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Abstract

An integrated monopoly, where all complements forming a composite good are o�ered by a

single �rm, is typically welfare superior to a complementary monopoly. This is �the tragedy

of the anticommons�. We consider the possibility of competition in the market for each

complement. We present a model with two perfect complements and introduce n imperfect

substitutes for one and then for both complements. We prove that, if one complementary

good is produced by a monopolist, and if competition for the other complement does not vary

the average quality in the market, then an integrated monopoly is still superior. In such case,

favoring competition in some sectors, leaving monopolies in others would be detrimental for

consumers and producers alike. Competition may be preferred if and only if the substitutes

of the complementary good di�er in their quality, so that as their number increases, average

quality and/or quality variance increases. Results change when competition is introduced

in each sector. In this case, if goods are close substitutes, we �nd that competition may be

welfare superior for a relatively small number of competing �rms in each sector, even with

no quality di�erentiation.
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1 Introduction

A complementary monopoly is characterized by the presence of multiple sellers, each producing

a complementary good. It has been known for quite some time in the literature that a comple-

mentary monopoly may be worse than an integrated monopoly, in which all such complementary

goods are o�ered by a single �rm (Cournot, 1838 and, more recently, Economides and Salop,

1992, Matutes and Regibeau, 1988). An individual �rm producing a single complement takes

into account only the impact of a price raise on its own pro�ts, without considering the negative

externality caused to the sellers of other complementary goods. The quantity demanded would

be reduced for everyone, but each seller bene�ts fully of an increase in its own price. As a conse-

quence, separated producers of complementary goods will set a higher price than an integrated

monopolist, thus resulting in a lower consumer surplus.1

The complementary monopoly problem is also known as �the tragedy of the anticommons�,

in analogy with its mirror case, the more famous �tragedy of the commons� and has been applied

in the legal literature to issues related to the fragmentation of physical and intellectual property

rights.2 Recently, the issue of complementarity has been brought to the attention of the eco-

nomics profession by some important antitrust cases, both in the United States and in Europe,

in particular the Microsoft case (discussed before both American and European Courts) and the

General Electric-Honeywell Case, decided by the European Commission.3 In the Microsoft case,

the American decision is especially interesting. Judge Jackson ordered the �rm to divest branches

of its business other than operating systems, creating a new company dedicated to application

development. The break-up (later abandoned) would have created two �rms producing comple-

mentary goods, with the likely result of increasing prices in the market. However, far from being

unaware of the potential tragedy of the anticommons, Judge Jackson motivated his decision with

the need to reduce the possibility for Microsoft to engage in limit pricing, thus deterring en-

try. Separation would have facilitated entry, possibly driving prices below pre-separation levels.4

A similar economic argument motivated the European Commission's Decision in the General

Electric-Honeywell Case. In such case, the EC indicated that the post-merger prices would be so

low as to injure new entrants, so that a merger would reduce the number of potential and actual

competitors in both markets.5

1Complementary monopoly is similar to the problem of double marginalization in bilateral monopoly, with
the important di�erence that here each monopolist competes �side by side�, possibly without direct contacts
with each other. In bilateral monopoly, the �upstream� monopolist produces an input that will be used by the
�downstream� one, who is then a monopsonist for that speci�c input (see Machlup and Taber, 1960).

2For an application to property rights, see Heller (1998), Buchanan and Yoon (2000) and Parisi (2002). Heller
and Eisenberg (1998) argue that patents may produce an anticommons problem in that holders of a speci�c patent
may hold up potential innovators in complementary sectors. Particularly, they focus on the case of biomedical
research, showing how a patent holder on a segment of a gene can block the development of derivative innovations
based on the entire gene. Emblematic, in this respect, the case of Myriad Genetics Inc., which held patents on
speci�c applications of the BRCA1 and BRCA2 genes, and blocked the development of cheaper breast-cancer
tests (see Paradise, 2004).

3See European Commission Decision of 03/07/2001, declaring a concentration to be incompatible with the
common market and the EEA Agreement Case, No. COMP/M.2220 - General Electric/Honeywell.

4United States v. Microsoft Corp., 97 F. Supp. 2d. 59 (D.D.C. 2000). See Gilbert and Katz (2001) for a
thorough analysis of the Microsoft case.

5On the possibility that an integrated monopolist engages in limit pricing to deter entry, see Fudenberg and
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Both these decisions indicate that separation may not be an issue (and may even be welfare

improving) if the post-separation market con�guration is not a complementary monopoly in the

Cournot's sense, i.e., the market for each complement is characterized by competition. The

higher prices due to the tragedy of the anticommons may in fact encourage entry in the market.

