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1 Introduction

There are two main reasons for products to be differentiated. The first is that
consumers love variety, so that product differentiation is the market response
to a property of individual preferences. The second is that consumers are
different from each other, and product differentiation is the proper market
response to this diversity. In these two explanations, agents’ heterogeneity
plays quite a different role. Indeed, in the modern literature the key refer-
ence for the former is the Dixit and Stiglitz (1977) model of monopolistic
competition, which is based on a representative agent assumption — though
recent extensions of their basic framework allowed to capture the effects of
consumers’ heterogeneity on several aspects of market competitiveness (see,
among others, Benassi et al, 2005; Osharin et al,2014; Bertoletti and Etro,
2015). By contrast, within the approach based on consumers’ diversity, the
representation of agents’ heterogeneity, along with the properties of prefer-
ences, is the key building block of any model. Actually, it is the shape of the
distribution of consumers which defines the market environment faced by
firms — the distribution of consumers in the space of the product character-
istics within horizontal differentiation, the distribution of the willingness to
pay for quality, which can be taken as a proxy for income distribution, under
vertical differentiation.1 As a consequence, any sound theoretical represen-
tation must be robust to a wide range of assumptions about the functional
form of the consumers’ distribution — a necessary condition to ensure realism
and predictive power.

This objective has already been attained in the case of horizontal differ-
entiation. Indeed, the well known paper by Anderson et al. (1997) identifies
a set of conditions on the distribution of consumers’ along the ’linear city’
which ensure that the subgame perfect equilibrium in prices and locations
exists and is unique. For vertical differentiation, however, the state of the
art is far less satisfactory — which is in a way surprising, given the economic
and social relevance of the involved heterogeneity, namely income hetero-
geneity. As shown in the same paper by Anderson et al, there is indeed an
isomorphism between the linear city and the vertical differentiation models,
which allows for an extension of their generalization to the latter frame-
work; but this occurs only under the assumption of full market coverage,
i.e. when consumers split between firms producing goods of different qual-
ity levels, but are all ’rich enough’ to buy at least the lowest quality good at

1The key insight along these lines was presented in the seminal papers by Gabszewitz
and Thisse (1979, 1980).
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the equilibrium prices. However, the isomorphism does not apply to the un-
covered market case, where some consumers may be ’too poor’ to buy at the
equilibrium prices, so that market segmentation includes market exclusion.

For vertically differentiated markets exhibiting this essential feature, the
discussion of the role of agents’ heterogeneity has offered only partial or
preliminary results. By using the Mussa and Rosen (1978) specification of
the indirect utility function, the existence of a duopolistic equilibrium in
prices has been proved by Furth (2011) under logconcave densities. The full
solution has been developed only for two specific densities: Yurko (2011)
develops an algorithm to solve numerically a oligopoly model of the Shaked-
Sutton type (Shaked and Sutton, 1982) under a lognormal distribution of
consumers, while Benassi et al. (2006) offer an analytical solution of the
price-quality game under a trapezoid distribution — clearly, for models of
vertical differentiation with uncovered market there is still an open problem
in terms of robustness, manageability and empirical relevance.

This paper aims at offering an effective contribution along these three
lines. On the one hand, it generalizes the solution of the duopoly model with
vertical differentiation and uncovered market for a wide set of consumers’
distributions. It proves the existence of the subgame perfect price-quality
equilibrium for a range of symmetric and asymmetric distributions, which
includes - but is not limited to - all logconcave distributions. On the other
hand, our proof makes use of simple but powerful analytical tools which allow
us to deal with the complexity of the analytics and to develop a manageable
solution procedure, which can be applied to the whole set of the admissible
distributions. Finally, the possibility to obtain explicit solutions for different
configurations of the parameters of the same distribution makes it possible
to analyse how relevant distributive shocks might affect the market prices,
the quality spread, as well as the profitability and the market shares of the
two firms.

We are able to prove the existence of equilibrium at the aforementioned
degree of generality by uncovering a key feature of the model, namely that
the optimality conditions at the two stage of the game can be seen as a
block-recursive system of equations. Block-recursiveness ensures that the
equilibrium market shares of the two firms are determined, under appropri-
ate constraints, by the optimal behavior of the low quality firm at the two
stages, while the optimal behavior of the high quality firm determines, given
those shares, the equilibrium levels of qualities. The block-recursiveness
property shows up once the density function describing the consumers’ in-
come distribution is represented through the so-called income share elasticity
(Esteban, 1986), an analytical tool which has already proved to be extremely
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useful in the analysis of the relation between consumers’ heterogeneity and
market structure, whenever market demand is intrinsecally shaped by the
distributon itself (e.g., Benassi et al, 2002).

The usefulness of Esteban’s formulation goes beyond the existence proof.
By clearly bringing out the above block-recursiveness property, it has the
additional advantage of simplifying considerably the actual computation of
the equilibrium solutions. Indeed, we provide some applications of our solu-
tion procedure, by analyzing the effects of some distributive shocks in two
illustrative cases with a symmetric and an asymmetric consumers’ distribu-
tion. The regularities which emerge from our examples suggest that both for
symmetric and asymmetric distributions, a reduction in inequality is associ-
ated with an increase in the quality spread, in the overall market coverage,
and in the market share and profitability of the high quality firm. Inter-
estingly enough, the threshold level of income required to enter the market
increases, while that required to afford the high quality may either increase
or decrease.

In the sequel of the paper we proceed as follows. The basic framework is
set in Section 2. In Section 3 we prove the existence and uniqueness of the
equilibrium in prices. Section 4 is devoted to proving the existence of the
subgame perfect equilibrium in prices and quality. The effects of distributive
shocks on the equilibrium solution are discussed through some examples in
Section 5, while in Section 6 we gather some conclusions.

2 The basic framework

We consider a duopolistic market for a vertically differentiated product in
which two firms play a simultaneous two-stage game with respect to prices
and qualities. At the first stage firms set the quality of their product, s ∈
(0, smax]. We denote with H the firm choosing the higher quality sH , and
with L the firm choosing the lower quality sL. Once the qualities have been
set, firms produce at a cost independent of s and normalized to zero. At the
second stage firms compete with respect to prices, respectively pH and pL.
The game is solved by backward induction.

2.1 Preferences and demand

In this market demand stems from a continuum of heterogeneous consumers,
whose size is normalized to 1. We assume that the generic consumer j’s
utility function is of the Mussa and Rosen (1978) type:
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Uj = θjs− p, if she purchases one unit of a good of quality s

Uj = 0, if she does not purchase.

