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Abstract

Perfectionism can be healthy: striving for perfection requires the ability to self-
regulate, namely willpower. This paper formalizes the intuitive relation between
healthy perfectionism and willpower in the presence of temptation. The value of a
menu of options for an individual with limited willpower corresponds to the lower
bound of the value assigned to the same menu by a perfectionist, when temptation
and perfectionism intensities are free to vary. Moreover, the higher the perfectionism
strive, the higher the willpower. The relation between overwhelming temptation and
the Strotz model is a particular case of the result. When there is uncertainty about
temptation, we generalize Dekel and Lipman (2012) providing conditions such that a
preference is represented by a random willpower representation, if and only if, it has
an equivalent random perfectionism representation.
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1 Perfectionism and willpower

Perfectionism refers to a psychological trait characterized by high personal standards,

often coupled with an overly critical evaluation of own performance (Frost et al., 1990).

In the economic literature studying temptation, perfectionism has been proposed as

an explanation for a behavior that is often attributed to naivety. A perfectionist de-

rives utility from the inclusion of a normatively optimal option, although it won’t be

selected later (Kopylov, 2012). Similarly to naivety, this implies a desire for flexi-

bility that is not used in the future (see DellaVigna and Malmendier (2006), for an

example). Willpower refers to a stock of mental resources that are used to resist temp-

tation (Baumeister et al., 1998). Exerting self-control is costly and individuals give

in to temptations when the cost of resisting is higher than their stock of willpower.

When evaluating a set of options, the individual focuses on the subset containing those

elements whose "cost of temptation" is smaller than her stock of willpower.

This paper shows an unexpected relation between models of choice among menus

accounting for limited willpower and models of perfectionist choice. The value of a

menu according to the willpower model is the lower bound for the value of the menu

according to the perfectionist model, when temptation and perfectionism intensities

are free to vary. In addition, the stock of willpower is equal to the "degree of perfection-

ism". In this sense, perfectionism becomes willpower. In the case of no perfectionism,

the result corresponds to the relation between the temptation model of Gul and Pe-

sendorfer (2001), henceforth GP, and the Strotz model. They prove that the Strotz

model arises from GP when the temptation’s intensity becomes overwhelming. Ac-

cording to our approach, the Strotz value of a menu is the lower bound of the value

assigned to the menu by the GP model, when the temptation’s intensity varies. The

previous limiting result is robust to the introduction of stochastic temptation. More-

over, we generalize the result of Dekel and Lipman (2012), showing that a preference

has a sufficiently smooth random willpower representation, if and only if, it has an

equivalent capped random perfectionism representation (see Theorem 4). Hence, we

provide a deeper relation between models of perfectionism and limited willpower with

stochastic temptation. A final application to the dynamic of willpower shows how the

effect of exerting self-control today can influence the stock of willpower tomorrow. If
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willpower depletes with use, a steady-state of (random) self-indulgence arises, although

temptations’ intensity is constant across time. If willpower is "trained" with use, as

suggested in Baumeister et al. (1998), preferences in the steady-state are equivalent

to a pure preference for flexibility.

The paper makes several contributions. The first is technical, since we connect a

well-established literature on subdifferential and ε-subdifferential calculus (Zalinescu,

2002) to models of choice among menus. The machinery developed in this work and

the techniques developed in subdifferential calculus can be readily applied to other

models of choice among menus, for example, those relaxing the independence axiom

(Ergin and Sarver, 2010; Noor and Takeoka, 2015) and in different areas, such as the

menu-approach to ambiguity (Ahn, 2008; Gajdos et al., 2008) and rational inattention

(De Oliveira et al., 2013; Pennesi, 2015).

Secondly, the link we establish between the two classes of models, one studying

perfectionism and the other willpower, is not a mere technical result. It is moti-

vated by the psychological literature viewing perfectionism as an "adaptive" trait, also

called positive striving (Hamachek, 1978; Stoeber and Otto, 2006). Positive striving

forces individuals to set and pursue high standards, this requires a high capacity of

self-regulation. In turn, the ability to self-regulate is directly related to willpower,

since more willpower generates a higher ability to self-regulate. Therefore, the paper

proposes a formalization of a link that can be found informally in the psychological

literature. The paper also contributes to the growing literature studying models of

choice with limited willpower (Masatlioglu et al., 2011; Ozdenoren et al., 2012). Since

the axiomatic foundation of perfectionism is known (see Kopylov, 2012), the relation

we propose in this work may inform future attempts to lay down the axiomatic foun-

dations of models of limited willpower. Lastly, the model of willpower we introduce

here has alternative interpretations: it can be thought as the first-period choice of an

individual who anticipates choice overload in the second-period (see Frick, 2015), or

anticipates a "satisficing" rule1 (Aleskerov et al., 2007; Manzini et al., 2013). There-

fore, the results of the paper have a wide range of alternative applications and they
1In the satisficing rule of Aleskerov et al. (2007), an individual chooses form a set x according to C(x) =

{p ∈ x : v(p) ≥ δ(x)}. If δ(x) = maxq∈x v(q) − w(x), we recover the willpower representation. In the two-
stage threshold representation of Manzini et al. (2013), the choice rule is C(x) = argmaxp∈x g(p) such that
f(p) ≥ θ(x).
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are useful to study models of choice departing from the "temptation" approach.

