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Abstract

Asymmetries in cross-price elasticities have been demonstrated by several empirical

studies. In this paper we study from a theoretical stance how introducing asymmetry

in the substitution e¤ects in�uences the sustainability of collusion. We character-

ize the equilibrium of a linear Cournot duopoly with substitute goods, and consider

substitution e¤ects which are asymmetric in magnitude. Within this framework, we

study partial collusion using Friedman (1971) solution concept. Our main result shows

that the interval of quantities supporting collusion in the asymmetric setting is always

smaller than the interval in the symmetric benchmark. Thus, the asymmetry in the

substitution e¤ects makes collusion more di¢ cult to sustain. This implies that pre-

vious Antitrust decisions could be reversed by considering the role of this kind of

asymmetry.

Keywords: asymmetry, substitutes, Cournot duopoly, collusion, folk theorem.

JEL classi�cation: C72, D43, L13.

1 Introduction

In this paper we study the sustainability of collusion in a Cournot duopoly where market

demands are asymmetric in the magnitude of substitution e¤ects. The evidence of asym-

metric cross-price elasticities is shown in several empirical studies (e.g. Berry et al., 1995;

Serthuraman et al., 1999; Kim and Cotterill, 2008; Rojas and Peterson, 2008). For exam-

ple, in Berry et al. (1995) the cross-price semi-elasticity between Nissan Sentra and Ford
�The author is grateful to his PhD supervisor Vincenzo Denicolò, Fabio Pinna, Philipp Schimdt-Dengler,

Pasquale Schiraldi, and the seminar�s audience at the London School of Economics for their useful com-

ments and suggestions. The author is also grateful to STICERD - London School of Economics and

Political Science, where part of this work has been developed in his year as visiting research student.
yDipartimento di Scienze Economiche, Università di Bologna, piazza Scaravilli 1, 40126 Bologna,

Italia; and Dipartimento di Economia Politica, piazza S. Francesco 7, 53100, Siena, Italia; e-mail:

luca.savorelli@unibo.it.
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Escort is 1.375, while between Ford Escort and Nissan Sentra is 8.024; in the US market

for processed cheese Kim and Cotterill (2008) �nd that the cross-price elasticity between

Weight Watchers and Kraft is 0.25, while between Kraft and Weight Watchers is 0.04; the

cross-price elasticity between Bud and Old Style is 0.003, while the cross-price elasticity

between Old Style and Bud is 0.242 (Rojas and Peterson, 2008); �nally, in a meta-analysis

of 1060 cross-price e¤ects, 19 grocery product categories and 280 brands, Serthuraman et

al. (1999) provide an empirical generalization of this asymmetric price e¤ect. The evi-

dence supports the idea that in general cross-price elasticities are not symmetric, and this

fact is also compatible with a theoretical perspective, since aggregate market demands

need not satisfy any symmetry condition (see e.g. Diewert, 1980; Bonfrer et al. 2006),

and also at the individual level the Slutsky matrix need not be symmetric (because the

income e¤ect need not be symmetric).

In this paper we consider a linear duopoly model with Cournot competition and sub-

stitute products. We extend Singh and Vives (1984) by allowing for asymmetry in the

magnitude of the substitution e¤ects, deriving the equilibrium quantities, prices and prof-

its. We compare them to those in a symmetric equivalent duopoly setting, namely a

duopoly in which the substitution parameters are symmetric and equal to the average of

the parameters in the asymmetric case. Then, using the folk theorem solution concept

and the penal code according to Friedman (1971), we analyze partial collusion. We derive

the range of collusive quantities that makes the collusion sustainable for both �rms, and

compare it to the symmetric equivalent case.