If competition increases su�ciently, the resulting market structure may yield a higher welfare

than the initial integrated monopoly. The question then is how much competition is needed in

the supply of each complement in order to obtain at least the same welfare as in the original

monopoly?

Investigating the impact of competition on welfare when complementary goods are involved,

Dari-Mattiacci and Parisi (2007) note that, when n perfect complements are bought together

by consumers and �rms compete à la Bertrand, two perfect substitutes for n − 1 complements

are su�cient to guarantee the same social welfare experienced when an integrated monopolist

sells all n complements. In fact, all competitors in the n − 1 markets price at marginal cost,

thus allowing the monopolist in the n-th market to extract the whole surplus, �xing its price

equal to the one set by an integrated monopolist for the composite good. The tragedy of the

anticommons is therefore solved by competition.

Our analysis of competition among several composite goods maintains this framework when

it considers perfect complements. However, we extend it in several directions. First, di�erently

from previous literature, the competing goods are imperfect substitutes6 and are vertically dif-

ferentiated. Second, we consider the presence of substitutes in all markets for the n components.

Particularly, we consider two perfect complements, proving that, if one complementary good

is still produced in a monopolistic setting and if competition for the other complement does not

vary the average quality in the market, then an integrated monopoly remains welfare superior to

more competitive market settings. In fact, with imperfect substitutability the competing �rms

retain enough market power as to set relatively high prices. As a result, the equilibrium prices of

the composite goods under competition remain always higher than in an integrated monopoly.

Hence, favoring competition in some sectors only while leaving monopolies in others may actually

be detrimental for consumers. Competition may be preferred if and only if the substitutes of

the complementary good produced competitively di�er in their quality, so that average quality

and/or quality variance increase as their number increases.

Results change when competition is introduced for both components. In this case we �nd

that the tragedy may be solved for a relatively small number of competing �rms in each sector

whenever goods are close substitutes. Not surprisingly, the higher the degree of substitutability

and the number of competitors in one sector, the more concentrated the remaining sector can

be and still produce a better performance than an integrated monopoly in terms of consumer

surplus.

The welfare loss attached to a complementary monopoly has been analyzed, among others,

by Economides and Salop (1992) who show, in a duopoly model with complements, that a merger

Tirole (2000).
6Imperfect substitutability in this case means that the cross-price elasticity is lower than own-price elasticity.
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reduces prices because it allows the coalition �rm to absorb positive externalities. Gaudet and

Salant (1992) study price competition in an industry producing perfect complements and prove

that welfare-improving mergers may fail to occur endogenously. Tan and Yuan (2003) are con-

cerned with the opposite issue, i.e., they consider a market in which two �rms sell imperfectly

substitutable composite goods consisting of several complementors. They show that �rms have

the incentive to divest along complementary lines, because the price raise due to competition

among producers of complements counters the downward pressure on prices due to Bertrand

competition in the market for imperfect substitutes. McHardy (2006) demonstrates that, in

general, ignoring demand complementarities when breaking up �rms that produce complemen-

tary goods may lead to substantial welfare losses. However, if the break-up stops limit-pricing

practices by the previously merged �rm, even a relatively modest degree of post-separation entry

may lead to higher welfare than an integrated monopoly. He assumes a setting in which �rms

producing the same component compete a la Cournot among them, whereas competition is a

la Bertrand among complements (i.e., among sectors). Di�erently from McHardy (2006), we

analyze the impact of complementarities and entry in a more consistent model, where all �rms

choose prices when competiting both intra and inter layer and in such framework we also study

the impact of product di�erentiation and imperfect substitutability.

Previous literature on the relationship between complementary goods and market structure

is scanty and deals mostly with bundling practices (Matutes and Regibeau, 1988, Anderson and

Leruth, 1993, Denicolò, 2000, Nalebu�, 2004, Alvisi et el., 2009).7

The paper is organized as follows. Section 2 introduces the model when one sector is a

monopoly; Section 3 presents the reference cases of complementary and integrated monopoly.

Section 4 analyzes the impact of competition on welfare when one complement is produced by a

monopolist; Section 5 extends the model considering competition in the markets for all comple-

ments. Section 6 concludes. Appendix A contains the proofs of the Lemmas and Propositions.

2 The Model

Consider a composite good (a system) consisting of two components, A and B. The two compo-

nents are perfect complements and are purchased in a �xed proportion (one to one for simplicity).

Initially, we assume that complement A is produced by a monopolist, whereas complement B

is produced by n oligopolistic �rms.8 The number of competitors in each sector is exogenous.