1.1 Related literature

Gul and Pesendorfer (2001) introduced temptation in a model of choice among menus.

Resisting temptation has a menu-dependent cost and an individual may prefer smaller

to larger menus. Their model includes as a particular case the Strotz’s model: when

the temptation’s intensity becomes overwhelming, the Gul and Pesendorfer (2001)

model becomes the Strotz model. We show that this result is a particular case of

a more general relation linking perfectionism and willpower. Perfectionism has been

introduced in Kopylov (2012) to account for the empirical evidence showing a desire

for flexibility in the presence of temptation, for example, buying an expensive monthly

pass for a gym, whereas daily passes would be more convenient given the actual num-

ber of visits (DellaVigna and Malmendier, 2006). Perfectionism offers an explanation

for the latter behavior that does not rely on naivety.2 A perfectionist benefits from

including normatively optimal options, although those are not selected in the second-

period choice. Dekel and Lipman (2012) introduced a stochastic version of the Strotz

model, where uncertainty affects future temptations. They establish a surprising rela-

tion between the random Strotz and the random GP representations (a generalization

of the GP model with uncertainty about temptation). A preference has a sufficiently

smooth random Strotz representation, if and only if, it has an equivalent random GP

representation. We generalize this equivalence providing conditions such that a pref-

erence has a sufficiently smooth random Strotz with willpower representation, if and

only if, it has a random temptation with perfectionism representation. Concerning the

theoretical literature on willpower, Ozdenoren et al. (2012) modeled dynamic choices

in continuous time where willpower acts as a stock of resources devoted to resist temp-

tation. Two models of choice from menus, Masatlioglu et al. (2011) and Frick (2015),

the latter with a different interpretation, can be interpreted as the choice rules induced

in the second-period by willpower models. In the case of Masatlioglu et al. (2011) with

a menu-independent stock of willpower3 and, in the case of Frick (2015), with a menu-
2A naive individual overestimates his ability to resist temptation.
3In an early version of their paper, Masatlioglu et al. (2011) axiomatized a model of choice among menus

with limited and menu-independent willpower.
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dependent stock. An axiomatization of a model of choice among menus that accounts

for limited willpower is still missing in the literature. This paper contributes to this

goal providing a relation between limited willpower and perfectionism.

2 Temptation, perfectionism and willpower

Let Z be a finite set of prizes, a lottery is an element p of the simplex ∆(Z). A menu

x is a compact, convex and nonempty subset of ∆(Z). The set of all menus is denoted

by X . A preference relation < is defined over X . A representation of a preference <

is a function V : X → R, such that V (x) ≥ V (y), if and only if, x < y.

We begin introducing the Perfectionism representation VP of Kopylov (2012). It

evaluates a menu x ∈ X according to:

VP (x) = max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + kmax
q∈x

u(q)

where u, v : ∆(Z) → R are expected utility functions and k > −1. The function u

is interpreted as the normative utility and v as the temptation ranking (v(p) ≥ v(q),

if and only if, p is more tempting than q). The parameter k models the effect of

perfectionism, if k > 0, the individual has a preference for flexibility, i.e. x ∪ y � x <

y, for some x, y ∈ X , (see Kopylov, 2012), even though such flexibility will not be

used in the future.4 A Gul-Pesendorfer (GP) representation VGP is a Perfectionism

representation with k = 0:

VGP (x) = max
p∈x

[u(p) + v(p)]−max
q∈x

v(q)

A Willpower representation evaluates a menu according to:

VW (x) = max
p∈B(x;v,w(x))

u(p)

where

B(x; v, w(x)) =
{
p ∈ x : w(x) ≥ max

q∈x
v(q)− v(p)

}
4Given sophistication (and other axioms), the second-period choice function associated with VP is

C(x) = argmaxp∈x u(p) + v(p), and it is identical to the choice rule associated with a GP representation.
Perfectionism affects the ex-ante value of a menu, but it does not affect the second-period choice.
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w(x) ≥ 0 for all x ∈ X . The value of a menu is equal to the maximum normative

utility u achievable on a restricted menu containing the elements whose cost, in terms of

resisting temptation, maxq∈x v(q)− v(p), is smaller than the stock of willpower w(x).