This paper adds the two following main contributions to the existing literature. First,

even though an extensive literature on collusion considers other kinds of asymmetries in

market demands and in the characteristics of �rms (for an overview see e.g. Feuerstein,

2005), to the best of our knowledge, the e¤ect of asymmetric cross-price e¤ects on the

stability of collusion has not yet been studied from a theoretical stance. Our main result

shows that, given the discount rate of each �rms, the interval of quantities which supports

the collusion is always smaller than in the symmetric equivalent case. Intuitively, if �rms

are asymmetric the intervals of the quantities making the collusion stable are no longer

coincident, and the e¤ect of asymmetry is to shift each �rm�s interval in opposite directions.

This happens since a high collusion quantity raises the relative value of the deviation

strategy for the weak �rm, whose production decision is relatively more in�uenced by

the other. Similarly, a low level of the collusion quantity makes the deviating behavior

more convenient for the strong �rm. Only the intermediate levels of collusive quantity

are therefore supported by both �rms. In this stylized setting, we thus conclude that

the asymmetry in the substitution e¤ect makes collusion more di¢ cult to sustain. This
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implies that previous antitrust decisions could be reversed by considering the role of this

kind of asymmetry.

The second result is related to the characterization of the equilibrium in the asymmetric

Cournot duopoly. We �nd that the �rm whose price is relatively more in�uenced by the

other �rm�s production decisions sets a lower quantity, and sells at a lower price with

respect to the rival, getting lower pro�ts. An intuition for this result is that, since the two

goods are strategic substitutes (but asymmetrically) the production decisions are driven

by the �rm which is relatively less in�uenced by the rival. The symmetric equivalent �rm

equilibrium prices, pro�ts and quantities lie between those of the strong and the weak

�rm.

The paper is structured as follows. In the next section we characterize the equilibrium

condition for the asymmetric Cournot duopoly and compare it to the symmetric equivalent

case. In the third section we derive the solution of the collusion supergame, and we

state the results on the implicit collusion stability. In the fourth section we draw the

�nal remarks and directions for future theoretical and empirical research. The proofs are

relegated to the appendix.

2 A linear Cournot duopoly with asymmetric substitution
e¤ects

In this section we consider a Cournot duopoly which extends Singh and Vives (1984)

allowing for asymmetry in the magnitude of the substitution e¤ects. This extension does

not need any particular assumption, since market demands need not satisfy any symmetry

conditions such as those required by the Slutsky equation (see e.g. Diewert, 1980; Bonfrer

et al., 2006). Moreover, if the income e¤ect in the Slutsky equation is not symmetric,

the individual demands are not symmetric in the cross-price e¤ect as well. Mastroleo and

Savorelli (2010) show which class of individual utility functions underlies the asymmetry

in cross substitution e¤ects.

Let us consider a duopoly where �rm i and �rm j face the following inverse demand

function

pi = a� qi � biqj ; fi; jg = f1; 2g (1)

where bi 2 [0; 1]; a > 0 and qi;j � 0:We normalize the own-price e¤ect to one, but this

is not going to a¤ect the results qualitatively. If bi 6= bj , we say that the demands are

asymmetric, and if bi = bj we say that they are symmetric. In a Cournot competition
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setting, each �rm chooses the production quantity to maximize its pro�ts as follows:

max
qi
�i = (pi � c)qi (2)

where c is a constant marginal cost. The solution of the model leads to the equilibrium

quantities and pro�ts

qCi =
(bi � 2)(a� c)
bibj � 4

(3)

�Ci =
(bi � 2)2(a� c)2
(bibj � 4)2

(4)

�C = �i + �j =
[(bi � 2)2 + (bj � 2)2](a� c)2

(bibj � 4)2
: (5)

We assume henceforth that a > c to guarantee that the Cournot equilibrium quantities

are positive. To have an intuition about the strategic interaction driving the results, let

us consider the following best response functions:

qCi =
(a� c� biqCj )

2
(6)

qCj =
(a� c� bjqCi )

2
: (7)

By simple inspection it is immediately apparent that the two goods are strategic sub-

stitutes. Then, taking the cross derivative of each best response function leads to the

following Remark.