Marginal costs are the same for all �rms and are normalized to zero.9 Firms compete by setting

7Matutes and Regibeau (1988) study compatibility and bundling in markets in which complementary goods
have to be assembled into a system. Anderson and Leruth (1993) study bundling choices under di�erent market
structures. Denicolò (2000) analyzes compatibility and bundling choices when an integrated �rm selling all
complements in a system competes with non-integrate �rms, each producing a single, di�erent complement.
Nalebu� (2004) analyzes the incentives to bundle by oligopolistic �rms, showing that bundling is a particularly
e�ective entry-deterrent strategy. On the opposite, Alvisi et el. (2009) show that, when �rms sell complementary
goods, integration along complementary lines may actually be pro-competitive, favoring entry.

8We will remove this assumption later and consider a market con�guration in which n1 �rms produce comple-
ment A, whereas n2 �rms produce complement B.

9This assumption is with no loss of generality, because results would not change for positive, constant marginal
costs (see Economides and Salop, 1992).
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prices. We also assume full compatibility among components, meaning that the complement

produced by the monopolist in sector A can be purchased by consumers in combination with

any of the n versions of complement B. This assumption is made because we are interested in

the e�ect of competition on the pricing strategies of the �rms operating in the various comple-

mentary markets. If we let �rms decide to restrict compatibility, competition may be limited

endogenously (for instance, the monopolist could allow combination with a subset of producers

in sector B only) and the purpose of our analysis would be thwarted.10 Finally, we assume that

the systems have di�erent qualities and that consumers perceive them as imperfect substitutes.11

More speci�cally, the representative consumer has preferences represented by the following

utility function, quadratic in the consumption of the n available systems and linear in the con-

sumption of all the other goods (as in Dixit, 1979, Beggs, 1994):

U(q, I) =
n∑
j=1

α1jq1j −
1
2

β n∑
j=1

q2
1j + γ

n∑
j=1

q1j

∑
s 6=j

q1s

+ I (1)

where I is the total expenditure on other goods di�erent from the n systems, q = [q11, q12, .., q1n]

is the vector of the quantities consumed of each system and q1j represents the quantity of system

1j, (j = 1, ...., n), obtained by combining q1j units of component A purchased from the monop-

olist, indexed by the number 1 (component A1), and qBj = q1j units of component B purchased

from the jth �rm in sector B (component Bj).12Also, α = (α11, α12, .., α1n) is the vector of

the qualities of each system (with α1j representing the quality of system 1j, (j = 1, ...., n), γ

measures the degree of substitutability between any couple of systems, γ ∈ [0, 1], and β is a

positive parameter. The representative consumer maximizes the utility function (1) subject to a

linear budget constraint of the form
∑n

j=1 p1jq1j + I ≤M , where

p1j = pA1 + pBj , j = 1, ...., n (2)

is the price of system 1j (expressed as the sum of the prices of the single components set by �rm

1 in sector A and �rm j in sector B, respectively) and M is income.

10The assumption of perfect compatibility is common to many contributions in the literature on complementary
markets, see Economides and Salop (1992), McHardy (2006), Dari-Mattiacci and Parisi (2007).

11This implies that the consumption possibility set consists of n imperfectly substitutable systems. Later on,
when we consider n1 components in sector A, consumers will have the opportunity to combine each of these
components with any of the n2 complements produced in Sector B. We would then have n1 × n2 imperfectly
substitutable systems in the market.

12Note that when referring to a particular system, we use a couple of numbers indicating the two �rms in sector
A and B, respectively, selling each component of such system. When referring instead to separate components,
we use a couple of one letter and one number, the �rst indicating the sector (the component) and the second the
particular �rm selling it. This might appear redundant for A1 when component A is sold by a monopolist, but it
will become useful when we introduce competition in sector A.
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2.1 Equilibrium Prices and Demand

The �rst order condition determining the optimal consumption of a particular system 1k is

∂U

∂q1k
= α1k − βq1k − γ

∑
j 6=k

q1j − p1k = 0 (3)

Summing (3) over all �rms in the B sector, we obtain the demand for system 1k

q1k =

(β + γ(n− 2))(α1k − pA1 − pBk)− γ

∑
j 6=k

α1j − (n− 1)pA1 −
∑
j 6=k

pBj


(β − γ) (β + γ(n− 1))

(4)

Summing the demands of all �rms in sector B we obtain the total market size

Q =
n∑
j=1

q1j =

n∑
j=1

(α1j − pBj)− npA1

β + γ (n− 1)
(5)

Following Shubik and Levitan (1980), to prevent changes in γ and n to a�ect Q, we set

β = n− γ(n− 1) > 0. (6)

so that, substituting such expression into (5), the normalized market size becomes

Q = ᾱ− p̄B − pA1 (7)

where ᾱ =
∑n

j=1α1j

n is the average quality of the n available systems and p̄B =

n∑
j=1

pBj

n is the

average price in the market for the second component.