If w(x) = w ≥ 0 for all x ∈ X , we call the previous model the Limited Willpower

model. If w(x) = w = 0 for all x ∈ X , the Willpower model becomes the Strotz model

(Strotz, 1956),

VS(x) = max
p∈B(x;v,0)

u(p)

where B(x; v, 0) = {p ∈ x : v(p) ≥ maxq∈x v(q)}. The model of willpower acts as a

bridge between a pure preference for flexibility in the sense of Kreps (1979) and the

overwhelming temptation of Strotz. Indeed, for large enough w(x), B(x; v, w(x)) = x,

hence VW (x) = maxp∈x u(p) as in Kreps, whereas for w(x) = 0, VW (x) = VS(x). As

anticipated in the introduction, the willpower model can be alternatively interpreted

as a first-period choice of an individual who anticipates choice overload (Frick, 2015),

or anticipates a "satisficing" rule (Aleskerov et al., 2007), or anticipates a two-stage

with threshold choice rule (Manzini et al., 2013).

It is well known (Gul and Pesendorfer, 2001) that the Strotz representation is a

limiting case of the GP representation:

lim
λ→∞

[
max
p∈x

[u(p) + λv(p)]− λmax
q∈x

v(q)
]

= max
p∈B(x;v,0)

u(p)

When the intensity of the temptation becomes overwhelming, the individual antic-

ipates her inability to resist and she only considers the restricted menu containing

elements that maximize the temptation utility. The main result of the paper follows

from the observation that the relation between the GP and the Strotz representation

can be rewritten as (see Eq. (2)):

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)
]

= max
p∈B(x;v,0)

u(p)

The interpretation of the previous expression is the following: the Strotz’s evaluation

of a menu x ∈ X is equal to the lower bound of the evaluation of the same menu

according to GP, when the intensity of the temptation is free to vary. In other words,

the Strotz value of a menu corresponds to the worst possible value assigned by a GP

6



to a menu, when the temptation intensity changes. Using the previous consideration,

we can relate the perfectionism and the willpower models.

As for the GP case, one can be interested in the lower bound for the value of a

menu, when the intensity of the temptation and the intensity of perfectionism vary.

Formally, for a given x ∈ X , consider the expression:

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q) + 1
λ
kmax
q∈x

u(q)
]

The following result shows that this value is equal to the value assigned by the

willpower representation to x, with a particular stock of willpower.5

Theorem 1. For all x ∈ X , if kmaxq∈x u(q) ≥ 0,

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)] + 1
λ
kmax
q∈x

u(q)
]

= max
p∈B(x;v,w(x))

u(p)

where w(x) = kmaxq∈x u(q).

It follows that the lowest value of a menu x for a perfectionist corresponds to

the value given by the willpower model, where the stock of willpower is the "value of

perfectionism" kmaxq∈x u(q). In this sense: perfectionism becomes willpower. Suppose

maxq∈x u(q) ≥ 0, since, B(x; v, w(x)) = {p ∈ x : kmaxq∈x u(q) ≥ maxq∈x v(q)− v(p)},

the larger the craving for perfectionism, parametrized by k, the larger is the stock of

willpower. As a limiting case, for a large enough value of perfectionism, for example,

kmaxq∈x u(q) ≥ maxp∈x(maxq∈x v(q)−v(p)), we have B(x; v, w(x)) = x and the value

of x is equal to that assigned by a pure preference for flexibility representation. The

previous result provides information about the axiomatic foundation of the willpower

model. Being a particular case of the perfectionism representation, it has to satisfy

the Independence and the Perfection Set-Betweenness axiom6 of Kopylov (2012). A

particular case of Theorem 1 offers a new version of the relation between Strotz and

the GP model.

5The proof follows directly from Theorem 2.
6For all p ∈ ∆(Z) and x, y ∈ Mp, x < y implies {p} < x < x ∪ y < y. Where Mp =

{x ∈ X : p ∈ x, {p} < {q} ,∀q ∈ x}.
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Corollary 1. If k = 0, i.e. no-perfectionism,

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)]
]

= max
p∈B(x;v,0)

u(p)

where B(x; v, 0) = {p ∈ x : v(p) ≥ maxq∈x v(q)}.

The link with the overwhelming approach of GP follows from Eq. (2). Indeed,

lim
λ̂→∞

[
max
p∈x

[u(p) + λ̂v(p)]− λ̂max
q∈x

v(q)]
]

= lim
1
λ
→0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)]
]

= inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)]
]

with λ̂ = 1
λ and the last equality is due to Eq. (2). Intuitively, the equivalence is due

to the "cost" formulation of the GP model. The lower value of GP coincides with the

intensity of temptation going to infinity.

3 Generalized healthy perfectionism

To account for more general models we introduce the Generalized Healthy Perfection-

ism representation VHP . It evaluates a menu according to:

VHP (x) = max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x)

where u, v : ∆(Z)→ R are expected utility functions, θ : X → R+ with θ(x) ≥ θ(y) if

y ⊆ x. The interpretation of u and v is the same of the perfectionism representation.