Remark 1 Consider dqCi
dqCj

= � bi
2 and

dqCj
dqCi

= � bj
2 , then:

1. if bi > bj ,
dqCi
dqCj

<
dqCj
dqCi
;

2. if bi < bj ,
dqCi
dqCj

>
dqCj
dqCi
:

The above Remark states that, if e.g. bi > bj ; an expansion in �rm j production has

an impact on i�s quantity choice greater than the impact that an equivalent expansion

by i has on the quantity choice of j: For this reason, we call i the weak substitute and

j the strong substitute (and vice versa if bi < bj). Consistently, the strong substitute

produces a higher quantity and gets higher pro�ts with respect to the weak. Henceforth,

the equilibrium results associated with the asymmetric demands will be denoted by the

superscript ASY:
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To allow for a comparison with the asymmetric setting, we exploit as benchmark

a special case of the symmetric setting, such that bi = bj =
bi+bj
2 : The substitution

parameters are chosen to be the mean of the parameters in the asymmetric case. We call

the benchmark setting a symmetric equivalent, and we denote the associated equilibrium

values by the superscript SE: In the symmetric equivalent case the solution of problem 2

is

qSEi = qSEj =
2(a� c)
4 + bi + bj

(8)

�SEi =
4(a� c)2

(4 + bi + bj)2
: (9)

To provide an intuitive comparison, in Figure 1 we represent the asymmetric Cournot

equilibrium and its symmetric equivalent in the space of quantities when bj > bi:

C

SE

0
2

ca −

2
ca −

iq

jq

ji bb
ca

+
− )(2

ji bb
ca

+
− )(2

jb
ca −

jb
ca −

Figure 1

The best response functions are represented by the thick lines in the asymmetric case,

and by the thin straight lines in the symmetric equivalent. The SE equilibrium is North
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West of the asymmetric Cournot equilibrium, thus the weak substitute j produces a lower

quantity with respect to the SE case, and the strong substitute i a higher quantity. By

considering the two parabolas, representing the contour lines of the pro�t functions at the

Cournot equilibrium, it is straightforward to notice the asymmetry in the region of the

possible equilibria which are Pareto superior to the Cournot-Nash.

The following Proposition characterizes the solution to problem 2 with respect to the

equilibrium prices and the quantity levels, and compares them to the symmetric equivalent

case.

Proposition 1 Let qSEi = qSEj = qSE and pSEi = pSEj = pSE : Then the following holds:

1. bASYi > bASYj () qASYi < qSE < qASYj ;

2. bASYi > bASYj () pASYi < pSE < pASYj ;

3. bASYi > bASYj () �ASYi < �SE < �ASYj :

The above Proposition states that in the symmetric equivalent case quantities, prices,

and pro�ts lie between the weak substitute�s and the strong substitute�s. The strate-

gic weakness thus leads to lower quantities, prices and pro�ts with respect to both the

symmetric equivalent and the strong substitute.

3 Partial collusion

In this section we will investigate how asymmetry in substitutability a¤ects the stability

of collusion. As in the standard symmetric case, the implicit level of collusion should

not necessarily be the monopoly quantity. The reason is that there are in�nite quantities

higher than the monopoly one that still provide pro�ts greater than in the Cournot game.

Moreover, as we will show in Remark 3, when the discount rate is su¢ ciently high the

monopoly quantity does not make the collusion stable. Given a common discount factor

�; we study the minimum individual quantity produced by a �rm that allows collusion to

be stable, and to what extent asymmetry in�uences the stability of collusion.

We will proceed through the following steps. First, we will set up the Cournot su-

pergame and study the collusion and deviation strategies, �nding the interval of quantities

for each �rm that allows collusion to be sustainable. Second, we will state in Proposition

2 which is the interval of collusive quantities that makes collusion sustainable for both.

Finally, in Proposition 3 we will state our main result, showing whether asymmetry in
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the substitution e¤ects makes collusion easier with respect to the symmetric equivalent

benchmark.

Over an in�nite horizon, the two �rms play grim trigger strategies in a Cournot su-

pergame �(1): We use the folk theorem solution concept according to Friedman (1971).