Note that expression (7) also represents the demand function for the monopolist in sector A

- given that component A1 is part of all the n systems - so that the monopolist's pro�t function

can be written as ΠA1 = pA1Q = (ᾱ− p̄B) pA1 − p2
A1, whereas pro�t for a single producer of

component B is ΠBk = pBk · qBk, where qBk = q1k is given in (4). Each �rm chooses its price

to maximize its own pro�ts, taking the prices of others as given.13 Equilibrium prices for the

monopolist A1 and for the k-th oligopolist are, respectively

pMA1 =
ᾱ(n− γ)

n(3− γ)− 2γ
(8)

pMBk =
ᾱn(1− γ)

n(3− γ)− 2γ
+
n(α1k − ᾱ)

2n− γ
(9)

where the superscript M stands for �monopoly in sector A�. It is immediate to verify that pMA1

13The second order conditions for maximization of U(q, I) requires γ ≤ β
2
, i.e., γ < n

n+1
.
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is increasing in average quality ᾱ. In fact, being A1 part of all systems, an increase in their

average quality allows an higher pro�t-maximizing price for the monopolist. pMA1 also depends

positively on the number of systems sold, n, and on the degree of substitutability between

any couple of systems, γ. As we will show below, the increase in competition in the market

of the second component (either because of a greater number of �rms or of an higher degree

of substitutability among systems) reduces all oligopolistic prices, allowing the monopolist in

sector A to extract part of the surplus created by such price decrease.14 Not surprisingly, from

(9), producers of below-average quality charge lower than average prices (since (α1k − ᾱ) < 0),

whereas the opposite is true for producers of above-average quality. However, quality �premiums

and discounts� cancel out on average. In fact, the average price in the market for the second

component is

p̄B =

n∑
k=1

pMBk

n
=

ᾱn(1− γ)
n(3− γ)− 2γ

(10)

Combining (8) and (9), the equilibrium price of system 1k is

pM1k = pMA1 + pMBk =
(n(2− γ)− γ)ᾱ
n(3− γ)− 2γ

+
n (α1k − ᾱ)

2n− γ
(11)

so that, the average system price becomes

p̄M1k = pMA1 + p̄B =
(n(2− γ)− γ)ᾱ
n(3− γ)− 2γ

(12)

Finally, using (4), (8) and (9), we derive the equilibrium quantities

qM1k =
ᾱ(n− γ)

n(n(3− γ)− 2γ))
+

(α1k − ᾱ)(n− γ)
n(2n− γ)(1− γ)

(13)

We are now ready to compute pro�ts and consumer welfare.

2.2 Consumer and producer surplus when sector A is a monopoly

Given (8) and (4), the monopolist's pro�ts in sector A are equal to

ΠM
A1 = pMA1

n∑
j=1

qM1j =
ᾱ2(n− γ)2

(n(γ − 3) + 2γ)2
(14)

As for the k−th oligopolist's pro�t, note �rst that

pMBk = t · qM1k (15)

14It should be noted that the impact of an increase in n on pMA1 is analyzed assuming a constant ᾱ, which
implies that we are concentrating on mean-preserving distributions of quality across �rms.
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where t = n2(1−γ)
(n−γ) . Hence

ΠM
Bk = t

(
qM1k
)2

=
n2(1− γ)
(n− γ)

(
ᾱ(n− γ)

n(n(3− γ)− 2γ)
+

(α1k − ᾱ)(n− γ)
n(2n− γ)(1− γ)

)2

, (16)

so that aggregate pro�ts in sector B are equal to

ΠM
B =

n∑
j=1

ΠM
Bj = t

n∑
j=1

(
qM1j
)2

= n(1− γ)(n− γ)
(

ᾱ2

n(n(3− γ)− 2γ)2
+

σ2
α

n(2n− γ)2(1− γ)2

)
(17)

where σ2
α =

∑n
j=1(α1j−ᾱ)2

n represents the variance of the qualities of the n available systems.

