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Abstract

We model the perspective faced by nuclear powers involved in a

supergame where nuclear deterrence is used to stabilise peace. This

setting allows us to investigate the bearings of defensive weapons on

the effectiveness of deterrence and peace stability, relying on one-shot

optimal punishments. We find that the sustainability of peace is un-

affected by defensive shields if both countries have them, while a uni-

lateral endowment of such weapons has destabilising consequences.
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1 Introduction

In a recent paper, Chassang and Padró I Miquel (2009) discuss the role of

defensive shields in nuclear conflicts, an issue that has remained a hot one

throughout the Cold War and has become even more so in coincidence with

the Strategic Defense Initiative (commonly known as ‘Star Wars’) during

the Reagan administration and afterwards. This particular topic nests into a

more general debate concerning escalation and deterrence, precisely because

defensive shields may ultimately jeopardise the deterrence capability of nu-

clear arsenals.1 Consequently, a specific discussion has been carried out on

this aspect, with a striking lack of consensus. Some, like Wilkening (2000)

and Lebovic (2002) have focussed on the efficiency of ballistic missile defence,

while others have reached opposite conclusions as to the interplay between

defensive shields and deterrence: on one side, there are scholars convinced of

the destabilising effects of shields (e.g., Brams and Kilgour, 1988; and Miller,

2001); on the other, there are those sustaining the opposite view (e.g., Powell,

1990, 2003; and Lindsay and O’Hanlon, 2001).

Chassang and Padró I Miquel (2009) use a repeated game framework to

show that “the unilateral acquisition of defensive weapons raises the stronger

country’s predatory incentives and reduces the sustainability of peace” (p.

282). To do so, they model the supergame following the route traced by

Friedman (1971), whereby trigger strategies imply that a unilateral strike is

followed by an everlasting Nash punishment consisting in permanent conflict.

This particular component of the supergame - the design of the punishment

phase - is indeed critical, as perpetual conflict may not be sustainable if

countries have conspicuous endowments of nuclear weapons, whose massive

1The number of contributions being published in recent years demonstrate that these

aspects remain at the core of international politics even after the end of the Cold War (see

Powell, 1990; Zagare and Kilgour, 2000; Danilovic, 2002; Freedman, 2004; Zagare, 2004,

to mention only a few).
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use in the very first phase of the confrontation would very rapidly annihilate

contenders altogether, leaving possibly open the way for a retaliation strike

but almost surely not for an infinite repetition of the constituent game.2

Therefore, we propose here an alternative approach to the construction of

the supergame, based on one-shot optimal punishment (Abreu, 1986). This

type of punishment, besides being the most efficient one, has the additional

advantage - which is particularly convenient when it comes to assessing the

effectiveness of deterrence in preventing the emergence of nuclear conflicts

- of allowing us to do altogether away with the Nash equilibrium of the

constituent game in building up the equilibrium conditions based on the

players’ intertemporal payoffs.

As in Chassang and Padró I Miquel (2009), we examine a two-country

game, whose constituent stage is a prisoners’ dilemma. The main results

yielded by our setup can be summarised as follows. In the symmetric case

where both countries have defensive shields, (i) the stability condition for the

sustainability of perpetual peace is completely independent of the shields,

while (ii) the one-shot optimal punishment is inversely related to the shield’s

effectiveness. If instead only one country is endowed with defensive weapons,

then indeed the shield has a destabilising effect on the supergame. While the

latter result is independent of the punishment scheme, the former is indeed

sensitive to it.

The remainder of the paper is organised as follows. The basic model is

illustrated in section 2. Section 3 investigates the supergame. Concluding

2In this respect, it is worth recalling that, during the Cuba crisis, President Kennedy

ordered (among other things) to keep aloft the Strategic Air Command bombers armed

with nuclear weapons for a gross total of 7000 megatons around the clock. It is hardly

credible that an infinitely repeated game could follow the very first stage. Also note that,

for several years, General Curtis LeMay was convinced that his strategic bombers could

‘bring the enemy back to the stone age in the first six hours’, this all-out attack being

known as the ‘Sunday punch’ (for more details on this, see Rhodes, 1995).
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remarks are in section 4.