Consumers differ across θ, the preference parameter which denotes the
willingness to pay for quality. According to a standard interpretation (Tirole
1988, p.97), θj can also be seen as an index of the consumer j’s ’income’, so
that consumers’ heterogeneity can be interpreted as an income heterogene-
ity, described by the distribution of θ. In the sequel, we assume that θ is
distributed according to a continuously differentiable density function f (θ)

defined over the support [0, θmax], and we denote with F (θ) =
� θ
0 f (τ) dτ

the corresponding cumulative distribution function.
Given the above utility function, consumer j enters the market and buys

one unit of the good only if θj is greater than the hedonic price (p/s) set
by at least one of the two firms. If pL/sL < pH/sH , so that both firms are
active in the market,2 it is possible to define θL ≡ pL/sL as (the income of)
the consumer which is indifferent between buying from L and not buying,
and θH ≡ (pH − pL) / (sH − sL) as (the income of) the consumer which
is indifferent between buying from L and buying from H. Therefore, the
demand functions faced by firm L and H are respectively:

DL =
θH�

θL

f (θ) dθ = F (θH)− F (θL)

DH =
θmax�

θH

f (θ)dθ = 1− F (θH)

2.2 The distribution of θ

In the above setting, the distribution of θ is the key element shaping market
demand and therefore the properties of the firms’ market interactions. In
order to preserve a high degree of generality, we do not set any definite
functional form for this ’distribution of income’, but we simply assume that
f (θ) satisfies the following general conditions:

Condition 1. f (θ) > 0 for all θ ∈ (0, θmax)

2Our hypothesis on the support of the distribution will actually ensure that at equilib-
rium (a) both firms are active in the market, and (b) the market is uncovered (i.e. there
is a lower tail of the distribution of θ at which consumers do not buy the good). For a
discussion of this point in the case of uniform distribution, see Wauthy (1996).
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Condition 2. η (θ) ≡ θf(θ)
1−F (θ) is increasing in θ for all θ ∈ (0, θmax), with

limθ→θmax η (θ) > 1.

Condition 3. 1
1−F (θ) is convex in θ for all θ ∈ (0, θmax).

Notice that 1 − F (θ) can be seen as the share of active (buying) con-
sumers (i.e. the degree of market coverage or overall market demand) if the
hedonic price p/s = θ is the lowest hedonic price available in the market.
Conditions 2 and 3 can therefore be interpreted as reasonable restrictions
on the shape of this peculiar demand curve. Since η (θ) is the absolute value
of the elasticity of 1−F (θ), Condition 2 can be seen as ruling out that the
elasticity of market demand might be constant or decreasing in the hedonic
price. This condition is indeed satisfied for most of the commonly used dis-
tributions (e.g. normal, lognormal, Beta, etc.), with the notable exception
of the Pareto distribution, which generates a function 1 − F (θ) with con-
stant elasticity. Condition 3 imposes that the 1− F (θ) function be not too
convex, which is generally (and also here) required for the profit functions to
be concave. Notice that Conditions 2 and 3 are satisfied by all f distribu-
tions (including the logconcave) which generate logconcave 1−F functions;
the latter, however, are only a subset of the admissible distributions (see
An,1998).

The following properties will be useful in the sequel.

Remark 1. For a given f (θ), consider the following function, known as
income share elasticity (Esteban, 1986):

π (θ) = 1 +
θf ′ (θ)

f (θ)

By means of the π (θ) function, it is possible to write Condition 2 as:

η (θ) + π (θ) > 0 for all θ ∈ (0, θmax)

Moreover, it can be checked that Condition 3 boils down to:

2η (θ) + π (θ) > 1 for all θ ∈ (0, θmax)

Notice that logconcavity of the 1−F (θ) function would imply η (θ)+π (θ) >
1, which is more restrictive of both Condition 2 and Condition 3.

Should θ be strictly interpreted as income, the function π would mea-
sure the relative marginal change in the share of income accruing to class
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θ, brought about by a marginal increase in θ; in general, Esteban (1986)
shows that a one-to-one relationship exists between the π function and the
underlying density f .3 Representing Conditions 2 and 3 in terms of η and
π is relevant in our framework, since this elasticity formulation remarkably
contributes to the analytical tractability of the two-stage game.

3 The Price Stage of the Game

At the price stage of the game firms compete with respect to prices, for
given qualities sH and sL. Given the profit functions:

ΠH (pH , pL; sH , sL) = pH (1− F (θH))

ΠL (pH , pL; sH , sL) = pL (F (θH)− F (θL))

the first order conditions (FOCs) for firm H and L are respectively:

∂ΠH
∂pH

= 1− F (θH)−
pH
∆

f (θH) = 0 (1)

∂ΠL
∂pL

= F (θH)− F (θL)− pL

�
f (θH)

∆
+

f (θL)

sL

�
= 0 (2)

where ∆ ≡ sH − sL. Consider first the FOC of firm H. By defining ϕH ≡
(∂θH/∂pH) (pH/θH) = pH/ (pH − pL) > 1, equation (1) can be rewritten
as:

1− F (θH)− ϕHθHf (θH) = 0

and, using the definition of η (θ), as

η (θH)ϕH = 1 (3)

Equation (3) states the standard condition that with zero costs, the FOC
of firm H requires that (in absolute value) the elasticity of its demand with
respect to its price — given by the product of the elasticity of its demand
with respect to θH and the elasticity of θH with respect to pH — be equal
to 1. The key implication of equation (3) is that whenever it holds, firm H
sets a price such that θH takes a value at which η (θH) < 1.

3 It should be noticed that the π-formulation of the density often allows simpler rep-
resentations of the relevant features of the distribution. E.g., π(θ) = 1 identifies the
modal value of θ, while "the Pareto, Gamma and Normal density functions correspond to
constant, linear and quadratic elasticities, respectively" (Esteban, 1986, p.442).
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Consider now the FOC of firm L. By defining ϕL ≡ (∂θH/∂pL) (pL/θH) =
−pL/ (pH − pL) = 1−ϕH < 0, and using again the definition of η (θ), equa-
tion (2) can be formulated as:

η (θL)
1− F (θL)

F (θH)− F (θL)
− η (θH)ϕL

1− F (θH)

F (θH)− F (θL)
= 1 (4)

Also for firm L the FOC implies that the absolute value of its demand
elasticity with respect to pL be equal to 1.4 In the sequel it will be useful
to refer to the following reformulation of equation (4):

(1− ϕLη (θH)) (1− F (θH))− (1− F (θL)) (1− η (θL)) = 0 (5)

3.1 Existence of equilibrium at the price stage

For a given pair (sL, sH), an equilibrium at the price stage is a pair (θ∗L, θ
∗
H)

satisfying (3) and (5), at which the Second Order Conditions (SOCs) for
profit maximization are verified. Clearly, the optimal prices p∗L and p∗H can
then be recovered from the definitions of θL and θH .