The only difference is in the function θ : X → R+. Monotonicity with respect to

set inclusion implies a premium for flexibility, although such flexibility is not used

in the second-period.7 An example of θ(x) is the non-linear perfectionism θ(x) =

f(maxp∈x u(x)), for some monotone f : R → R+. The case of θ(x) = kmaxp∈x u(p)

intersects the model of Kopylov (2012) only if kmaxp∈x u(p) ≥ 0 for all x ∈ X .

Differently from the perfectionist representation, the additional value of larger menus

is not necessarily due to the inclusion of normatively optimal options. For example,
7The second-period choice rule associated with the HP representation, given "sophistication", is C(x) =

argmaxp∈x[u(p)+v(p)], the same rule of GP and the perfectionist model of Kopylov (2012). Then, including
additional options in the menu may increase the first-period value but it does not affect the second-period
choice.
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consider θ(x) = l(x) where l is the Lebesgue measure. Larger menus are more valuable

regardless of their normative content.

A generalized healthy perfectionism representation may violate the independence

axiom,8 unless the function θ is linear with respect to mixtures of menus, i.e. θ(αx+(1−

α)y) = αθ(x) + (1−α)θ(y). It may also violate the Perfection Set-Betweenness axiom

of Kopylov (2012). Indeed, consider p, q ∈ ∆(Z) with u(p) > u(q) and v(q) > v(p)

and u(p) − (v(q) − v(p)) ≥ u(q). The lottery p is perfect in the menu {p, q}, hence

Perfection Set Betweenness requires p < {p, q}. However, assume 0 = θ(p) < θ({p, q}),

then VHP (p) = u(p) < maxp,q u(p) − (v(q) − v(p)) + θ({p, q}) = VHP ({p, q}) Hence,

{p, q} is preferred to p although p is "perfect" in {p, q}. The previous preference is

consistent with a "challenge against oneself" explanation. The individual benefits from

the inclusion of a tempting option q in the menu, since she may enjoy the challenge of

resisting temptation.

The following theorem is the main result of the paper:

Theorem 2. For all x ∈ X ,

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)] + 1
λ
θ(x)

]
= max

p∈B(x;v,θ(x))
u(p)

As for the perfectionism representation, the lower bound of the value assigned to a

menu by the generalized healthy perfectionism is given by the willpower representation.

In addition, the stock of willpower is identical to the perfectionism value and again

perfectionism becomes willpower. The result can be used to better understand the

axiomatic foundation of the willpower model. Since HP may violate independence

and perfectionist set-betweenness, the same holds for the willpower representation. A

particularly interesting case of Theorem 2 concerns the relation between the Limited

Willpower model w(x) = w for all x ∈ X and perfectionism. Let θ(x) = w for all

x ∈ X , then the HP representation is a "perturbation" of the GP representation:

VHP (x) = max
p∈x

[u(p)− (max
q∈x

v(q)− v(p)− w)]

where the "perfectionism" value w decreases the cost of resisting temptation by a fixed
8For all x, y, z ∈ X and α ∈ [0, 1], x < y implies αx+ (1− α)z < αy + (1− α)z.
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amount w ≥ 0. In this case:

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q)] + 1
λ
w

]
= max

p∈B(x;v,w)
u(p)

where B(x; v, w) = {p ∈ x : w ≥ maxq∈x v(q)− v(p)}. Limited willpower arises from

a very specific case of healthy perfectionism. This result offers an indirect proof that

the model of limited willpower satisfies the Independence and the Set Between axiom

of Gul and Pesendorfer (2001).

In general, the utility of the willpower representation is a lower bound for the gener-

alized healthy perfectionism, when the perfectionism value and the stock of willpower

coincide (by point a. in Proposition 2):

max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x) ≥ max
p∈B(x;v,θ(x))

u(p)

The inequality is preserved if we let, as in Gul and Pesendorfer (2001), the intensity

of the temptation and perfectionism to go to infinity.

Corollary 2. For all x ∈ X ,

lim
λ→∞

[
max
p∈x

[u(p) + λv(p)]− λmax
q∈x

v(q) + λθ(x)
]
≥ max

p∈B(x;v,θ(x))
u(p)

Differently from the temptation and self-control case θ(x) = 0 for all x ∈ X , the

previous inequality can be strict. Hence, the value of a menu for an overwhelmed

perfectionist can be strictly larger than the value of the same menu for a willpower

representation (with perfectionism equal to willpower).