2 The setup

The model can be quickly laid out as follows. Players are two countries,

labelled as 1 and 2, interacting over time t = 0, 1, 2, 3...∞. Country i’s per-

period payoff is

ui = π (1− aj (1− σ) + zai (1− σ))− ba2i − C (σ) , (1)

i, j = 1, 2, j 6= i. In (1),

• π > 0 is the instantaneous welfare associated with perpetual peace,

gross of any costs associated with building up offensive weapons ai and

the defensive shield σ. Given that we are dealing with the analysis of a

possible nuclear confrontation, net payoffs are not necessarily positive

(indeed they may become strongly negative). Even in a peaceful sit-

uation, the investment in a defensive shield may be so costly to cause

π < C (σ) .

• The term 1−aj (1− σ)+zai (1− σ) multiplying π determines how much

the aforementioned utility is modified by a war where the intensity of

attacks are ai and aj, respectively, and both countries are endowed

with a shield σ. Note that to be fully effective the shield should have

size one. Accordingly, to capture the idea that, reasonably, building up

the ‘perfect shield’ is indeed an unrealistic objective, we may assume

the cost function C (σ) associated with the R&D activities and the
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implementation of the defensive shield obeys the following:3

C (σ) = 0;
∂C (σ)

∂σ
> 0;

∂2C (σ)

∂σ2
> 0; lim

σ→1
C (σ) =∞. (2)

Parameter z > 0 measures how sensitive country i is to a strike of

intensity ai brought to bear against country j, as opposed to the dam-

ages inflicted by the opponent through an attack of size aj. For any

z ∈ (0, 1) , country i exhibits what we may define as a net damage

aversion, in that any advantage generated by its own strike against j

is offset, all else equal, by the damage caused by a comparable amount

of, say, nuclear bombing borne by i itself. If instead z > 1, country i is

keen on attacking the adversary no matter what (this may reflect the

fact that hawks are in control of i’s actions).

• ba2i is the production cost associated with building up the amount of

nuclear weapons ai, at decreasing returns to scale.

Before delving into the structure and properties of the repeated game, we

briefly illustrate the basic features of the constituent one-shot game.

2.1 The one-shot game

The equilibrium of the one-shot constituent game can be quickly charac-

terised. The first order condition of country i is:

∂ui
∂ai

= z (1− σ)π − 2bai = 0 (3)

yielding a∗i = z (1− σ) π/ (2b) . For future reference, it is worth noting that

(3) implies that the two countries’ best reply functions are orthogonal to

3For instance, a cost function with these properties is

C (σ) =
1

1− σ
− 1.

This would indeed imply π − C (σ) < 0 for values of σ sufficiently close to one.
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each other, so that the resulting equilibrium is the intersection of dominant

strategies. The associated utility is

u∗ =
4b [π − C (σ)]− z (2− z) (1− σ)2 π2

4b
> 0 (4)

for all

b > max

(
0,
z (2− z) (1− σ)2 π2

4 [π − C (σ)]

)
. (5)

To this regard, note that, for all z ∈ (0, 2) any b > 0 suffices to ensure that

u∗i > 0.

There remains to verify that z ∈ (0, 2) suffices to imply that the underly-
ing structure corresponds to a prisoners’ dilemma. To see this, observe that

the decision whether to attack or not can be evaluated by looking at the

following 2× 2 reduced form matrix:

2

P A

1 P uPP ; uPP uPA ; uAP

A uAP ; uPA u∗ ; u∗

Matrix 1: The one-shot game in reduced form

Pure strategies P and A stand for remaining peaceful and attacking,

respectively. The outcome (A,A) portrays the equilibrium of the game in

continuous strategies described above.

