃xy − H̃xxH̃yS)(2fS − ρ)

]
+ρfx

(
H̃xSH̃yy − H̃xyH̃yS

)
+ 2fxfS

(
H̃xyH̃yS − H̃xSH̃yy

)}
(127)

Expression (120) is identical to (46) and proves Proposition 6.

We now focus on the case in which the Jacobian admits two negative eigenvalues, which

ensures saddle point stability to the steady state. When this is the case, |J̃ | is strictly

positive. Under this stability requirement the following obtains

∂xss

∂p
=

(λss)2 rAA

Ω̃|J̃ |
(fS + fywS) (fS + fywS − ρ)− xss∂x

ss

∂M
, (128)

where

∂xss

∂M
=
λssrAA

Ω̃|J̃ |

{
(fS − ρ)

[
fy

(
H̃xS − pH̃yS

)
− fS

(
H̃xy − pH̃yy

)]
+ (fx − pfy)

(
fSH̃yS − fyH̃SS

)
+wS

[
f 2
y H̃xS − fy(fSH̃xy + fxH̃yS) + fSfxH̃yy

]}
. (129)

Expression (128) is identical to (44) and proves the second part of Proposition 4. Remark

4 follows by comparison between expressions (120) and (124) with (128) and (129), when

fy = H̃yS = H̃xy = wS = 0.

Note that, if from (114) one replaces λssrAA/(Ω̃ |J̃ |) = 1/
(

Ω(H̃) |J(H̃)|
)

in the last two
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equations, the price effect can be written as

∂xss

∂p
=

λss

Ω(H̃) |J(H̃)|
(fS + fywS) (fS + fywS − ρ)− xss∂x

ss

∂M
(130)

which is identical to (30), except for the fact that the Hamiltonian function H of the

problem without saving is replaced with the Hamiltonian function H̃ of the problem with

saving, and that λss now refers to the steady state value of the costate associated to the

dynamic budget constraint. With the same caveat, an analogous replacement in (129)

yields an expression identical to (95).29

To compute the response on impact

dx(Sss, Ass)

dp
=
∂x∗

∂p
+
∂x∗

∂µ

dµ(Sss, Ass)

dp
+
∂x∗

∂λ

dλ(Sss, Ass)

dp
(131)

we proceed as in the previous Section. Take a first-order linear expansion of (106)-(109)

around the steady state: 
Ṡ

Ȧ

µ̇

λ̇

 = J̃


S − Sss

A− Ass

µ− µss

λ− λss

 (132)

Let (ξ1, ξ2, ξ3, ξ4) and (ω1, ω2, ω3, ω4) be the eigenvectors associated to the negative eigen-

values ε1 and ε2 of the Jacobian matrix J̃ , which we do not report here for the sake of

exposition. The solution of the above system of ordinary linear differential equations yields

µ(S,A) = µss + ζ1(S − Sss) + ζ2(A− Ass) (133)

λ(S,A) = λss + ζ3(S − Sss) + ζ4(A− Ass) (134)

where ζ1 = (ω3ξ2 − ω2ξ3) /θ, ζ2 = (ω1ξ3 − ω3ξ1) /θ, ζ3 = (ω4ξ2 − ω2ξ4) /θ, ζ1 = (ω1ξ4 − ω4ξ1) /θ,

and θ = ω1ξ2 − ω2ξ1. Since ∂Ass/∂p = 0, a price change occurring when the system is

already in steady state implies:

dµ (Sss, Ass)

dp
=

∂µss

∂p
− ζ1

∂Sss

∂p
(135)

dλ (Sss, Ass)

dp
=

∂λss

∂p
− ζ3

∂Sss

∂p
. (136)

29The same is true for expressions (120), (122), (124), (126), which, with the same caveat, are identical
to (91), (92), (93), (94), respectively.
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Replacing in (131) and rearranging yields dx (Sss, Ass) /dp as in equation (44), where,

exploiting ∂x∗/∂M = ∂Ass/∂M = 0 and remembering that on impact A and S are given,

dx (Sss, Ass)

dM
=

∂x∗

∂µ

dµ(Sss, Ass)

dM
+
∂x∗

∂λ

dλ(Sss, Ass)

dM
, (137)

ε̃ = fS + fywS + (fx − pfy)
(
∂x∗

∂S
+ ζ1

∂x∗

∂µ
+ ζ3

∂x∗

∂λ

)
(138)

and

dµ (Sss, Ass)

dM
=

∂µss

∂M
− ζ1

∂Sss

∂M
(139)

dλ (Sss, Ass)

dM
=

∂λss

∂M
− ζ3

∂Sss

∂M
. (140)

This completes the proof of Proposition 4.