In order to prove that under Conditions 1-3 an equilibrium exists, we
first introduce the following Lemma.

Lemma 1. For given qualities, equation (3) can be rewritten as:

θL =
∆

sL

�
1

η (θH)
− 1

�
θH ≡ h (θH) (3’)

with θL = h (θH) decreasing in θH . This function is economically meaningful
when defined over the interval

�
θH , θH

�
, where θH satisfies η (θH) = ∆/sH .

and θH satisfies η
�
θH
�
= 1, so that 0 < θH < θH < θmax.

Proof. Using the definitions of ϕH , θH and θL, we can express ϕH in terms
of θL and θH as:

ϕH = 1 +
sL
∆

θL
θH

4 It is easy to check that equation (4) actually states this condition, once the demand
for L is written as DL = (1− F (θL)) − (1− F (θH)). Notice that η (θL) is the pL elas-
ticity of overall market demand — the elasticity of demand with respect to θ evaluated at
θL multiplied by the (unit) elasticity of θL with respect to pL — while η (θH)ϕL is the
pL elasticity of the demand accruing to H — the elasticity of 1 − F (θ) evaluated at θH ,
multiplied by the elasticity of θH with respect to pL.
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Equation (3’) can then be obtained by substituting the above expression
into (3), and solving for θL. Notice that (3’) restates the FOC of firm H
at the price stage in terms of θL and θH only. For it to be economically
meaningful, it must satisfy the following restrictions: (i) θL ≤ θH , and (ii)
θL ≥ 0. Restriction (i) defines the lower bound of the value of η (θH) along
the domain of (3’); indeed, the following inequality:

∆

sL

�
1

η (θH)
− 1

�
θH ≤ θH

requires

η (θH) ≥
∆

sH

Restriction (ii) defines the upper bound of η (θH) along the domain of (3’).
The following inequality:

∆

sL

�
1

η (θH)
− 1

�
θH ≥ 0

requires
η (θH) ≤ 1

Given Condition 2, the boundary equalities η (θH) = ∆/sH and η (θH) = 1
implicitly define the boundary values θH and θH stated in the Lemma.
Since η (0) = 0 and limθ→θmax η (θ) > 1, 0 < θH < θH < θmax. Finally, by
differentiating (3’) we get:

h′ (θH) =
∆

sL

1

η (θH)
(1− π (θH)− 2η (θH))

which implies that

sign
�
h′ (θH)

	
= sign {1− π (θH)− 2η (θH)}

Therefore, along (3’) θL = h (θH) is decreasing if Condition 3 holds.�

We can now prove the following Proposition.

Proposition 1. If Conditions 1-3 are satisfied, there exists an equilibrium
at the price stage for any given pair (sL, sH).

Proof. At equilibrium both (3) and (5) must be satisfied. By using ϕL =
1− ϕH and by substituting for ϕH from (3), equation (5) can be rewritten
as:

(2− η (θH)) (1− F (θH))− (1− F (θL)) (1− η (θL)) = 0 (5’)
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Using now for θL the h (θH) function defined in (3’), an equilibrium exists,
if there exists a value θ∗H ∈

�
θH , θH

�
at which:

(2− η (θ∗H)) (1− F (θ∗H))− (1− F (h (θ∗H))) (1− η (h (θ∗H))) = 0

and the SOCs are satisfied at θ∗H and θ∗L = h (θ∗H). Define now the continu-
ous function:

λ (θH) ≡ (2− η (θH)) (1− F (θH))− (1− F (h (θH))) (1− η (h (θH))) (6)

where θH ∈
�
θH , θH

�
. Since,

λ (θH) = 1− F (θH) > 0

and
λ
�
θH
�
= −F

�
θH
�

< 0

continuity of λ (θH) implies there exists a value θ∗H ∈
�
θH , θH

�
such that

λ (θ∗H) = 0. Given θ∗H and θ∗L = h (θ∗H), and given sL and sH , the cor-
responding prices p∗L and p∗H can be obtained. The latter are equilibrium
solutions of the price stage, if the SOCs of firms H and L are satisfied at
θ∗H and θ∗L. This is indeed the case, as verified in Appendix A.�

3.2 Uniqueness of the equilibrium at the price stage

We recall that a necessary condition for a two-stage game to have a solution
is that equilibrium at the second stage be unique. With respect to the above
equilibrium in prices, we now prove the following Proposition.

Proposition 2. If Conditions 1-3 hold, the equilibrium at the price stage
is unique.

Proof. The equilibrium at the price stage is unique if λ (θ∗H) = 0 implies
that the first order derivative λ′ (·) is negative at θ∗H . By evaluating the
derivative of (6) at θ∗H we obtain

λ′ (θ∗H) = − (1− F (θ∗H))
η (θ∗H)

θ∗H
(π (θ∗H) + 2) +

+h′ (θ∗H) (1− F (θ∗L))
η (θ∗L)

θ∗L
(π (θ∗L) + 1)
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Under Conditions 1-3, Lemma 1 ensures that h′ (θ∗H) < 0. Moreover, accord-
ing to Condition 2, π (θ) > −η (θ). Since at equilibrium η (θ∗L) < η (θ∗H) < 1,
it follows that λ′ (θ∗H) < 0. �

For future reference, we conclude our discussion of the price stage by
collecting in the following Lemma the results of some comparative statics
exercises on the reaction of the optimal prices to changes in the quality
levels.

Lemma 2. At the price stage equilibrium the price of firm H is decreasing
in sL (i.e. dp∗H/dsL < 0), while the price of firm L is increasing in sH (i.e.
dp∗L/dsH = dp∗L/d∆ > 0). Moreover, dp∗L/dsL − θ∗L < 0.

Proof. See Appendix B.

4 The subgame perfect equilibrium

As discussed in Section 3, our price equilibrium is defined in terms of a pair
of indifferent consumers, (θ∗H , θ∗L), which, given qualities, obviously deliver
the firms’ optimal prices. When dealing with the two-stage game, the device
of solving the model in terms of the θ’s turns out to be particularly useful.
Indeed, a subgame perfect equilibrium can be defined as a pair of indiffer-
ent consumers and a pair of quality levels, such that both the optimality
conditions with respect to prices for given qualities, and the optimality con-
ditions with respect to quality — which take into account the effect of quality
on optimal prices — are satisfied. Again, prices can be recovered residually
from the definitions of θH and θL. In subsection 4.1 we first derive the firms’
FOCs at the quality stage, and we show that they can be expressed exclu-
sively in terms of θH and θL. In subsection 4.2 we prove that a subgame
perfect equilibrium exists under Conditions 1-3.