The payoff accruing to each player when both choose P is generated by

ai = aj = 0, so that it corresponds to

uPP = π − C (σ) (6)
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with

uPP − u∗ =
z (2− z) (1− σ)2 π2

4b
> 0 (7)

for all z ∈ (0, 2) .
Then, consider the unilateral deviation from the peaceful outcome via the

dominant strategy a∗i = z (1− σ)π/ (2b) , yielding to the deviator a payoff

equal to

uAP = π − C (σ) +
z2 (1− σ)2 π2

4b
> 0 (8)

while the country enduring the strike gets

uPA = π − C (σ)− z (1− σ)2 π2

2b
(9)

with

uAP − uPP = u∗ − uPA =
z2 (1− σ)2 π2

4b
> 0 always. (10)

Hence,

Lemma 1 The one-shot game reflects the structure of a prisoners’ dilemma

for all z ∈ (0, 2) .

As is well known, repeating the prisoners’ dilemma over an infinite hori-

zon may allow players to attain Pareto-superior outcomes (as compared to

the Nash equilibrium of the one-shot constituent game), provided they are

enough forward looking, i.e., their intertemporal preferences must satisfy a

condition whose specific nature will depend upon the rules of the supergame

itself (in particular, the duration and intensity of the punishment phase).

These aspects are investigated in the next section.

3 The supergame

The backbone of the literature on supergames is the so called Folk Theorem,

that has evolved over the decades taking several alternative forms. From a
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qualitative point of view, the different formulations of this theorem yield the

invariant message that infinite repetition allows players to reach any equilib-

rium outcomes Pareto-dominating that of the one-shot game, provided the

players themselves be patient enough. The research efforts carried out over

the last four decades have pointed at refining the structure of the punishment

phase in order to yield the most efficient outcome, all else equal. For this rea-

son, we will focus here on a supergame based upon Abreu’s one-shot optimal

punishments (Abreu, 1986). Then, the performance of optimal punishments

will also be contrasted with that of the version of this supergame based on

an infinite Nash reversion, as in Friedman (1971), although the latter has to

be taken with a pinch of salt for the aforementioned reasons.

Countries, being symmetric in all respects, are assumed to have the same

time preferences, represented by the time-invariant discount factor δ ∈ [0, 1] .
The rules of the supergame unravelling under the deterrence exerted by one-

shot optimal punishments can be spelled out as follows.

• At t = 0, both countries play strategy P (i.e., ai = 0).

• At any t ≥ 1, both countries keep playing P provided both have played
P at t − 1; otherwise, if any deviation from (0, 0) has been observed

at t − 1, then at t countries are to implement the symmetric optimal
punishment aop.

• Subsequently, at t+ 1 players return to strategy P provided that both

of them have implemented the optimal punishment at t. If not (i.e., if

at least one of them has deviated from the punishment), they are again

required to play aop.

This last rules entails that abiding by the symmetric optimal punishment

simultaneously confines the punishment phase to a single period, while any

deviation from it extends the punishment phase itself.
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The individual payoff generated by the adoption of symmetric optimal

punishments is:

uop = π − C (σ)− aop [baop + (1− z) (1− σ)π] (11)

while the optimal unilateral deviation from the optimal penal code is given

by the dominant strategy a∗i = z (1− σ)π/ (2b), yielding the payoff

uDop = π − C (σ)− aop (1− σ) π +
z2 (1− σ)2 π2

4b
> uop always. (12)

Perpetual peace is sustainable forever on the basis of the deterrence ex-

erted by optimal punishments if and only if the following conditions are met:

uAP − uPP ≥ δ
¡
uPP − uop

¢
(13)

uDop − uop ≥ δ
¡
uPP − uop

¢
(14)

Inequality (13) has to be met in order for unilateral deviations from the

perpetual peace path not to be advantageous, while (14) establishes that

deviations from the symmetric optimal punishment are not attractive.

This yields a system of two inequalities in two unknowns, the discount

factor δ and the optimal punishment aop. Solving, we obtain that (13-14) are

simultaneously satisfied by any pair

aop ≥ z (1− σ)π

b
; δ ≥ z

4
(15)

This proves the following result:

Lemma 2 Under the threat of optimal punishments aop ≥ z (1− σ)π/b, the

two countries can sustain perpetual peace provided their common time pref-

erences satisfy δ ≥ z/4.