In a stable steady state of problem (32)–(34), if fy = H̃yS = H̃xy = wS = 0, then the

price effect on impact and in steady state become

dx (Sss, Ass)

dp
=

λssrAA

Ω̃ |J̃ |

(
λss − pH̃yyx

ss
)
ε̃ (fS − ρ) (141)

∂xss

∂p
=

λssrAA

Ω̃ |J̃ |

(
λss − pH̃yyx

ss
)
fS (fS − ρ) =

fS
ε̃

dx (Sss, Ass)

dp
(142)

∂Sss

∂p
= −λ

ssrAA

Ω̃ |J̃ |

(
λss − pH̃yyx

ss
)
fx (fS − ρ) = −fx

fS

∂xss

∂p
(143)

where

dx (Sss, Ass)

dM
=
λssrAA

Ω̃ |J̃ |
pH̃yyε̃ (fS − ρ) (144)

∂xss

∂M
=
λssrAA

Ω̃ |J̃ |
pH̃yyfS (fS − ρ) =

fS
ε̃

dx (Sss, Ass)

dM
(145)

ε̃ =
ε1ε2

[
f 2
xH̃SS + fx (ρ− 2fS) H̃xS + (ε1 + fS − ρ) (ε2 + fS − ρ) H̃xx

]
(ε1 + ε2 − fS) (ε1 + fS − ρ) (ε2 + fS − ρ) H̃xx − fx (fS − ρ)

[
fxH̃SS + (ρ− 2fS) H̃xS

] .(146)

By equation (37), condition fy = 0 ensures that λ is positive along the optimal path (and

hence in steady state); |J̃ | is positive in a steady state with saddle point stability, and Ω̃

is positive by strict concavity. Based on numerical simulations, we conjecture that in any

stable steady state ε̃ is negative, although we have no analytical proof to offer. If this is the

case, the short and the long run response to a price increase have opposite sign whenever

fS > 0. If instead fS < 0, both responses are negative and the demand is more elastic in
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the short run if fS > ε̃. This proves Proposition 5 and Remark 4.

A.5.2 Exogenous interest rate

When rA = r = ρ, equation (38) implies that the shadow price of wealth is constant over

time, λ(t) = λ0 for all t, and the optimality conditions (36)-(41) become

H̃x = Ux (x, y, S)− λ0p+ µfx (x, y, S) = 0 (147)

H̃y = Uy (x, y, S)− λ0 + µfy (x, y, S) = 0 (148)

Ṡ = f (x, y, S) (149)

Ȧ = rA+M + w(S)− px− y (150)

µ̇ = ρµ− H̃S(x, y, S, A, µ, λ0; p,M). (151)

Proceeding as in the previous Section allows obtaining the steady state consumption of x:

xss = x∗(Sss, Ass, µss, λ0; p,M) (152)

where function x∗ yields the value of x that satisfies the first order conditions (147) and

(148). The change of steady state consumption of x after an increase in price p is computed

as follows:
∂xss

∂p
=
∂x∗

∂p
+
∂x∗

∂S

∂Sss

∂p
+
∂x∗

∂A

∂Ass

∂p
+
∂x∗

∂µ

∂µss

∂p
+
∂x∗

∂λ

∂λ0

∂p
. (153)

In general, λ0 depends on the parameters of the model, possibly including market prices.

When focusing on Frisch demand functions, however, price changes are compensated so that

the marginal utility of wealth λ0 remains constant. In this case, ∂λ0/∂p is zero. In steady

state, the determinant of the 3-dimensional Jacobian matrix J0 associated to (149)-(151),

once the first order conditions are satisfied, is

|J0| =ρfS (ρ− fS) +
ρ

Ω̃

{(
fyH̃xS − fxH̃yS

)2

−
(
f 2
y H̃xx − 2fxfyH̃xy + f 2

xH̃yy

)
H̃SS

− (2fS − ρ)
[(
fyH̃xy − fxH̃yy

)
H̃xS +

(
fxH̃xy − fyH̃xx

)
H̃yS

]}
. (154)

where Ω̃ is given by (113). To focus on stable steady states, we now consider the case in

which the Jacobian matrix J0 admits one negative eigenvalue ε0 (there is at most one),

implying |J0| < 0. The elements of equation (153) are given by equations (115)-(118) and
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by