4 Uncertain temptation

Uncertainty concerning the temptation that will strike in the second period is de-

scriptively advantageous and technically useful (see Dekel and Lipman, 2012, for a

discussion). The Strotz model is not continuous and small variations in the commit-

ment utility u may drastically change preferences. Uncertainty resolves this issue and

it is often assumed in applications. Let U a subset of Rn and µ a probability measure

on U endowed with the Borel σ-algebra. The Random GP with Healthy Perfectionism
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(RP) model is given by the following:

VRP (x) =
∫
U

[
max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x)
]
µ(dv)

with θ(x) ≥ θ(y) if y ⊆ x. The individual is uncertain about the "type" of temptation

that she will face, whereas the perfectionism value is certain. This assumption is

plausible given the interpretation of perfectionism as a force that affects the first-period

value. Since uncertainty concerns the second period choice, it is natural to assume a

deterministic value for perfectionism. If θ(x) = 0 for all x ∈ X , the RP model becomes

the Random GP model of Dekel and Lipman (2012). A similar extension that accounts

for uncertainty of future temptations in the Willpower model gives the Random Strotz

with Willpower (RS) representation:

VRSW (x) =
∫
U

max
p∈B(x;v,w(x))

u(p)µ(dv)

where

B(x; v, w(x)) =
{
p ∈ x : w(x) ≥ max

q∈x
v(q)− v(p)

}

When w(x) = 0 for all x ∈ X , the model corresponds to the random Strotz model of

Dekel and Lipman (2012). The next theorem is a generalization of Theorem 2:

Theorem 3. For all x ∈ X ,

∫
U

inf
λ>0

[
max
p∈x

[u(p) + 1
λ
v(p)]− 1

λ
max
q∈x

v(q) + 1
λ
θ(x)

]
µ(dv) =

∫
U

max
p∈B(x;v,θ(x))

u(p)µ(dv)

The interpretation of the expression on the left-hand side is the following: it is the

expected lower bound for the evaluation of a menu as the temptation and perfectionism

intensities are free to vary. A special case of the previous result implies that the limit

of the random GP model is given by the random Strotz model.

Corollary 3. If θ(x) = 0 for all x ∈ X , i.e. no-perfectionism,

lim
λ→∞

∫
U

[
max
p∈x

[u(p) + λv(p)]− λmax
q∈x

v(q)
]
µ(dv) =

∫
U

max
x∈B(x;v,0)

u(p)µ(dv)

where B(x; v, 0) = {p ∈ x : v(p) ≥ maxq∈x v(q)}.
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4.1 Perfectionism and random willpower

In the last section we prove that, under uncertainty, the relation between perfectionism

and willpower goes beyond the results above. Indeed, we will extend the result of

Dekel and Lipman (2012) to random perfectionism and willpower. They showed that

a preference has a sufficiently smooth random Strotz representation, if and only if,

it has a random GP representation. We prove that the result can be generalized

to account for willpower and perfectionism, when a condition on the perfectionism

representation is met. A preference < has a sufficiently smooth RS with willpower

representation, if and only if, it has a capped9 RGP with perfectionism representation.

To illustrate one direction of the result consider

∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)dt

it is a RS with willpower w(x) and a uniform intensity of temptation v + tu and

t ∼ U [0, 1]. Smaller values of t correspond to a stronger intensity of the temptation.

For each t, the set B(x; v+tu, w(x)) is larger than the corresponding set of the random

Strotz representation, B(x; v + tu, 0). Therefore,

max
p∈B(x;v+tu,w(x))

u(p) ≥ max
p∈B(x;v+tu,0)

u(p)

and for each t ∈ [0, 1] there exists a positive number θt(x) such that, maxp∈B(x;v+tu,w(x)) u(p) =

maxp∈B(x;v+tu,0) u(p) + θt(x). Each willpower representation assigns a higher value to

a menu than its related Strotz representation. When aggregating over the different

intensities of the temptation we have:

∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)dt =

∫ 1

0
max

p∈B(x;v+tu,0)
u(p)dt+ θ(x) (1)

where θ(x) =
∫ 1

0 θt(x)dt. By Dekel and Lipman (2012), the integral on the right-hand

side of Eq. (1) is equal to a GP representation, hence

∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)dt = max

p∈x
[u(p) + v(p)]−max

q∈x
v(q) + θ(x)

9See the definition before Theorem 4.
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a (random) GP with perfectionism representation. Adding uncertainty on the temp-

tation v gives

∫
U

(∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)dt

)
µ(dv) =

∫
U

(
max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x)
)
µ(dv)

To generalize the previous argument, we define a Continuous Intensity RS withWillpower

the following representation:

VCI(x) =
∫
U

(∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)f(t|v)dt

)
µ(dv)

where f(t|v) is a lower-semicontinuous density10 (see Dekel and Lipman, 2012, for

details). We have the following result:

Proposition 1. Every Continuous Intensity RS with willpower has a RGP with per-

fectionism representation.