4.1 The quality stage

At the first stage of the game the derivatives of the firms’ profits with respect
to quality can be written as:

∂ΠH
∂sH

= (1− F (θH)) pHH − pHf (θH)

�
∂θH
∂pH

pHH +
∂θH
∂pL

pLH +
∂θH
∂sH

�
(7)
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∂ΠL
∂sL

= pLL [F (θH)− F (θL)] + pLf (θH)

�
∂θH
∂pH

pHL +
∂θH
∂pL

pLL +
∂θH
∂sL

�
+

−pLf (θL)

�
∂θL
∂pL

pLL +
∂θL
∂sL

�
(8)

where pHH ≡ ∂p∗H/∂sH , pHL ≡ ∂p∗H/∂sL, pLH ≡ ∂p∗L/∂sH , and pLL ≡
∂p∗L/∂sL. All these derivatives of prices with respect to qualities can be
obtained by total differentiation of the solution of the price stage, as in
Lemma 2.

Consider first firm H. Collecting pHH and using (1), equation (7) can
be rewritten as

∂ΠH
∂sH

=
pHf (θH)

∆
(pLH + θH) =

θHf (θH)

η (θH)
(pLH + θH)

The above expression is positive, since pLH > 0 according to Lemma 2. The
profits of firm H being monotonically increasing in sH implies that at the
quality stage firm H chooses:

s∗∗H = smax (9)

Equation (9) confirms in our general setting the results obtained in the
literature under explicit formulations of the distribution of θ, according to
which the quality set by firm H is independent of that chosen by firm L
and, in the absence of costs for quality, coincides with highest quality smax.

Consider now firm L. Collecting pLL and using (2), equation (8) can be
rewritten as:

∂ΠL
∂sL

=
pL
∆

f (θH) (pHL + θH) + f (θL) θ
2
L

so that, using the definition of η and equation (1), we obtain the following
FOC for profit maximization of firm L:

θH

�
1

η (θH)
− 1

�
f (θH) (pHL + θH) + f (θL) θ

2
L = 0

Using again the definition of η and equation (5’), we can restate this condi-
tion as

(1− η (θH)) (pHL (θH , θL) + θH) +
2− η (θH)

1− η (θL)
η (θL) θL = 0 (10)

where we recall that pHL is a function of θH and θL only, as in equation
(B.2) of Appendix B, and is negative according to Lemma 2.

12



4.2 Existence of a subgame perfect equilibrium

We recall that equations (3) and (5) identify the necessary conditions for op-
timal price strategies given qualities, in terms of the corresponding income
of the indifferent consumers θH and θL. As to quality decisions, taking into
account the effect of quality on the optimal prices, equation (9) identifies
the optimal quality of firm H, while equation (10) can be seen as the im-
plicit relation between θH and θL required by the necessary condition for
optimization with respect to quality of firm L. Therefore, a subgame perfect
equilibrium in prices and qualities can be defined in terms of a pair of indif-
ferent consumers (θ∗∗H , θ∗∗L ) and a pair of quality levels (s∗∗H , s∗∗L ) such that
equations (3), (5), (9) and (10) hold, and the SOCs for profit maximization
are satisfied. Again, the optimal prices can be derived from the definitions
of θH and θL.

Indeed, the system of equations (3), (5), (9) and (10) exhibits very useful
properties. First, we recall that equation (5), after substitution of (3) for
ϕL = 1 − ϕH , can be reformulated as in equation (5’), repeated here for
convenience:

(2− η (θH)) (1− F (θH)) = (1− η (θL)) (1− F (θL)) (5’)

Rewriting then (3) as in (3’), the system (3’), (5’), (9) and (10) clearly
exhibits recursiveness. Equation (9) defines s∗∗,H independently of all other
variables. Equations (5’) and (10) are a subsystem in terms of θH and θL
only, while equation (3’) determines sL for given sH , θH and θL. This re-
cursiveness reflects an important economic property of the model: provided
that an equilibrium exists, the market shares of the two fims are determined
by the price and quality FOCs of firm L, under the constraint imposed by
equation (3) that at the equilibrium value of θH the elasticity of the market
share of firm H with respect to price must be equal to 1/η (θH).

Before studying the solution of the above recursive system, we introduce
the following Lemma.

Lemma 3. Equation (5’) defines an implicit relation θL = g (θH), which is
increasing in θH . This relation is economically meaningful when defined over
the interval

�
θlowH , θupH

�
— where θlowH satisfies (2− η (θH)) (1− F (θH)) = 1

and θupH satisfies η
�
θupH
�
= 1.

Proof. By implicit differentiation, the elasticity of θL with respect to θH
along (5’) is

g′ (θH)
θH
θL

=
(1− F (θH))

(1− F (θL))

η (θH)

η (θL)

(2 + π (θH))

(1 + π (θL))
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which is positive under Condition 2, given that at equilibrium η (θH) < 1.
As in the case of the h (•) function in Lemma 1, for the g (•) function to
be economically meaningful, the relation it describes between θH and θL
must satisfy two restrictions: (i) θL = g (θH) ≥ 0; (ii) θL = g (θH) ≤ θH .
Along g (•), restriction (i) is satisfied for all θH ≥ θlowH , where θlowH > 0
solves (5’) when θL = 0, i.e. solves

�
2− η

�
θlowH

�� �
1− F

�
θlowH

��
= 1.

However, for the domain of the g (•) function to be consistent with the
domain of the h (•) function, equation (5’) must be defined for those val-
ues of θH at which the condition h (θH) ≥ 0 is satisfied along (3’). This
occurs for θH ≤ θupH where θupH satisfies η

�
θupH
�
= 1. The check that

θlowH < θupH is straightforward. Indeed,
�
2− η

�
θlowH

�� �
1− F

�
θlowH

��
= 1

implies η
�
θlowH

�
=
�
1− 2F

�
θlowH

��
/
�
1− F

�
θlowH

��
. The latter is positive

by definition of η, and lower than 1. Condition 2 then ensures θlowH < θupH
Consider now restriction (ii). It is easy to check that θH = θL cannot occur
along the g (•) function. Since the latter is increasing in θH with θlowH > 0,
this implies that θL < θH over the domain

�
θlowH , θupH

�
.�

Given Lemma 3, we now prove the following Proposition:

Proposition 3. If Conditions 1-3 hold, there exists a subgame perfect
equilibrium of the price-quality game.

Proof. To prove the above Proposition we proceed by steps. At the first
step we prove that the subsystem (5’) and (10) in terms of θH and θL has a
solution (θ∗∗H , θ∗∗L ). At the second step we show that, given θ∗∗H and θ∗∗L and
s∗∗H = smax, equation (3’) delivers an optimal quality level s∗∗L ∈ (0, smax) .
Finally, we check that the SOCs for profit maximization are satisfied at that
solution.