We now turn to consumer surplus. Given the utility function in (1), consumer surplus is

de�ned as

CS = U(q, I)−

 n∑
j=1

p1jq1j + I

 (18)

Following Hsu and Wang (2005), we can rewrite the expression above as

CS =
n(1− γ)

2

n∑
j=1

q2
1j +

γ

2

 n∑
j=1

q1j

2

=
n(1− γ)

2

n∑
j=1

(q1j − q̄)2 +
n2

2
(q̄)2 (19)

where q̄ =
∑n
j=1 q1j
n = Q

n is average quantity. Using (13), we can write

q̄ = Ãᾱ (20)

and

q1k − q̄ = B̃ (α1k − ᾱ) (21)

where Ã = (n−γ)
n(n(3−γ)−2γ) and B̃ = (n−γ)

n(1−γ)(2n−γ) . Also, using (21),

n∑
j=1

(q1j − q̄)2 = B̃2nσ2
α (22)

Finally, substituting (20) and (22) into (19), we obtain

CSM =
n2(1− γ)

2
B̃2σ2

α +
n2

2
Ã2ᾱ2 (23)

Given that our goal is to compare equilibrium outcomes under competition and under both

an integrated and a complementary monopoly à la Cournot, in the remainder of this Section

we compare equilibrium prices and quantities under competition with those obtained under

integrated and complementary monopolies. Particularly, prices and quantities in an integrated

monopoly are pIM = αIM
2 and QIM = αIM

2 respectively, so that pro�ts and consumer surplus are

ΠIM = α2
IM
4 ; CSIM = α2

IM
8 . (24)
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In should be immediately noticed that when σ2
α = 0 and the common quality level among

all systems coincides with that of an integrated monopoly (α1k = ᾱ = αIM = α∗, k = 1, ..., n),

component prices in sector B are lower than the price set by the integrated monopolist, pIM ,

while system prices are higher. In fact,

pMBk − pIM = − α∗(n− γ)
(3n− γ(2 + n))

< 0 (25)

pM1k − pIM =
α∗(n− γ(4− n))
2(3n− γ(2 + n))

> 0 (26)

for all γ ∈
[
0, n

n+1

]
. Thus, competition lowers prices in the oligopolistic sector, but the monopo-

list in sector A optimally reacts to this by extracting more surplus and setting higher prices, so

that overall pM1k > pIM . This has a negative impact on the number of systems sold in the market

and, as a matter of fact, it is immediate to check that QM = nqM1k < QIM .

In a complementary monopoly, two separate �rms A1 and B1 produce one component each

of the composite good (i.e., n = 1), and, in the equilibrium, set prices equal to piCM = αCM
3 ,

i = A,B (where CM stands for �complementary monopoly�). Hence the equilibrium price and

quantity of the composite good are pCM = 2αCM
3 and QCM = αCM

3 . Pro�ts and consumer surplus

then are:

Πi
CM =

α2
CM

9
, i = A,B; CSCM =

α2
CM

18
, (27)

where CSCM < CSIM , obviously. It is easy to check that, when σ2
α=0 and the common quality

level among all systems coincides with that of a complementary monopoly (α1k = ᾱ = αCM , k =

1, ..., n), component and system prices are lower with competition than with a complementary

monopoly (i.e. pMBk < pBCMand pM1k < pCM , respectively). This implies that QM > QCM , even if

each oligopolist sells less than a complementary monopolist (qM1k < QCM ).

3 Competition and Welfare When Sector A is a Monopoly

In this section we verify the impact of changes in the number of �rms in Sector B, n, in the

degree of substitutability among systems,γ, and in the distribution of the quality parameters

(the α1k's) on equilibrium prices and welfare.

Along the way, we will verify how the assumption of imperfect substitutability among systems

changes the impact of n on the extent of the tragedy of the anticommons with respect to the

case studied by Dari-Mattiacci and Parisi (2007).15

The following Lemma illustrates �rst the relationship between pMBk, ᾱ, γ, and n.

Lemma 1. Oligopolistic prices decrease with n and γ.

Proof. See Appendix A.

15One should recall that, in their simple model, two �rms competing in the market for the second component
would be enough to guarantee a surplus equal to that attained in the presence of a single, integrated �rm.
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The negative relationship between pMBk, γ and n is intuitive. The higher the number of �rms

in sector B and the degree of substitutability among systems, the �ercer the competition for the

second component and the lower the Bertrand equilibrium prices in sector B. Similarly, it is

immediate to verify from (10) that the impact of a change in n and γ on p̄B is the usual and

negative one.16

When checking the relationship between system prices pM1k, the number of �rms n and the

degree of substitutability γ, we notice from (11) that it is in�uenced by opposite forces. On the

one hand, pMA1 increases as either n or γ increase, whereas pMBk decreases. However, the following

Proposition indicates that the �rst e�ect is always smaller in magnitude than the second, so that,

overall, pM1k decreases with n and γ.

Proposition 1. The equilibrium system prices decrease with n and γ. Then, consumer surplus

increases with n and γ.

Proof. See Appendix A.

When pMBk decreases because of the increased competition in the market for component B,

the monopolist's optimal response is to increase its price, given that goods A1 and Bk are

complements. However, since the monopolist sets the same price pA1 for all the n systems,

such an increase negatively a�ects the demand of all systems. The monopolist then internalizes

such negative externality, thus limiting the increase in pA1. The same applies to the degree of

substitutability γ.