A direct consequence of the above lemma is
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Proposition 3 The intensity of the optimal punishment is monotonically

decreasing in the effectiveness of the shield σ. Instead, the stability of per-

petual peace in altogether independent of σ.

As an ancillary observation, it is worth noting that

z

4
∈
∙
0,
1

2

¸
∀z ∈ [0, 2] . (16)

More interesting is the fact that, the critical level of the discount factor

being independent of the presence and size of shields that in turn affects the

harshness of the punishment, the foregoing analysis also entails:

Corollary 4 In the absence of shields (i.e., if σ = 0), perpetual peace is

again sustainable for all δ ≥ z/4. However, the punishment has to reach its

peak at aop ≥ zπ/b.

That is, the stability condition is exactly the same but it needs to be

accompanied by a threat whose intensity is magnified as much as possible by

the absence of any defensive screens whatsoever.

To appreciate the role of optimal punishments in determining the con-

dition for peace stability, we may briefly dwell upon the stability condition

generated by the alternative punishment consisting in an infinite reversion

to the Nash equilibrium of the constituent game - as it has been used in the

supergame analysed by Chassang and Padró I Miquel (2009). Like them, we

will look at the admittedly quite unrealistic perspective in which perpetual

war after a unilateral first strike is admissible. Following Friedman (1971),

the perpetual stability of peace requires

uPP

1− δ
≥ uAP +

αu∗

1− δ
(17)

⇔ z (1− σ)2 π2 (2δ − z)

4 (1− δ) b
≥ 0
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which is met by all δ ≥ z/2. As expected, this of course is higher than

(indeed, twice as high as) the critical discount factor generated by optimal

punishments.4 It is worth stressing that, as is the case under optimal pun-

ishments, also the infinite Nash reversion yields a stability condition that is

completely independent of defensive paraphernalia.

To this regard, it can be shown that completely different considerations

hold true in the more realistic case in which war cannot continue ad infinitum.

To see this, assume first that one period of symmetric conflict suffices to erase

the two countries.5 Peace stability requires:

uPP

1− δ
≥ uAP + δu∗. (18)

In general, if war may be sustained for, say, T − 1 periods after the first
strike, the above inequality rewrites as

uPP

1− δ
≥ uAP + u∗

TX
t=1

δt (19)

with
TX
t=1

δt =
1− δT+1

1− δ
− 1 = δ − δT+1

1− δ
. (20)

The presence of shields may extend the terminal date T ensuring the survival

of both countries over a longer horizon, whereby we may take T as a function

of shields σ and suppose that ∂T (σ, σ) /∂σ > 0. If so, then

∂

Ã
δ − δT (σ,σ)+1

1− δ

!
∂σ

= −δ
T (σ,σ)+1 ln (δ) ∂T (σ, σ) /∂σ

1− δ
> 0 (21)

4One could perform the same exercise using Axelrod’s (1981) tit-for-tat strategies, with

qualitatively analogous results.
5This is a realistic scenario, if one duly takes into account the global consequences of

even a limited use of nuclear weapons. See, e.g., Mills et al. (2008).
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because ln (δ) < 0 as δ, in general, will be lower than one. Hence, we may

expect shields to exert a destabilising effect precisely because they are likely

to keep the supergame going after a first strike. This entails that assessing

peace sustainability in a supergame relying on Nash punishments is a tricky

task, as the answer ultimately depends on whether or not the punishment

phase is indeed infinitely long.

The next question is whether an asymmetric situation in which one coun-

try is endowed with defensive weapons while the other is not may give rise

to instability. This perspective is dealt with in the following section.

3.1 The asymmetric supergame

Now suppose country i has a shield of size σ while j hasn’t any. The corre-

sponding per period utilities are

ui = π (1− aj (1− σ) + zai)− ba2i − C (σ) ;

uj = π (1− ai + zaj (1− σ))− ba2j .
(22)

On the basis of (22), we can identify the relevant payoffs for the construction

of the incentive compatibility constraints that have to be satisfied here in

order for perpetual peace to be stable all over the supergame.