S�	� I. Define the following continuous function:

Ψ(θH) = ψ (θH , g (θH)) =

= (1− η (θH)) (pHL (θH , g (θH)) + θH)+
2−η(θH)
1−η(g(θH))

η (g (θH)) g (θH) (11)

The above expression is equation (10) where we have used for θL the
g (θH) implicit function from (5’), defined over the interval

�
θlowH , θupH

�
. A

pair (θ∗∗H , θ∗∗L ) solving (5’) and (10) exists, if there exists a θ∗∗H such that
Ψ(θ∗∗H ) = 0.
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Using the expression for pHL given in equation (B.2) in Appendix B, and
recalling equation (3), it can be checked that:

Ψ


θlowH

�
= θlowH



1− η



θlowH

���

1−
1

η
�
θlowH

�




< 0

and that

Ψ
�
θupH
�
=

η
�
g
�
θupH
��

g
�
θupH
�

1− η
�
g
�
θupH
�� > 0

Therefore, continuity of Ψ(θH) implies that there exists a θ∗∗H such that
Ψ(θ∗∗H ) = 0, with Ψ

′ (θ∗∗H ) > 0. Given θ∗∗H , the corresponding value of θL is
θ∗∗L = g (θ∗∗H ).

S�	� II. Substituting s∗∗H = smax and the pair (θ∗∗H , θ∗∗L ) into (3’) we obtain

θ∗∗L =
smax − sL

sL

�
1

η (θ∗∗H )
− 1

�
θ∗∗H

i.e.
smax
sL

=
θ∗∗L
θ∗∗H

η (θ∗∗H )

1− η (θ∗∗H )
+ 1 (12)

which, solved for sL, implies that 0 < s∗∗L < smax.

S�	� III. Given (θ∗∗H , θ∗∗L ) from (5’) and (10), and s∗∗L from (12), we have now
to verify whether the SOCs are satisfied at this solution. We have already
proved in Appendix A that the SOCs for profit maximization with respect
to prices are satisfied for any quality pair. Therefore they are satisfied at
(s∗∗L , smax). Given that at the quality stage firm H chooses a corner solution,
we need simply to check that the SOC for profit maximization with respect
to quality is verified for firm L. This is proved in Appendix C. �

Proposition 3 establishes that the duopoly model of vertical differentia-
tion with uncovered market has a solution under a wide range of symmetric
and asymmetric distributions, which includes - but is not limited to - all
logconcave distributions. Besides its theoretical relevance, we believe that
this result may have significant implications in terms of our understanding
of actual market behaviour. We have shown that, given a specific density
function f (θ), the solution procedure is in principle quite simple, in that it
makes use of the associated η (θ) and π (θ) functions only. This provides a
useful instrument for the analysis of the effects of distributive phenomena
on the configurations of markets with vertically differentiated products. We
offer some examples in the sequel.
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5 Applications: Beta and Dagum distributions

In this section we explicitly solve our duopoly model assuming that the
consumers’ θs are distributed according to different parametrizations of the
symmetric Beta and the Dagum distributions. The former seems relevant
as a generalization of the uniform distribution standardly used in vertical
differentiation models, while the latter is well known to be a fairly good
representation of actual (asymmetric) income distributions. Our exercise
will focus on the effects of equal-mean, second-order stochastic-dominance
shifts of the distribution, as this allows to consider how the firms’ equilibrium
choices react to a well-defined change in income dispersion.5

The density of the Beta symmetric distribution over the unit interval
[0, 1] is given by

f (θ, γ) = B (γ) θγ−1 (1− θ)γ−1

where B (γ) is the Beta function,6 and γ ≥ 1 is an index of second-order
stochastic dominance for given mean, µ = 1/2 — accordingly, higher γ dis-
tributions will Lorenz-dominate lower γ distributions. By solving our block-
recursive system, we can calculate the equilibrium values of different relevant
variables associated to different values of γ: having fixed s∗H = smax = 1, we
report in Table 1 our results for γ = 2, γ = 3 and γ = 4.

The same exercise can be performed for the Dagum distribution, which
in our case one can conveniently write as

g(θ, δ) = 2θ


1 + θδK (δ)

�− 2+δ
δ

M (δ)

where the average income has been normalized to 1, and δ > 1 is a concen-
tration parameter such that higher δ distributions stochastically dominate
lower δ distribution in the second order sense; K (·) and M (·) are constant
parameters depending on δ itself.7 The system of the firms’ FOC can be
solved numerically under different values of the concentration parameter.
For s∗H = smax = 1 we find the results reported in Table 2 for δ = 2, δ = 3
and δ = 4.

5Second-order stochastic dominance is well known to have noteworthy normative impli-
cations in terms of inequality rankings. In particular, equal-mean, second-order stochastic
dominance amounts to Lorenz dominance (Atkinson, 1970).

6The Beta function with parameters (p, q) is given by B(p, q) =
� 1
0
up−1 (1− u)q−1 du;

symmetry requires p = q = γ. On the Beta distribution see Johnson et al (1995, ch.25).
It is easily seen that γ = 1 delivers the uniform distribution

7 In particular, K (δ) = Γ−δ (2/δ) Γδ (3/δ) Γδ ((δ − 1) /δ) and M (δ) = Γ2 ((δ − 1) /δ)
Γ2 (3/δ) /Γ2 (2/δ), where Γ (·) is the Gamma functon such that Γ (δ) =

�
∞

0
e−zzδ−1dz.

On the Dagum distribution and its properties see Kleiber (2008).
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Table 1: Values of relevant variables under different concentration parameters:

the Beta distribution

γ = 2 γ = 3 γ = 4
–––––- –––––- –––––-

θ∗∗H 0.36725 0.35902 0.35900
θ∗∗L 0.12398 0.13087 0.13878
1− F (θ∗∗H ) 0.69445 0.75066 0.78506
F (θ∗∗H )− F (θ∗∗L ) 0.26325 0.23110 0.2058
p∗∗H 0.24235 0.25307 0.26615
p∗∗L 6.3655× 10−2 6.0776× 10−2 5.8513× 10−2

s∗∗H − s∗∗L 0.48657 0.5356 0.57838
Π∗∗H 0.16830 0.18997 0.20894
Π∗∗L 1.6757× 10−2 1.4045× 10−2 1.2042× 10−2