In the �rst stage of the game, t = 0; the �rms follow a collusive strategy �� and maximize

the joint pro�ts. In general, pro�ts division is not equal. In the remaining time horizon, if

both the �rms played the collusive strategy in the previous period, the �rms continue to

play the collusive strategy ��: Otherwise, if at least one �rm deviates from the collusive

strategy playing �D, the �rms play the Cournot-Nash strategy �C .

We �rst consider the collusive strategy ��. Since there are in�nite potential collusive

outcomes, we use joint-pro�t maximization as the selection criterion for the collusive

focal point (as in e.g. d�Aspremont et al., 1983; and in asymmetric environments, e.g.

Rothschild, 1999). Accordingly, we solve the following problem:

max
qi;qj

�i + �j (10)

which leads to the equilibrium quantities and pro�ts:

q�i = q�j =
a� c

2 + bi + bj
(11)

��i =
(bj + 1)(a� c)2
(2 + bi + bj)2

: (12)

We can then state the following remark, which characterizes the joint-pro�t maximiza-

tion equilibrium.

Remark 2 When �rm i and �rm j maximize the joint pro�t, they produce the same

quantity, and the weak substitute obtains a level of pro�t lower than the strong.

The intuition for this Remark is that, since the two �rms are technologically symmetric,

when maximizing the joint pro�t they take into account the strategic externality deriving

from the asymmetry in the strategic substitutability, and internalize it by playing like

symmetric �rms. Thus, it seems reasonable for this equilibrium to be a focal point also

for lower levels of joint pro�ts.

When the �rms play the �� strategy; each �rm gets the pro�ts ��i = q
�
i (a�c�q�i �biq�j ):

Taking into account the characterization in Remark 2, the �rms set q�i = q�j : We can

therefore rewrite the above expression as
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��i = q
�
j (a� c� (1 + bi)q�j ):

Notice again that with asymmetric demands the collusive quantities are still symmetric,

but the pro�ts are not.

We now derive the equilibrium values for �rm i playing �D, denoting the solutions with

the superscript D. In the period of deviation, �rm i solves the following maximization

problem:

max
fqDi j qj=q�j g

�i = (pi � c)qi = qDi (a� c� qDi � biq�j )

and obtains the following per-period quantities and pro�ts:

qDi =
(a� c� biq�j )

2
(13)

�Di =
(a� c� biq�j )2

4
: (14)

Thus, the �ow of pro�ts for the deviating �rm i is

�Di = �
D
i (q

�
j ) +

�

1� ��
ASY
i (15)

where � 2 [0; 1] is the discount rate common to i and j.
In what follows we will study the problem of collusion stability. We will �rst derive

the interval of quantities of the rival �rm that makes the collusion sustainable, and then

the interval of quantities on which both the �rms agree to collude.

For �rm i; the collusive strategy is sustainable only if �Di � ��i (q�j )=(1� �):Then, the
following lemma states for which values q�i;j the collusion is stable for each single �rms.

Lemma 1 The collusion is stable for �rm i if and only if qCol
j

< q�j < q
Col
j ;and for �rm

j if and only if qCol
i

< q�i < q
Col
i ; where:

qColi = (a� c)(bibj � 4)[bi(� � 1)� 2] +Ai
(bibj � 4)[�b2i � (2 + bi)2]

qCol
i

= (a� c)(bibj � 4)[bi(� � 1)� 2]�Ai
(bibj � 4)[�b2i � (2 + bi)2]

qColj = (a� c)(bibj � 4)[bj(� � 1)� 2] +Aj
(bibj � 4)[�b2j � (2 + bj)2]

qCol
j

= (a� c)(bibj � 4)[bj(� � 1)� 2]�Aj
(bibj � 4)[�b2j � (2 + bj)2]
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and Ai = [�bi (�bi(bi � 2)2 + bi(b2i � b2j ) + 8(bi � bj))]
1
2 , Aj = [�bj (�bj(bj � 2)2 + bj(b2j �

b2i ) + 8(bj � bi))]
1
2 :