Differently from the random Strotz case, it is not true that any RGP with perfec-

tionism has a RS with willpower representation. For example, consider the healthy

perfectionist value of a menu x = {p, q} with v(p) = v(q) = m, then VHP (x) =

maxp∈x u(p) + θ(x). Let u(p) > u(q) then, if θ(x) > 0 and θ(p) = 0, x �P p, since

VHP (x) = u(p) + θ(x) > u(p) = VHP (p). Now consider a RS with willpower, VRSW =∫
U maxp∈B(x;v,w(x)) ū(p)µ(dv), with ū(p) > ū(q) and v(p) = v(q) = m. For any stock of

willpower w(x) ≥ 0, VRSW (p) = ū(p) = maxp∈x ū(p) =
∫
U maxp∈B(x;v,w(x)) ū(p)µ(dv) =

VRSW (x). Then, p ∼RSW x, which is inconsistent with the perfectionist ranking. Per-

fectionism strive can be strong enough to generate a strict preference for flexibility,

whereas willpower cannot.

The next theorem shows that the previous example captures the unique case in

which the two representations can differ. We say that a RGP with perfectionism VRP

is capped if

max
p∈x

u(p) ≥
∫
U

(
max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x)
)
µ(dv) ∀x ∈ X

The value assigned to a menu by a capped "perfectionism" is bounded by a pure

preference for flexibility.
10A density f(t|v) is lower-semicontinuous if the sets {t : f(t) > k} are open for all k.
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Theorem 4. A preference < has capped RGP with perfectionism representation, if

and only if, it has a Continuous Intensity RS with willpower representation.

Theorem 4 closes the gap between random willpower and random perfectionism

showing that the two are essentially equivalent when perfectionism is "bounded" by a

pure preference for flexibility. The previous result can be useful to study the axiomatic

foundations of the two models. As in the case of Dekel and Lipman (2012), the two

models are observationally distinguishable if one can observe both choices among and

from menus.

5 An application to the dynamic of willpower
and perfectionism

In this last section we consider a dynamic application of the RS with willpower

model, in the recursive setting of Gul and Pesendorfer (2007). We define inductively

Z1 = K(∆(C)) and for t > 1, Zt = K(∆(C×Zt−1)), where K(M) is the set of compact

subsets of a set M and C is the set of consumption. Standard results imply the exis-

tence of a compact metric Z∞ which is homeomorphic to K(∆(C×Z∞)) (see Gul and

Pesendorfer, 2007, for details), with Z∞ representing infinite-horizon menus. Prefer-

ences < are defined on ∆(C × Z∞) and a lottery p ∈ ∆(C × Z∞) gives consumption

c in the current period and a continuation menu z ∈ Z∞. We assume that elements

in the consumption set C are represented by a pair (c, d), where d is a tempting good

and c is not. Lastly, we allow preferences to depend on a state s ∈ S, hence we have

a family {<s}s∈S . Let consider a recursive RS with willpower

V (z, s) =
∫ 1

0
max

(c,d,x)∈B(z,v+lu,w(s))
U(c, d, x, s)dl

where U(c, d, x, s) = u(c, d) + δV (x, s′). We assumed that the only parameter de-

pending on the state s is the stock of willpower. For example, we can assume the

existence of a function σ : S → R+ with w(s) = σ(s)w and w ≥ 0. For example, let

s = max(c,d,x)∈z v(d)− v(d∗), where d∗ is the yesterday’s consumption of the tempting

good. If σ(s) is decreasing, resisting temptation yesterday decreases the amount of

willpower today, modeling willpower as a limited resource. With less willpower, the

ability to resist temptation is lower, leading to higher consumption of the tempting

14



good d today. If the function σ(s) goes to 0 as s increases, the individual enters a

steady state where σ(s)w = 0 and she is "trapped" in a (random) self-indulgent be-

havior. The nature of the steady-state is different from the overwhelming temptation,

since temptations’ intensity is constant over time. The random self-indulgent steady-

state follows from the stock of willpower being used up. Decreasing willpower, also

diminishes the value of perfectionism in the associated representation (By Proposition

1 there is one):

V (z, s) = max
(c,d,x,s)∈z

[
u(c, d) + v(d) + δV (x, s′)

]
− max

(c,d,x,s)∈z
v(d) + θ(s, z)

resisting temptation yesterday warns the individual of the drawbacks of larger menus.

If willpower depletes completely, θ(s, z) = 0 and the value of perfectionism disappears.

In the case of an increasing function σ(s), we model how individuals build willpower.

Resisting temptation yesterday increases the stock of willpower today, as predicted by

the Strength Model of Self-control (Baumeister et al., 1998). Willpower behaves as a

muscle, it can be "trained" and become stronger. Again, a steady-state can be reached

if the stock of willpower is big enough, in this case the individual has a pure preference

for flexibility:

V (z, s) = max
(c,d,x)∈z

U(c, d, x, s)

At the same time, increasing willpower over time increases the value of perfection-

ism θ(s, z) in the associated representation. Resisting temptation produces a form of

"perfectionism" addiction, the individual assigns an ever greater value to perfectionism

(actually flexibility), ending in a pure preference for flexibility.