Π∗∗H /Π∗∗L 10.044 13.526 17.351

Table 2: Values of relevant variables under different concentration parameters:

the Dagum distribution

δ = 2 δ = 3 δ = 4
––––– ––––– –––––

θ∗∗H 0.48336 0.59110 0.64862
θ∗∗L 0.17222 0.20747 0.22412
1− F (θ∗∗H ) 0.63433 0.69171 0.71092
F (θ∗∗H )− F (θ∗∗L ) 0.29748 0.2655 0.25305
p∗∗H 0.32542 0.39859 0.43754
p∗∗L 8.7424× 10−2 0.10411 0.11144
s∗∗H − s∗∗L 0.49237 0.4982 0.50275
Π∗∗H 0.20642 0.27571 0.31106
Π∗∗L 2.6007× 10−2 2.7641× 10−2 2.8200× 10−2

Π∗∗H /Π∗∗L 7.9371 9.9747 11.03

The numbers considered in Tables 1 and 2, though clearly limited to very
specific cases, lend themselves to some observations. In our exercise asym-
metry does not seem to play a relevant role. The pattern of most variables is
indeed the same under both distributions, i.e. irrespective of symmetry. In
both cases an increase in income concentration leads to widening the degree
of market coverage and narrowing the market for low quality goods — and
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hence to a larger market for high quality commodities. In both cases the
quality spectrum gets larger as income becomes more concentrated. Indeed,
at unchanged qualities, lower dispersion implies a positive shift in demand
for both firms, making it more convenient an aggressive price behaviour of
the high quality firm. The low quality firm protects its market share by
enlarging the quality differential, and adjusting its price accordingly. While
the equilibrium price of the high quality increases in all our examples, the
price of the low quality increases (in the Dagum case) or decreases (in the
symmetric Beta case), depending on the balance between the initial demand
stimulus and the effect of the reduction of quality.

In both our examples the market share of the high quality firm increases,
while that of the low quality one decreases. However, due to the different
ways in which the dominance parameter modifies the shape of the two dis-
tributions, this pattern of the market shares is accompanied by a decrease
of the threshold income to access the high quality market (θ∗∗H ) in the case
of the Beta distribution, while in the case of the Dagum distribution this
income increases. Finally, and in our view most interestingly, under both
distributions the minimum level of income required to enter the market (θ∗∗L )
increases. The shrinking of the left tail of the distribution decreases the in-
centive to trade-off the intensive margin on buyers for the extensive margin
on excluded consumers. An unpleasant consequence of the reduction of in-
equality is that there are poor consumers who are driven out of the market
by this very reduction.

6 Conclusions

The relationship between consumers’ heterogeneity, and in particular per-
sonal income distribution, and market structure is an intriguing issue in
modern economic theory. On the one side, it calls for a renewed attention
to the role of market demand in shaping the firms’ competitive environment;
on the other side it creates a link between economic and social phenomena
such as inequality, poverty, or income polarization and several dimensions
of the firms’ behavior affecting market efficiency. However, there is a key
obstacle for a full development of this stream of economic analysis, which
concerns its analytical tractability at high levels of generality.

This paper contributes in this direction by offering a general proof for the
existence of a subgame perfect equilibrium in pure strategies in a duopolistic
model with vertical differentiation and uncovered market. We extend the
existing literature by showing that under very mild conditions on the shape
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of income distribution - which are indeed less restrictive than those implied
by logconcavity - it is possible to go beyond the proof of existence of a unique
equilibrium in prices. By making use of the ’Esteban elasticity’ representa-
tion of the consumers’ density function we are able to prove the existence
of a two-stage equilibrium in prices and qualities and to offer a manageable
algorithm to actually compute the above solution. Our application of this
algorithm to different configurations of the Beta and Dagum distributions
envisages the multiplicity of exercises that can in principle be performed to
evaluate the effects of distributional changes in our basic setup.

The proof of the existence of equilibrium in a vertically differentiated
duopoly for a wide set of density functions is a fundamental step, but it leaves
open other interesting questions. Further investigation is required to extend
our existence result to an oligopolistic setting and to formulate non density-
specific propositions about the relationship between income dispersion and
the number of qualities offered in the market.
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Appendix A. The Second Order Conditions at the price stage

In this and in the following Appendices we shall make use of the following
simplifying notation: fi ≡ f (θi), Fi ≡ F (θi), ηi ≡ η (θi), πi ≡ π (θi),
i = H,L.

The SOC of firm H requires:

∂2ΠH
∂p2H

= −
1

∆



2fH +

pH
∆

f ′H

�
< 0

By using (1) and recalling the definitions of η (θ) and π (θ) it can be rewritten
as

−
1

∆

(1− FH)

θH
(2ηH + πH − 1) < 0

which is indeed the case for all θH > 0, if Condition 3 holds.
The SOC of firm L is satisfied if

∂2ΠL
∂p2L

= −2

�
fH
∆
+

fL
sL

�
+ pL

�
f ′H
∆2

−
f ′L
s2L

�
< 0

i.e.

fH +
∆

sL
fL +

1

2

pL
∆

�

f ′H −

�
∆

sL

�2
f ′L




> 0 (A.1)

Equation (3) allows to reformulate ∆/sL and pL/∆ in terms of θH and θL
only:

∆

sL
=

θL
θH

ηH
1− ηH

(A.2)

pL
∆

=
θH
ηH

(1− ηH) (A.3)

so that using (5’) and the definitions of η (θ) and π (θ), the inequality (A.1)
can be rewritten as

ηH +
1

2
(1− ηH) (πH − 1) +

1

2

2− ηH
1− ηL

ηL
ηH

1− ηH
(1 + πL) > 0
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At equilibrium, the first two terms are positive since equation (3) ensures
ηH < 1 and Condition (3) ensures that (πH − 1) > −2ηH . The last term is
positive since Condition (2) and equation (3) imply (a) ηL < ηH < 1, and
(b) πL > −ηL > −1

Appendix B. The comparative statics of the price stage

By totally differentiating (1) and (2), we obtain the following linear system:






∂2ΠH
∂p2H

∂2ΠH
∂pH∂pL

∂2ΠL
∂pL∂pH

∂2ΠL
∂p2L






�
dpH
dpL

�
= −






∂2ΠH
∂pH∂∆s
∂2ΠL

∂pL∂∆s




 d∆s −






∂2ΠH
∂pH∂sL
∂2ΠL

∂pL∂sL




dsL

where the above derivatives can be written as:

•
∂2ΠH
∂p2H

= −2fH
1

∆
−

pH
∆2

f ′H ;
∂2ΠH

∂pH∂pL
= fH

1

∆
+

pH
∆2

f ′H

•
∂2ΠL

∂pL∂pH
= fH

1

∆
−

pL
∆2

f ′H

•
∂2ΠL
∂p2L

= −
2

∆
fH −

2

sL
fL +

pL
∆2

f ′H − f ′L
θL
sL

•
∂2ΠH

∂pH∂∆s
= fH

�
θH
∆
+

pH
∆2

�
+

pH
∆

f ′H
θH
∆

;