Henceforth we will consider only real-valued boundaries quantities.1 We call Qi =

fqCol
i

< q�i < q
Col
i g and Qj = fqColj

< q�j < q
Col
j g the sets of sustainable collusion quantities

for �rm i and j: As it is evident by inspection, the two interval do not coincide as long

bi 6= bj : Some collusive quantities are thus sustainable for �rm i; but not for �rm j. Since

it could also be the case that the two intervals do not overlap, in the following Lemma we

state when there is room for collusion among �rms if the two �rms are asymmetric.

Lemma 2 If bi 6= bj ; then Qi 6= Qj and Qi \Qj always exists.

The above Lemma means that there is always an interval of quantities on which the two

�rms can agree to collude, and which is sustainable for both. Let us call QASY = Qi \Qj
the set of collusive quantities which are sustainable for both �rm i and �rm j: By contrast,

when bi = bj ; qColi
= qCol

j
= qCol and qColi = qColj = qCol, and the two sets coincide. In this

case, we call the set of collusive quantities QSYM : The following proposition characterizes

the set of collusive quantities that makes the collusion stable for each case.

Proposition 2 When:

1. bi < bj , QASY = fqCol
j

< q�i;j < q
Col
i g;

2. bi = bj , QSYM = fqCol < q� < qColg;

3. bi > bj , QASY = fqCol
i

< q�i;j < q
Col
j g:

First, notice that setting b1 = b2 = 1; the boundary values in the above Lemma reduce

to the well known symmetric case

(9� 5�)(a� c)
3(9� �) < q�i;j <

a� c
3
:

Second, setting � = 0; the boundaries of the stable collusion quantities are [ a�c2+bj
; a�c2+bi

]

in case 1, and the reverse in case 2. The lower boundary is thus greater than the collusive

monopoly quantity, a�c
2+bj+bi

. This leads to the following remark.

1When bi > bj; Ai is always positive and Aj is positive when
(8bi�(8+b2i )bj+b

3
j )

((bj�2)2bj)
< d and, in addition, to

be real valued, if bj < 13�
p
41

8
' 0; 825; it must be bi <

2(2�[(bj�2)2(bj+1)]
1
2 )

bj
: When bi < bj; Aj is always

positive and analogous conditions can be obtained by inverting indexes.
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Remark 3 There always exist a value 0 � � � 1 such that the collusive monopoly equi-
librium is not stable.

The above remark points out that, as in the symmetric case, the monopoly quantity

is not always a feasible quantity, and when this is the case the analysis of partial collusion

thus becomes more relevant.

We proceed to answer the key research question of this paper, i.e. whether asymmetry

in the substitution e¤ects makes collusion more di¢ cult to sustain. Without qualitatively

a¤ecting our results, we normalize the parameter space by setting bj = 1 � bi:We de�ne
the index of asymmetry as  = jbj � bij = j1 � 2bij:When the two values are symmetric,
bi = bj =

1
2 and  = 0; while  = 1 when one parameter is 0 and the other 1, the maximum

level of asymmetry. We then use the average value of the parameter as benchmark, and

we state the main result of this paper in the following proposition.

Proposition 3 The interval of collusive quantities in the symmetric equivalent case is
always larger than the one in the asymmetric case.

The intuition behind this proposition can be understood by highlighting the strategic

interaction between the two �rms. Each �rm determines what is the level of production

of the other �rm that makes the collusion stable for itself. When �rms collude, it is

optimal for both to produce the same quantity. Then, it can immediately be seen from

(13) that, if the weak substitute wants to deviate from the agreement, he is going to

produce a lower deviation quantity with respect to the deviation quantity of the strong

substitute. The Cournot quantity in the following period is lower as well. The reason is

that a high collusion quantity raises the relative value of the deviation strategy for the weak

substitute. Analogously, a low level of the collusion quantity makes the deviating behavior

more convenient for the strong substitute. The asymmetry in the strategic substitution

e¤ect translates into asymmetric partial collusion strategies, which still overlap, but are

no longer coincident. Each �rm�s collusive interval is shifted in opposite directions, and

only the intermediate levels of collusive quantity are supported by both �rms. We can

therefore conclude that the asymmetry in the substitution e¤ect makes collusion more

di¢ cult to sustain with respect to the symmetric benchmark case.