∂Sss

∂p
=

ρλ0

Ω̃|J0|

[
f 2
y H̃xS + (fS − ρ)

(
fxH̃yy − fyH̃xy

)
− fxfyH̃yS

]
(155)

∂Ass

∂p
=

λ0

Ω̃|J0|

{
fS (fS − ρ)

(
H̃xy − pH̃yy

)
− fy

[
p
(
fyH̃SS + ρH̃yS

)
+ fS

(
H̃xS − 2pH̃yS

)]
−fx

[
(fS − ρ) H̃yS − fyH̃SS

]
− wS

[
f 2
y H̃xS + (fS − ρ)

(
fxH̃yy − fyH̃xy

)
− fyfxH̃yS

]}
−xss∂A

ss

∂M
(156)

∂µss

∂p
=

ρλ0

Ω̃|J0|

[
fS

(
H̃xSH̃yy − H̃xyH̃yS

)
− fx

(
H̃SSH̃yy − H̃2

yS

)
+ fy

(
H̃xyH̃SS − H̃xSH̃yS

)]
(157)

∂λ0

∂p
= 0 (158)

and

∂Ass

∂M
=

1

Ω̃|J0|

{
f 2
y

(
H̃SSH̃xx − H̃2

xS

)
+ fS (fS − ρ) Ω̃ + f 2

x

(
H̃SSH̃yy − H̃2

yS

)
−fx

[
2fy

(
H̃SSH̃xy − H̃xSH̃yS

)
− (2fS − ρ)

(
H̃xyH̃yS − H̃xSH̃yy

)]
+fy (2fS − ρ)

(
H̃xSH̃xy − H̃xxH̃yS

)}
. (159)

Expression (155) is identical to (49) and thus proves Proposition 9.

Since ∂x∗/∂A = ∂x∗/∂M = ∂Sss/∂M = ∂λ0/∂M = ∂µss/∂M = 0, income effect at the

steady state is nil:

∂xss

∂M
=
∂x∗

∂M
+
∂x∗

∂S

∂S
ss

∂M
+
∂x∗

∂A

∂Ass

∂M
+
∂x∗

∂λ

∂λ0

∂M
+
∂x∗

∂µ

∂µss

∂M
= 0. (160)

Combining the above results and rearranging yields equation (48) in Proposition 7. Remark

5 follows by comparison between (48) and (49), when fy = 0.

Since ∂x∗/∂A = 0 and λ is fixed, the response on impact is

dx(Sss, Ass)

dp
=
∂x∗

∂p
+
∂x∗

∂µ

dµ(Sss, Ass)

dp
. (161)

Take a first-order linear expansion around the steady state of (149)-(151), once the FOCs

are satisfied:
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 Ṡ

Ȧ

µ̇

 = J̃

 S − Sss

A− Ass

µ− µss

 (162)

The solution of the above system of ordinary linear differential equations can be expressed

as a function of the state variable S only,

µ(S) = µss + ξ̊3(S − Sss) (163)

where (1, ξ̊2, ξ̊3) is the eigenvector associated to the negative eigenvalue ε0 of the Jacobian

matrix J0,

ε0 =
1

2

(
ρ−

√
ρ2 − 4

|J0|
ρ

)
(164)

ξ̊3 =
1

Φ

[
(ε0 − fS) Ω̃ + fx

(
H̃xSH̃yy − H̃xyH̃yS

)
+ fy

(
H̃xxH̃yS − H̃xSH̃xy

)]
(165)

and

Φ = −f 2
y H̃xx + 2fxfyH̃xy − f 2

xH̃yy > 0. (166)

A price change occurring when the state variable S is already in steady state implies, for

any A:
dµ (Sss)

dp
=
∂µss

∂p
− ξ̊3

∂Sss

∂p
. (167)

Rearranging (161), and noting that it does not depend on either A or M , yields dx (Sss) /dp

in expression (47) in Proposition 7.

If fy = 0, the response on impact and in steady state simplifies to

dx (Sss)

dp
= − ρλ0

Ω̃ |J0|
ε0 (fS − ρ) H̃yy (168)

∂xss

∂p
= − ρλ0

Ω̃ |J0|
fS (fS − ρ) H̃yy =

fS
ε0

dx (Sss)

dp
(169)

∂Sss

∂p
=

ρλ0

Ω̃ |J0|
fx (fS − ρ) H̃yy =

fx
fS

∂xss

∂p
(170)

and Proposition 8 and Remark 5 follow.
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A.6 Dynamic labor supply

When r = ρ, λ0 > 0 is constant over time and the optimality conditions are:

Ȟx = Ux (x, y, S) + λ0wgx (x, S) + µfx (x, y, S) = 0 (171)

Ȟy = Uy (x, y, S)− λ0 + µfy (x, y, S) = 0 (172)

Ṡ = f (x, y, S) (173)

Ȧ = rA+M + wg(x, S)− y (174)

µ̇ = ρµ− ȞS(x, y, S, A, µ, λ0; w,M) (175)

with the transversality conditions limt→∞ e
−ρtµ (t)S (t) = 0 and limt→∞ e

−ρtλ0A (t) = 0.