•
∂2ΠH

∂pH∂sL
= −fH

�
θH
∆
+

pH
∆2

�
−

pH
∆

f ′H
θH
∆

•
∂2ΠL

∂pL∂∆s
= fH

�
pL
∆2

−
θH
∆

�
+

pL
∆

f ′H
θH
∆

•
∂2ΠL

∂pL∂sL
= fH

�
θH
∆
−

pL
∆2

�
−

pL
∆

f ′H
θH
∆
+ 2

θL
sL

fL +
θ2L
sL

f ′L

and are evaluated at equilibrium.
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Denoting with A the coefficients matrix, its determinant can be written as:

|A| =
1

∆2
f2H (2 + πH) +

+
1

∆2

�
∆

sL
((1 + πL) fL)



(1 + πH) fH +

pL
∆

f ′H

��

Condition 2 ensures that (1 + πH) > 0, provided that ηH < 1, which is
indeed the case at the price stage equilibrium. Since θL < θH , Condition
2 ensures also that at equilibrium ηL < 1 so that (1 + πL) > 0. Therefore
|A| > 0 if:

(1 + πH) fH +
pL
∆

f ′H > 0

Recalling equation (A.3), at equilibrium we can reformulate this inequality
as

fH
ηH

(2ηH + πH − 1) > 0

which is indeed the case under Condition 3.

We can now perform the following comparative statics exercises.

The effect on p∗L of a change in sH .

First notice that for given sL, dp∗L/dsH = dp∗L/d∆. By applying Cramer’s
rule:

dp∗L
d∆

=
1

|A|

pL
∆3

f2H (2 + πH)

where the RHS is evaluated at equilibrium, and is positive under Condition
2.

The effect on p∗H of a change in sL.

By Cramer’s rule and using the definition of π (θ), we have:

dp∗H
dsL

= −
pH
∆
f2H(2+πH)+

∆

sL
(1+πL)fL(

pH
∆
(θH−θL)f

′

H+(θH−θL)fH+
pH
∆
fH)

f2H(2+πH)+
∆

sL
(1+πL)fL((1+πH)fH+

pL
∆
f ′H)

(B.1)

where the RHS is evaluated at equilibrium. By using (A.2) for ∆/sL, (A.3)
for pL/∆, pH/∆ = pL/∆+ θH , the definitions of η for f , the definition of
π for f ′, and then equation (5’) for (1− FL), we obtain that at the price
equilibrium equation (B.1) collapses to:
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dp∗H
dsL

= − θH
ηH

(2+πH)(1−ηH)+(1+πL)ηL
2−ηH
1−ηL



πH+ηH−(πH+ηH−1)

θL
θH

�

(2+πH)(1−ηH)+(1+πL)ηL
2−ηH
1−ηL



2ηH+πH−1

ηH

� (B.2)

which under Conditions 2 and 3 is unambiguously negative.

The sign of


dp∗L
dsL

− θ∗L

�

Consider now dp∗L/dsL. By applying Cramer’s rule and using the definition
of π (θ), we obtain

dp∗L
dsL

= θL

∆
sL
(1 + πL) fL

�
(1 + πH) fH +

pL
∆s

f ′H

�
− sL

∆ f2H (2 + πH)

∆
sL
[(1 + πL) fL]

�
(1 + πH) fH +

pL
∆s

f ′H

�
+ f2H (2 + πH)

(B.3)

By using (A.2) for ∆/sL, (A.3) for pL/∆, the definitions of η for f , the
definition of π for f ′, and then equation (5’) for (1− FL), we obtain that at
the price equilibrium equation (B.3) collapses to:

dp∗L
dsL

= θL
(1 + πL) ηL

2−ηH
1−ηL

(2ηH + πH − 1)−
θH(1−ηH)

2

θL
(2 + πH)

(1 + πL) ηL
2−ηH
1−ηL

(2ηH + πH − 1) + ηH (2 + πH) (1− ηH)
(B.4)

Since under Condition 3 the value of the fraction in (B.4) is surely less than
one, we get:

dp∗L
dsL

−θ∗L = θL

�
(1+πL)ηL

2−ηH
1−ηL

(2ηH+πH−1)−
θH(1−ηH)

2

θL
(2+πH)

(1+πL)ηL
2−ηH
1−ηL

(2ηH+πH−1)+ηH(2+πH)(1−ηH)
− 1




< 0 (B.5)

where the RHS is evaluated at equilibrium.

Appendix C. The Second Order Condition at the quality stage

The proof that the Second Order Condition at the quality stage for firm L
is satisfied, relies on three preliminary steps.

S�	� I. It is useful to calculate Ψ′ (θH) at Ψ(θH) = 0. By deriving equation
(11) and recalling that θL = g (θH) according to (5’), we get that atΨ(θH) =
0:

Ψ′ (θH) =
η′HηLθL
1−ηL

2−ηH
1−ηH

+ (1− ηH)


∂pHL
δθH

+ ∂pHL
δθL

g′ (θH) + 1
�
+
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−
η′H
1−ηL

ηLθL +
2−ηH
1−ηL



ηLθLη

′

L

1−ηL
+ η′LθL + ηL

�
g′ (θH)

Collecting terms the above expression can be simplified into:

Ψ′ =
η′HηLθL

(1−ηL)(1−ηH)
+ (1− ηH)



∂pHL
δθH

+ ∂pHL
δθL

g′ (θH) + 1
�
+

+2−ηH
1−ηL



θLη

′

L

1−ηL
+ ηL

�
g′ (θH)

Using now the definitions of η (θ) and π (θ), we can write:

η′L =
ηL
θL
(πL + ηL); η′H =

ηH
θH
(πH + ηH)

which used into Ψ′ (θH) leads to:

Ψ′ (θH) =
θL
θH

ηH(πH+ηH)ηL
(1−ηL)(1−ηH)

+ (1− ηH)


∂pHL
∂θH

+ ∂pHL
∂θL

g′ (θH) + 1
�
+

+2−ηH
1−ηL

ηL
πL+1
1−ηL

g′ (θH) (C.1)

S�	� II. Notice that at the price equilibrium the effects of changes in qual-
ities on the value of θH and θL can be written as follows:

θLL ≡
∂θ∗L
∂sL

=
1

sL
(pLL − θL) < 0 (C.2)

θHL ≡
∂θ∗H
∂sL

=
1

∆
(pHL + θH − pLL) (C.3)

The sign of θLL can be easily established from (B.5). As far as θHL is
concerned, we recall from Lemma 3 that for (5’) to be satisfied:

θLL = g′θHL (C.4)

so that, given g′ > 0, θHL < 0.