Finally, notice that the result in (26) indicates that, with a common quality value, no matter

the extent of competition in sector B (i.e., no matter n), �unbundling� the two components of

a system, having them sold by di�erent �rms, always leads to higher prices compared to an

integrated monopoly. This seems to indicate that, when goods are not perfect substitutes, the

tragedy of the anticommons is never solved by introducing competition in sector B only contrarily

to what happens with perfect substitutes (Dari-Mattiacci and Parisi, 2007).17 In order to con�rm

such prediction, we now compare equilibrium consumer surplus with the integrated monopoly

case, establishing the following result

Proposition 2. When sector A is a monopoly and n �rms compete in sector B,

1) if α1k = αIM = αCM (k = 1, ...., n), consumer surplus with competition in sector B is

always lower than with an integrated monopoly but higher than with a complementary monopoly

(CSCM < CSM < CSIM ).

16pMBk is also negatively related to ᾱ. In fact, it is de�ned for a given α1k, so that if ᾱ increases it is because
the quality of some systems other than 1k has increased. In such circumstance, the ratio α1k

ᾱ
actually decreases,

reducing the price that �rm k can charge. However, p̄B is positively a�ected by ᾱ: as the average quality of the
available systems increases, their average price also increases.

17In such case, two perfect substitutes in sector B would be enough to solve the tragedy. Our conclusion seem
to contradict also the results obtained by McHardy (2006). In his paper, a very low number of competitors selling
imperfect substitutes is su�cient to attain the level of social welfare of a complementary monopoly, even if the
other sector remains monopolistic.
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2) if systems di�er in quality, then consumer surplus is higher with competition in sector B

than with an integrated monopoly if and only if

σ2
α > σ2

CS =
1

(1− γ)B̃2

[
α2
IM

4n2
− Ã2ᾱ2

]
(28)

where σ2
CS is decreasing in γ and n. If quality variance is su�ciently high, competition may be

preferred even if ᾱ < αIM .

Proof. See Appendix A.

When goods are imperfect substitutes and quality is the same across systems and market

structures, competition in one sector can certainly improve consumer welfare with respect to a

complementary monopoly, but it is never enough to solve the anticommons problem (CSM <

CSIM ). Competition can e�ectively increase consumer surplus above CSIM only if both average

quality and variance play a role. Particularly, while it is not surprising that competition increases

consumer welfare when it also increases average quality, from (23) it can be veri�ed that also

quality variance has a positive e�ect. In other words, our representative consumer bene�ts

from variety (varietas delectat). Finally, we observe that both parameters n and γ have a

negative e�ect on σ2
CS . This is because an increase in n and γ decreases equilibrium prices under

competition, thus raising consumer surplus, ceteris paribus.18

The results in Proposition 2 are shown graphically in Figure 1, presenting simulations for

di�erent parameter values. Panel a) illustrates a case in which n = 2, ᾱ = αIM = αCM = 1 and

σ2
α = 0. It shows that consumer surplus under integrated monopoly (CSIM ) is always greater

than consumer surplus under competition. Panel b) represents the same case, this time letting

the number of �rms n vary and setting γ = 1
3 . Panel c) considers instead a case in which

σ2
α = 0.25. and again ᾱ = αIM = αCM = 1. It is possible to verify that now CSM > CSIM

for a su�ciently high value of γ. Finally, panel d) depicts the case in which average quality

under competition is slightly lower than the quality of an integrated monopoly (ᾱ = 0.95 and

αIM = 1). Here, γ = 1
3 and variance is set su�ciently high (σ2

α = 0.37), so that, for n > 4, the

representative consumer prefers an oligopoly in sector B to an integrated monopoly. 19

In order to analyze equilibrium pro�ts and the corresponding producer surplus in the various

market con�gurations, we establish �rst the following results regarding equilibrium quantities.

Lemma 2. (a) Equilibrium quantities qM1k are decreasing in n; (b) There exists α̂1k < ᾱ, such

that qMik is increasing in γ for α1k > α̂1k and is decreasing in γ for α1k < α̂1k; (c) Total quantity

sold in the market is increasing in n and γ.

Proof. See Appendix A.