4 Conclusions

In this paper we generalized Singh and Vives (1984) to account for asymmetry in the

substitution e¤ects, and to study its implications for implicit collusion. The �rst result
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we found characterizes Cournot equilibrium: The symmetric benchmark �rm equilibrium

prices, pro�ts and quantities are lower than those of the strong, and higher than those of

the weak. The second result states that the asymmetry in the substitution e¤ects makes

partial collusion more di¢ cult to support with respect to its symmetric benchmark.

Future extensions of this model could explore the robustness of the results under

di¤erent settings and kinds of competition (e.g. Bertrand competition, semi-collusion,

R&D). Our feeling is that, in frameworks other than collusion, introducing asymmetries in

the cross-price e¤ect could lead to new theoretical insights particularly useful to empirical

analysis.

Finally, this paper suggests that the asymmetry in the substitution e¤ects is a relevant

issue when evaluating the possibility of implicit collusion among �rms. If the empirical

estimations of market demands do not take into account this kind of asymmetry, it is

likely that the extent to which the �rms can collude is overestimated. We thus think that

there is room for an empirical re-assessment of previous estimations, and that in this light

perhaps some anti-trust decisions could be reversed. Moreover, the theory proposed in

this paper could be usefully tested by using experimental economics methodology.

5 Appendix

5.1 Proof of Proposition 1

Part 1. By simple inspection, as long as bASYi > bASYj we know that qASYi < qASYj : Then

it is su¢ cient to solve the inequalities qASYi < qSE and qSE < qASYj for value of the para-

meters of the problem, that is bi;j 2 [0; 1] and a > c > 0: Part 2. From the solutions of the
symmetric and asymmetric problem it is simple to get pASYi =

a(bi�2)+[bi(bj�1)]c�2
(bibj�4) ; pSE =

2a+(2+bi+bj)c
4+bi+bj

; pASYj =
a(bj�2)+[bj(bi�1)]c�2

(bibj�4) and analogously to Part 1 solving the corre-

sponding inequalities. Part 3. The solution to the inequality is analogous and straightfor-

ward by considering 8 and 4.�

5.2 Proof of Lemma 1

Let us consider the inequalities �Di � ��i (q�j )=(1� �); that is:

�Di (q
�
j ) +

�

1� ��
ASY
i �

��i (q
�
j )

1� �

(a� c� biq�j )2

4
+

�

1� �
(bi � 2)2(a� c)2
(bibj � 4)2

�
q�j (a� 2q�j � c)

1� �

11



The solution of the associated equation gives the two values

qColi = (a� c)(bibj � 4)[bi(� � 1)� 2] +Ai
(bibj � 4)[�b2i � (2 + bi)2]

qCol
i

= (a� c)(bibj � 4)[bi(� � 1)� 2]�Ai
(bibj � 4)[�b2i � (2 + bi)2]

where

Ai = [�bi (�bi(bi � 2)2 + bi(b2i � b2j ) + 8(bi � bj))]
1
2 :

Inverting the indexes we obtain analogous values for �rm j; that is

qColj = (a� c)(bibj � 4)[bj(� � 1)� 2] +Aj
(bibj � 4)[�b2j � (2 + bj)2]

qCol
j

= (a� c)(bibj � 4)[bj(� � 1)� 2]�Aj
(bibj � 4)[�b2j � (2 + bj)2]

where

Aj = [�bj (�bj(bj � 2)2 + bj(b2j � b2i ) + 8(bj � bi))]
1
2 :

We want the interval of collusive quantities for both �rm i and j to be real valued.