S�	� III. For future reference, it is useful to solve equation (8) in terms of
pLL. We recall that equation (8) is:

pLL (FH − FL) + pLfHθHL = pLfLθLL
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By using (C.4) for θLL and (C.3) for θHL, it can be written as:

pLL =

�
pL
∆ fLg

′ − pL
∆ fH

�
�
FH − FL +

pL
∆ fLg′ −

pL
∆ fH

� (pHL + θH)

Consider now the ratio at the RHS of the above expression. Recalling equa-
tions (5’) and (A.3), the expression for g′ and the definitions of η (θ), we
obtain:

(pL∆ fLg
′−

pL
∆
fH)

(FH−FL+
pL
∆
fLg′−

pL
∆
fH)

=
(1−ηH)(1+πH−πL)(1−ηL)

(1−ηH+ηL)(1+πL)+(1−ηH)(1−ηL)(1+πH−πL)

so that, using equation (10) for (pHL + θH) we get:

pLL = −θL
ηL(2−ηH)(1+πH−πL)

(1−ηH+ηL)(1+πL)+(1−ηH)(1−ηL)(1+πH−πL)
(C.5)

Now we proceed to evaluate the SOC for firm L at the quality stage. The
first order derivative of the profits of firm L with respect to quality (equation
(8) in text) can be written as:

∂ΠL
∂sL

=
pL
∆

fH (pHL + θH) + fLθ
2
L +



FH − FL −

pL
∆

fH − θLfL
�

pLL

Therefore, given equation (2), the second order derivative is:

∂2ΠL
∂s2L

=
∂

∂sL


pL
∆

fH (pHL + θH)
�
− pLL

∂

∂sL


pL
∆

fH
�
+

+
∂

∂sL

�
fLθ

2
L

�
+ pLL

∂

∂sL
(FH − FL − θLfL) (C.6)

Using (C.2) in the first two terms, and the definition of πL in the last two
terms of (C.6), we obtain:

∂2ΠL
∂s2L

=



2pLL +

pL
∆

�
fH +

pL
∆

f ′H (pHL + θH − pLL)
�

θHL+

+fL (θL − pLL) (1 + πL) θLL +
pL
∆ fH

�
∂pHL
∂θH

+ 1

�
θHL +

pL
∆

fH
∂pHL
∂θL

θLL

which, using (A.3), (C.4), and the definition of η (θ), results into:

∂2ΠL
∂s2L

=
��
2pLL +

pL
∆

�
fH +

pL
∆ f ′H (pHL + θH − pLL)

�
θHL+
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fL (θL − pLL) (1 + πL) g
′θHL + (1− FH) (1− ηH)

�
∂pHL
∂θH

+ 1

�
θHL+

+
∂pHL
∂θL

g′θHL (C.7)

Consider now (C.1) .By multiplying both sides by θHL and rearranging
terms, it can be rewritten as:

(1− ηH)

��
∂pHL
∂θH

+ 1

�
θHL +

∂pHL
∂θL

g′θHL

�
=

= θHLΨ
′ (θH)−

�
θL
θH

ηH (πH + ηH) ηL
(1− ηL) (1− ηH)

θHL +
2− ηH
1− ηL

ηL
πL + 1

1− ηL
g′θHL

�
(C.1’)

Using (C.1’) into (C.7) we obtain:

∂2ΠL
∂s2L

= (1− FH) θHLΨ
′ (θH) + fL (θL − pLL) (1 + πL) g

′θHL+

+
��
2pLL +

pL
∆

�
fH +

pL
∆ f ′H (pHL + θH − pLL)

�
θHL+

− (1− FH)

�
θLηH (πH + ηH) ηL
θH (1− ηL) (1− ηH)

θHL +
2− ηH
1− ηL

ηL
πL + 1

1− ηL
g′θHL

�
(C.8)

The first term in (C.8) is negative, since θHL < 0 (see Step II of this Ap-
pendix) and Ψ′ > 0 at equilibrium. In the sequel we prove that the sum
of the remaining terms is equal to zero at equilibrium. By using repeatedly
equations (5’), (10), (A.3) as well as the expression for g′ and the definitions
of η (θ) and π (θ), tedious algebra shows that this amounts to proving that:

2pLL
ηH
θH

+ (1− ηH) + (1− ηH)
1

θH
(πH − 1) (pHL + θH)+

− (1− ηH)
1

θH
(πH − 1) pLL +

ηH
θH

(2 + πH) θL − pLL
ηH
θH

(2 + πH)+

−

�
θL
θH

ηH (πH + ηH) ηL
(1− ηL) (1− ηH)

+ ηH
(2 + πH)

1− ηL

θL
θH

�
= 0

By substituting pHL + θH from equation (10), collecting terms, and sub-
stituting for pLL from equation (C.5), this expression can be transformed
into:
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(1− ηH)+

− θLηL(2−ηH)
θH(1−ηL)(1−ηH)



(1−ηH+ηL)(1+πL)(2ηH+πH−1)+ηH(1−ηL)(1−ηH)(1+πH−πL)

(1−ηH+ηL)(1+πL)+(1−ηL)(1−ηH)(1+πH−πL)

�
= 0

The term θLηL (2− ηH) /θH (1− ηL) (1− ηH) can again be substituted from
equation (10), so that we get:

(1− ηH)+

+


pHL
θH

+ 1
�


(1−ηH+ηL)(1+πL)(2ηH+πH−1)+ηH(1−ηL)(1−ηH)(1+πH−πL)
(1−ηH+ηL)(1+πL)+(1−ηL)(1−ηH)(1+πH−πL)

�
= 0 (C.9)

Now, we deal with the term (pHL/θH) + 1. At equilibrium, given (B.2) and
(10):



pHL
θH

+ 1
�
=

− (1− ηH)
(1+πL)ηL

2−ηH
1−ηL

+(1−ηH)(2+πH)

(1+πL)ηL
2−ηH
1−ηL

(2ηH+πH−1)+(1−ηH)(2+πH)ηH+(1+πL)(πH+ηH−1)(1−ηH)

which, substituted into (C.9) yields:

1− (1−ηH+ηL)(1+πL)(2ηH+πH−1)+ηH(1−ηL)(1−ηH)(1+πH−πL)
(1+πL)ηL(2−ηH)(2ηH+πH−1)+(1−ηH)[2+πH ]ηH(1−ηL)+(1+πL)(πH+ηH−1)(1−ηH)(1−ηL)

= 0

which is actually true. Therefore equation (C.8) collapses to

∂2ΠL
∂s2L

= (1− FH) θHLΨ
′ (θH) < 0
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