18Obviously, when αIM > ᾱ, the greater the gap between αIM and ᾱ, the greater σ2
CS to compensate for lower

quality.
19In the simulations presented here, consumer surplus in complementary monopoly, (CSCM ), is always lower

than CSM whenever αIM = αCM . This is due to the assumption that ᾱ is only slightly smaller than or equal to
αIM . If ᾱ were smaller enough, we might have CSM < CSCM , at least for low values of γ and n.
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When n increases, both oligopolistic prices and total system prices in (9) and (11) decrease

due to enhanced competition. Moreover, as assumed, such increase in the number of competiting

�rms takes place leaving average quality ᾱ unchanged, so that the di�erence α1k − ᾱ is not

a�ected by the entry of new available system. Thus, overall, demands for all systems raises

proportionately. The case in which γ changes is more complex. As γ increases, systems become

closer substitutes and their prices decrease (see Lemma 1). However, this does not necessarily

translate into a greater demand for each of them. In fact, as implied by the utility function (1),

consumers have a taste for quality so that, ceteris paribus, they prefer systems characterized by

a higher α1k. Then, as systems become closer substitutes, consumers will demand more high-

quality systems at the detriment of low-quality ones. Hence, the demand for some low-quality

systems (those with α1k < α̂1k) decreases as γ increases. This has immediate repercussions on

pro�ts, as we will see below. Finally, and not surprisingly, given that an increase in γ or n

decreases the price of all systems, their total demand will increase as well.

The following Corollary and Proposition use Lemmas 1 and 2 to discuss and compare equi-

librium pro�ts.

Corollary 1. ΠM
A1 is increasing in n and γ. Both ΠM

Bk and ΠM
B are decreasing in n.

Corollary 1 states that the monopolist in sector A always bene�ts from an increase in competi-

tion in sector B (produced by an increase in either n or γ). This is because both the monopolist's

equilibrium price pMA1 and total demand (from Lemma 2) increase in n and γ. The Corollary also

establishes a clear relationship between individual pro�ts and the number of �rms in sector B:

as n increases, competition gets �ercer and each �rm sets a lower price, sells a lower quantity

and obtains lower pro�ts. This implies that also aggregate pro�ts in sector B decrease with n,

�counterbalancing� the growth in the monopolist's pro�ts in sector A. Regarding the relation-

ship between γ and ΠM
Bk, we know from Lemmas 1 and 2 that both pMBk and qM1k decrease with

γ for low-quality systems, but also that qM1k increases with γ when the quality of system 1k is

su�ciently high, i.e. α1k > α̂1k > ᾱ. Then for high-quality systems such positive impact of γ on

quantities might prevail and ΠM
Bk can be increasing with γ. Such possibility also in�uences the

relationship between γ and ΠM
B , as the following Proposition shows. Particularly, this is more

likely to happen when quality variance is high and then the chance of having �rms in sector B

with α1k > α̂1k is greater.

Proposition 3. If ᾱ = αIM = αCM,

(a)ΠIM > ΠM
A1 > ΠA

CM for any n ≥ 2 and γ ∈
[
0, n

n+1

]
. When systems are perfect substitutes

(γ = 1), ΠM
A1 = ΠIM > ΠA

CM ;

(b)ΠM
B is increasing in γ if and only if σ2

α is su�ciently high;

(c) If σ2
α = 0 then ΠM

B is lower than ΠB
CM and ΠIM . Also, Producer Surplus (PS ≡ ΠM

B +

ΠM
A1) is such that ΠIM > PS > ΠA

CM + ΠB
CM .

(d) If σ2
α > 0, n = 2, then ΠM

B < ΠIM . If σ2
α > 0, n ≥ 3, thenΠM

B ≥ ΠIM for su�ciently

high σ2
α. Also, for n ≥ 2, PS ≥ ΠIM if and only σ2

α is su�ciently high..

12



Proof. See Appendix A.

The positive relationship between ΠM
A1 and n illustrated in Corollary 1 also explains why, as

indicated in part (a) of the Proposition, the monopolist's pro�ts are higher when sector B is

an oligopoly than when it is a complementary monopoly. Note however that the monopolist's

pro�ts are always lower than those obtained by an integrated monopolist. Only in the limit case

in which γ = 1, the monopolist in sector A is able to extract the whole surplus from sector B,

thus behaving like an integrated monopolist.20 Interestingly, whenever γ < 1, even an in�nite

number of competitors would not allow the monopolist to obtain the same pro�ts of an integrated

monopolist. This is because systems are not perfect substitutes, so that prices in the oligopolistic

sector remain, on average, above marginal cost.21 When quality variance in su�ciently high, part

(b) of the Proposition indicates that the increase in pro�ts of high-quality producers more than

compensates the decrease in the pro�ts of low-quality ones, con�rming the intuition given above.