If ai = aj = 0, we have u
PP
i = π − C (σ) and uPPj = π, while unilateral

deviations from the peaceful path yield, respectively:

uAPi = π − C (σ) +
z2π2

4b
; uAPj = π +

z2 (1− σ)2 π2

4b
. (23)

The punishment profits are

uopi = π
¡
1− aopj (1− σ) + zaopi

¢
− b (aopi )

2 − C (σ) ;

uopj = π
¡
1− aopi + zaopj (1− σ)

¢
− b

¡
aopj
¢2
.

(24)

where we may expect to observe aopi 6= aopj given the asymmetry of the present

setup. Likewise, deviations from the optimal penal code yield asymmetric
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payoffs:

uDop
i = π − C (σ) + π

µ
z2π

4b
− aopj (1− σ)

¶
;

uopj =
π
¡
z2 (1− σ)2 π + 4 (1− aopi ) b

¢
4b

.

(25)

The set of constraints to be satisfied for the sustainability of perpetual

peace is

uAPi − uPPi ≥ δι
¡
uPPi − uopi

¢
uDop
i − uopi ≥ δi

¡
uPPi − uopi

¢ (26)

with i = 1, 2. Note that the discount factor is indexed as well since under

asymmetric conditions the relative stability thresholds are necessarily asym-

metric. Solving these four inequalities, we obtain

δi ≥ δ (σ, 0) ≡ z

4 (1− σ)2
; δj ≥ δ (0, σ) ≡ z (1− σ)2

4
; (27)

aopi ≥ zπ

b
; aopj ≥

z (1− σ)π

b
. (28)

Now note that
∂δ (σ, 0)

∂σ
=

z

2 (1− σ)3
> 0∀σ ∈ [0, 1) , (29)

whereby we can state:

Proposition 5 Monopoly power on defensive weapons has clearcut destabil-

ising effects on the supergame, as the country being unilaterally endowed with

the shield will be more tempted to strike than otherwise.

It is true that ∂δ (0, σ) /∂σ < 0, so that the other country acts indeed as

a puppy dog,6 but unfortunately country i faces a more demanding threshold

and this may have awful consequences on the stability of peace, as already

highlighted by Chassang and Padró I Miquel (2009).

6This label, identifying a player as a comparatively innocuous domestic pet, dates back

to Fudenberg and Tirole (1984).
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As an ancillary observation, note that δ (σ, 0) = δ (0, σ) = z/4 if σ = 0

while, for any positive value of σ, we have δ (σ, 0) > z/4 > δ (0, σ) . To sum

up our analysis, we may now formulate the following:

Theorem 6 For all δ ∈ [δ (σ, 0) , 1] , perpetual peace is sustainable irrespec-
tive of the relative defensive endowments; for all δ ∈ [z/4, δ (σ, 0)) , perpetual
peace is sustainable only if countries have symmetric defensive endowments;

for all δ ∈ [0, z/4) , perpetual peace is unsustainable.

Now, to complete the picture, we may turn again to the stability re-

quirement generated by the reversion to the one-shot Nash equilibrium à la

Friedman (1971) after the first strike has taken place. It suffices to look at

the condition faced by the country that has endowed itself with a defensive

shield, since if this is violated then necessarily a war will break out. The

relevant inequality is defined as in (19), with

T (σ,0)X
t=1

δt =
1− δT (σ,0)+1

1− δ
− 1 = δ − δT (σ,0)+1

1− δ
. (30)

and

∂

Ã
δ − δT (σ,0)+1

1− δ

!
∂σ

= −δ
T (σ,0)+1 ln (δ) ∂T (σ, 0) /∂σ

1− δ
> 0, (31)

which is qualitatively (although not quantitatively) the same as in the fully

symmetric setting.

4 Concluding remarks

We have revisited the issue of the interplay between deterrence and defensive

weapons in a repeated game with optimal one-shot punishments, to show

that the sustainability of peace is unaffected by defensive shields if each

country has one, while the monopoly of such weapons has indeed destabilising

consequences.
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