When bi > bj; Ai�s radicand is always positive and Aj�s is positive when
(8bi�(8+b2i )bj+b3j )

((bj�2)2bj) <

d and, in addition, if bj < 13�
p
41

8 ' 0; 825; it must be bi <
2(2�[(bj�2)2(bj+1)]

1
2 )

bj
: When

bi < bj; Aj is always positive and analogous conditions can be obtained by inverting

indexes.�

5.3 Proof of Lemma 2

Lemma 3 If bi 6= bj ; then Qi 6= Qj and Qi \Qj always exists.

We will �rst show that, when bi > bj () qCol
j

< qCol
i

< qColj < qColi ; the second part

of the proof showing bi < bj () qCol
i

< qCol
j

< qColi < qColj is analogous, and can be

obtained by inverting the indexes.

Let us consider bi > bj . We �rst prove that qColj
< qColj : This can be done solving the

inequality

(a� c)(bibj � 4)[bj(� � 1)� 2]�Aj
(bibj � 4)[�b2j � (2 + bj)2]

< (a� c)(bibj � 4)[bj(� � 1)� 2] +Aj
(bibj � 4)[�b2j � (2 + bj)2]

12



considering the relevant range of the parameters a; bi; bj ; c; �, and the conditions stated

in Lemma 1 for the quantities to be real-valued, this inequality always holds. Then, we

prove that qCol
i

< qColi : The following inequality

(a� c)(bibj � 4)[bi(� � 1)� 2]�Ai
(bibj � 4)[�b2i � (2 + bi)2]

< (a� c)(bibj � 4)[bi(� � 1)� 2] +Ai
(bibj � 4)[�b2i � (2 + bi)2]

always holds, considering as above the relevant range of the parameters and the con-

dition for real-values quantities. Finally, to ensure that the two intervals always overlap,

we prove that qCol
j

< qColi ; that is

(a� c)(bibj � 4)[bj(� � 1)� 2] +Aj
(bibj � 4)[�b2j � (2 + bj)2]

< (a� c)(bibj � 4)[bi(� � 1)� 2]�Ai
(bibj � 4)[�b2i � (2 + bi)2]

always holds. The remaining inequalities can be derived by transitivity.�

5.4 Proof of Proposition 2

Proposition 2 follows directly by Lemma 1 and 2. The two asymmetric �rms can agree on

the collusive quantity belonging to the interval where the two individual partial collusion

strategies overlap.�

5.5 Proof of Proposition 3

Let us normalize the parameter space by setting bj = 1 � bi:Then, consider bi < bj : By

Proposition 2, qCol
i

< q�i;j < q
Col
j and, since assuming positive real-valued outputs, we call

lASY = qColj �qCol
i

the length of the set of collusive quantities in the asymmetric case, i.e.

:

lASY = (a�c)�(4+bi(bi�1))
2[2(��15)+bi(�5+2�b2i (��1)+�(12+�)+bi(5�3�(2+�))]+2(4�bi+bi)[B1+B2]

[4+bi(bi�1)]2[(bi�3)2+�(bi�1)2][�b2i�(2+bi)2+�b2i ]
where:

B1 = [�bi(bi(17� 2bi + �(bi � 2)2 � 8))]
1
2 ,

and

B2 = [�(7 + � + bi(bi(11 + 2bi + (bi � 2)�)� 20)]
1
2 :

In the standard equivalent case, when bi = bj = 1
2 ; the interval l

SE = q� q is given by

lSE = (a� c) �16

5(� � 25) :

Then, considering the inequality lASY > lSE , (a � c) cancel out and the resulting
inequality is veri�ed for all the values of the parameters of the problem (bi; bj ; �) and it is

independent also from the calibration of a and c:
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The case in which bi < bj can be proved analogously by considering the length lASY =

qColi � qCol
j

and comparing it to lSE : The results and the proof are analogous, and can be

obtained simply by inverting indexes.�
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