6 Conclusion

The Strotz model corresponds to a limiting case of the Gul and Pesendorfer (2001)

model in which temptation becomes overwhelming. This result is a particular case

of a more general relation between perfectionism and willpower. When temptation

and perfectionism vary, the lower bound for the value of a menu is given by the value

attached to the menu by a model of willpower. Moreover, the stock of willpower is

exactly equal to the value of perfectionism. The result is preserved when temptation

15



is uncertain. In addition, we extend the link between perfectionism and willpower

providing conditions for the equivalence of the RS with willpower representation and

the RGP with perfectionism representation.
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Appendix A: ε-subdifferentials
Let X be a locally convex vector space and f : X → R a convex function. Let
dom f = {x ∈ X : f(x) < +∞}. f is proper if dom f 6= ∅ and f > −∞ for all x. The
ε-directional derivative of f at v in the direction u is given for a fixed ε ≥ 0 by (see
Zalinescu (2002))

f ′ε(v, u) , inf
t>0

f(v + tu)− f(v) + ε

t

The ε-subdifferential of f at v ∈ X, ∂εf : X ⇒ X∗, is defined as

∂εf(v) = {x∗ ∈ X∗ : 〈u− v, x∗〉 ≤ f(v)− f(u) + ε}

If f is proper and convex, the following properties hold for every ε ≥ 0:

Proposition 2 (Zalinescu (2002)).
(a). f ′ε(v, u) ≤ f(v + u)− f(v) + ε, for all u ∈ X.
(b). f ′ε(v, u) = maxx∗∈∂εf(v)〈u, x∗〉.
(c.) If f is sublinear, ∂εf(v) = {x∗ ∈ ∂f(0) : 〈v, x∗〉 ≥ f(v)− ε}, where ∂f = ∂0f is

the standard subdifferential.
(d). 0 ≤ ε1 ≤ ε2 <∞ implies

f ′0(v, u) ≤ f ′ε1(v, u) ≤ f ′ε2(v, u)

If f : X → R is proper and convex and v ∈ dom f . Then for every u ∈ X

f ′0(v;u) = lim
t→0

f(v + tu)− f(v)
t

= inf
t>0

f(v + tu)− f(u)
t

(2)

Appendix B: Proofs
Proof. Of Theorem 2. For a fixed menu x ∈ X , consider Vx(v) = maxp∈x v(p), as a
function Vx(v) : Rn → R. The expression maxp∈x[u(p)−λ(maxq∈x v(q)−v(p))]+λθ(x)
can be rewritten as

maxp∈x[v(p) + 1
λu(p)]−maxq∈x v(q)] + θ(x)

1/λ (3)

Defining ε = θ(x) and λ̂ = 1/λ, the left-hand side of the equation in the statement
becomes

inf
λ̂>0

maxp∈x[v(p) + λ̂u(p)]−maxq∈x v(q)] + ε

λ̂

The previous expression is the ε-subderivative of the function Vx(v) = maxp∈x v(q) in
the direction u ∈ Rn (see Appendix A) and we denoted it by V ′x(v, u). By Property
(b). in Proposition 2,

V ′x(v, u) = max
k∈∂εVx(v)

u(k)

By point (c). in Prop. 2, ∂εVx(v) = {k ∈ ∂Vx(0n) : v(k) ≥ Vx(v)− ε}, but ∂Vx(0n) =
cox = x, since x ∈ X is compact and convex. Therefore, ∂εVx(v) = {p ∈ x : v(p) ≥ Vx(v)− ε}
and V ′x(v, u) = maxp∈B(x,v,ε) u(p), as desired.
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Proof. Of Corollary 2. The result follows from

lim
λ→∞

[
max
p∈x

[u(p)− λ(max
q∈x

v(q)− v(p))] + λθ(x)
]

= lim
λ→∞

λ

[
max
p∈x

[λ−1u(p)− (max
q∈x

v(y)− v(q))] + θ(x)
]

= lim
λ̂→0

[ 1
λ̂

(
max
p∈x

[v(p) + λ̂u(p)]−max
q∈x

v(q)] + θ(x)
)]

where in the last equality λ̂ = λ−1. To conclude,

lim
λ̂→0

[ 1
λ̂

(
max
p∈x

[v(p) + λ̂u(p)]−max
q∈x

v(q)] + θ(x)
)]

≥ inf
λ̂>0

[ 1
λ̂

(
max
p∈x

[v(p) + λ̂u(p)]−max
q∈x

v(q)] + θ(x)
)]

= max
p∈B(x;v,θ(x))

u(p)

where the last equality follows from Theorem 2.