Proceeding as in the previous section allows one obtains

xss = x∗(Sss, Ass, µss, λ0; w,M) (176)

and
∂xss

∂w
=
∂x∗

∂w
+
∂x∗

∂S

∂Sss

∂w
+
∂x∗

∂A

∂Ass

∂w
+
∂x∗

∂λ

∂λ0

∂w
+
∂x∗

∂µ

∂µss

∂w
. (177)

Let

Φ̌ = −f 2
y Ȟxx + 2fxfyȞxy − f 2

xȞyy (178)

Ω̌ = ȞxxȞyy − Ȟ2
xy (179)

which are positive by strict concavity, and let

|J̌ | = ρfS (ρ− fS) +
ρ

Ω̃

{(
fyȞxS − fxȞyS

)2
+ Φ̌ȞSS

+ (2fS − ρ)
[(
fxȞyy − fyȞxy

)
ȞxS +

(
fyȞxx − fxȞxy

)
ȞyS

]}
(180)

ε̌ =
ρ

2
− 1

2

√
ρ2 − 4

|J̌ |
ρ

(181)

be the determinant of the Jacobian matrix J̌ at the steady state (which is the same function

of Ȟ as |J0| in (154) is of H̃), and the negative eigenvalue of J̌ , respectively. The elements
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of (177) are

∂x∗

∂w
= −λ0

Ω̌
gxȞyy (182)

∂x∗

∂S
=
ȞxyȞyS − ȞxSȞyy

Ω̌
(183)

∂x∗

∂A
= 0 (184)

∂x∗

∂µ
=
fyȞxy − fxȞyy

Ω̌
(185)

∂x∗

∂λ
= −wgxȞyy + Ȟxy

Ω̌
(186)

and

∂Sss

∂w
= − ρλ0

Ω̌|J̌ |
{
gSΦ̌ + gx

[
(fS − ρ)

(
fxȞyy − fyȞxy

)
+ f 2

y ȞxS − fxfyȞyS

]}
(187)

∂µss

∂w
=

ρλ0

Ω̌|J̌ |
{
gx
[
fS
(
ȞxyȞyS − ȞxSȞyy

)
+ fx

(
ȞSSȞyy − Ȟ2

yS

)
+ fy

(
ȞxSȞyS − ȞxyȞSS

)]
+gS

[
fSΩ̌ + fx

(
ȞxyȞyS − ȞxSȞyy

)
+ fy

(
ȞxSȞxy − ȞxxȞyS

)]}
. (188)

As for the Frisch demand function, ∂λ0
∂w

= ∂x∗

∂A
∂Ass

∂w
= 0. Remembering that ` = 1 − x,

equation (55) follows. This proves the second part of Proposition 10. Expression (187) is

identical to (56) and proves Proposition 12.

The computation of the response on impact follows the steps of the solution for the

problem with saving and exogenous interest rate, yielding

dx (Sss)

dw
=

λ0

Φ̌
f 2
y gx +

ρλ0

Ω̌ |J̌ |
ε̌
(
fyȞxy − fxȞyy

)
[gS

+gx
fy
(
fyȞxS − fxȞyS

)
−
(
fyȞxy − fxȞyy

)
(fS − ρ)

Φ̌

]
(189)

and equation (54) follows, completing the proof of Proposition 10.

If fy = 0, the response on impact and in steady state simplifies to

dx (Sss)

dw
=

ρλ0

Ω̌ |J̌ |
Ȟyyε̌ [gx (fS − ρ)− gSfx] (190)

∂xss

∂w
=

ρλ0

Ω̌ |J̌ |
ȞyyfS [gx (fS − ρ)− gSfx] =

fS
ε̌

dx (Sss)

dw
(191)

∂Sss

∂w
= − ρλ0

Ω̌|J̌ |
Ȟyyfx [gx (fS − ρ)− gSfx] = −fx

fS

∂xss

∂w
(192)
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and Proposition 11 and Remark 6 follow.
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