Proof. Of Corollary 3.

lim
λ→∞

∫
U

[
max
p∈x

[u(p)− λ(max
q∈x

v(q)− v(p))]
]
µ(dv)

= lim
λ→∞

λ

(∫
U

max
p∈x

v(p) + λ−1u(p)−max
q∈x

v(q)dµ(dv)
)

= lim
λ̂→0

∫
U

maxp∈x v(p) + λ̂u(p)−maxq∈x v(q)
λ̂

µ(dv)

=
∫
U

lim
λ̂→0

maxp∈x v(p) + λ̂u(p)−maxq∈x v(q)
λ̂

µ(dv)

=
∫
U

inf
λ̂>0

maxp∈x v(p) + λ̂u(p)−maxq∈x v(q)
λ̂

µ(dv)

=
∫
U

max
p∈B(x;v,0)

u(p)dµ(v)

where the third equality follows from the Dominated Convergence theorem, the forth
equality from convexity of the function maxp∈x v(q) and Eq. (2) and the last equality
from Theorem 3.

To prove Proposition 1, we need the following result:

Proposition 3. For all w(x) ≥ 0, there exists θ(x) ≥ 0, such that∫
U

max
p∈B(x;v,w(x))

u(p)µ(dv) =
∫
U

max
p∈B(x;v,0)

u(p)µ(dv) + θ(x)

Proof. Of Proposition 3. By point (d). of Proposition 2, for all x ∈ X , w(x) ≥ 0
implies

max
p∈B(x;v,w(x))

u(p) ≥ max
p∈B(x;v,0)

u(p)

Then, for each v ∈ V, there exists θv(x) ≥ 0 such that

max
p∈B(x;v,w(x))

u(p) = max
p∈B(x;v,0)

u(p) + θv(x)
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Integrating over U ,∫
U

max
p∈B(x;v,0)

u(p)µ(dv) + θ(x) =
∫
U

max
p∈B(x;v,w(x))

u(p)µ(dv)

where θ(x) =
∫
U θv(x)µ(dv).

Proof. Of Proposition 1. For each x ∈ X ,∫
U

(∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)f(t|v)dt

)
µ(dv)

=
∫
U

(∫ 1

0
max

p∈B(x;v+tu,0)
u(p)f(t|v)dt+ θ(x)

)
µ(dv)

=
∫
U

max
p∈x

[u(p) + v(p)]−max
q∈x

v(q) + θ(x)µ(dv)

Where the first equality follows from Proposition 3 and the second from Dekel and
Lipman (2012, Th. 2).

Proof. Of Theorem 4. By Dekel and Lipman (2012),∫
U

max
p∈x

[u(p) + v(p)]−max
q∈x

v(q)µ(dv) + θ(x) =
∫
U

∫ 1

0
max

p∈B(x;v+tu,0)
u(p)dtµ(dv) + θ(x)

Then, we have to find w(x) ≥ 0 such that

θ(x) =
∫
U

(∫ 1

0
max

p∈B(x;v+tu,w(x))
u(p)dt−

∫ 1

0
max

p∈B(x;v+tu,0)
u(p)dt

)
µ(dv)

The range of the right-hand side of the previous equation as w(x) varies is [0, k], where 0
occurs for w(x) = 0 and k = maxp∈x u(p)−(

∫
U maxp∈x[u(p) + v(p)]−maxq∈x v(q)µ(dv)).

Since VRP is capped, θ(x) ∈ [0, k]. For each w(x) , w̄ define <w̄ in the following way:
x <w̄ y, if and only if,∫

U

∫ 1

0
max

p∈B(x;v+tu,w̄)
u(p)dtµ(dv) ≥

∫
U

∫ 1

0
max

p∈B(y;v+tu,w̄)
u(p)dtµ(dv)

clearly, all <w̄ agree on singletons. Let p(w̄) ∈ x such that

u(p(w̄)) =
∫
U

∫ 1

0
max

p∈B(x;v+tu,w̄)
u(p)dtµ(dv)

then u(p(w̄)) ≥ u(p(w̄′)) if w̄ ≥ w̄′ and w̄ 7→ u(p(w̄)) is monotone. By the cap condition
θ(x) ∈ [0, u(p(ŵ))−u(p(0))], for ŵ(x) great enough. Suppose that limw̄n→w̄+ u(p(w̄n)) >
limw̄n→w̄− u(p(w̄n)) and consider <w′,< on singletons (the coincides for all w′). This
implies either p(w̄n) < q and q � p(w̄) or q < p(w̄n) and p(w̄) � q, for some q ∈ ∆(Z),
both contradict continuity. Then there exists w∗ such that θ(x) = u(p(w∗)− u(p(0)).
By the definition of p(w∗),∫

U

∫ 1

0
max

p∈B(x;v+tu,w∗)
u(p)dtµ(dv) =

∫
U

∫ 1

0
max

p∈B(x;v+tu,0)
u(p)dtµ(dv) + θ(x)

=
∫
U

max
p∈x

[u(p) + v(p)]−max
q∈x

v(q)µ(dv) + θ(x)

as desired. To see the opposite, notice that the proof of Proposition 1 implies that the
RGP with perfectionism associated with the RS with willpower is capped.
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