In the remaining two parts, the Proposition compares industry pro�ts in sector B and total

producer surplus with the respective values obtained under a complementary and an integrated

monopoly. In the simple case of a common quality level (part (c)), industry pro�ts in sector

B (and then a fortiori individual pro�ts) are smaller than both the pro�ts of a complementary

and of an integrated monopolist producing the same quality level. The relationship between ΠM
B

and ΠIM is not surprising and is a direct implication of the results in section 2.2, according to

which pM1k>pIM and QM < QIM , no matter the number of competing �rms. Once more, when

quality variance is zero, increasing the number of competitors in one sector only is not enough

to eliminate the tragedy of the anticommons. Note that in the same section we also established

that both qMBk and p
M
Bk are lower than qCM and pBCM , respectively, so that ΠM

Bk < ΠB
CM . Part (c)

states that this result holds in aggregate, as well, and that ΠM
B < ΠB

CM : introducing competition

in sector B unambiguously lowers industry pro�ts, no matter the degree of substitutability. As

for producer surplus, results are ambivalent. On one side, the idea that post-separation entry of

new �rms in sector B is never able to overcome the tragedy is supported also in terms of the

sum of all �rms' pro�ts in the economy (so that ΠM
B + ΠM

A1 < ΠIM ). On the other, we verify

that competition in sector B increases the pro�ts of the monopolist in sector A in a way that

more than compensates the losses in industry pro�ts in sector B, so that overall producer surplus

under competition is greater than under a complementary monopoly (ΠM
B +ΠM

A1 > ΠA
CM+ΠB

CM ).

Finally, in part (d) we establish that industry pro�ts in sector B can actually be larger than

those of an integrated monopolist (and then a fortiori, of a complementary monopolist) when

variance is positive. As indicated by equation (17), the higher the quality variance, the larger

the value of aggregate pro�ts in sector B, so that it may happen indeed that ΠM
B ≥ ΠIM . Then,

provided a su�ciently large value for σ2
α, producer surplus under competition might also be

greater than with an integrated monopoly.22 In conclusion, quality variance is an indicator of

20One should notice the analogy between this case and the results in Dari-Mattiacci and Parisi (2007).
21From (10), limn→∞p̄B = ᾱ(1−γ)

3−γ > 0 if γ < 1.
22Note that, for a given average quality, variance is obviously weakly increasing in the number of �rms in sector

B. In other terms, the higher n, the higher the maximum value that quality variance can take while still satisfying
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product di�erentiation and varietas delectat not only for consumers, but for sector B as a whole

as well. Then, joining the results in Propositions 2 and 3, the following Corollary holds

Corollary 2. (a) Total Surplus increases with quality variance. (b) When σ2
α = 0 and α1k =

αIM = αCM (k = 1, ..., n), total surplus with competition in sector B is greater than with

a complementary monopoly but lower than with an integrated monopoly. (c) When σ2
α > 0,

ᾱ = αIM , there exists a value for σ2
α such that total surplus with competition in sector B is

greater than with an integrated monopoly.

Summing up, consumers are always worse o� in a complementary monopoly. They prefer

competition to an integrated monopoly if quality variance is very high, so that they can enjoy

the bene�ts of some very high-quality goods and some lower-quality goods with little price. As

for producer surplus, total pro�ts can be higher under competition if variance is large enough.

Again, in such case some very high-quality �rms are able to earn su�ciently high pro�ts to

compensate for the low pro�ts of their low-quality competitors and for the loss in market power

due to competition vis a vis both complementary and integrated monopolies. When quality

variance is high, such possibility is actually favoured by an high degree of subtitutability, given

that in such instance ΠM
B increases with γ.

Total surplus follows a similar trend. As long as quality is uniform across systems, the tragedy

prevails also in welfare terms and competition in sector B is not able to raise social welfare above

the integrated monopoly case. However, separating an integrated �rm into independent units

producing one component each can be welfare improving if this generates post-separation entry

and competition for at least one component and if the competing systems in the market exhibit

enough quality di�erentiation. Note that in Proposition 3 we assumed that ᾱ = αIM = αCM,

but our result would be qualitatively the same for ᾱ 6= αIM . Particularly, competition in one

sector can still be welfare enhancing even if post-separation entry in such sector reduces average

quality, provided a su�ciently high value for quality variance.23

In the next Section, we extend the model to consider competition in Sector A, too.

4 Oligopolies in the markets for both complements

In this Section we change the setting analyzed so far and we assume that both complements

A and B are produced in oligopolistic markets. Particularly, component A is produced by n1

di�erent �rms, whereas component B is produced by n2 �rms. Again, �rms compete by setting

prices.

Since consumers can �mix and match� components at their own convenience, there are n1×n2

the constraints of the model (that is non-negative prices). This is the reason why this result holds only if n ≥ 3.
Two �rms only in sector B are not enough to generate a su�ciently high quality variance (or equivalently a
su�ciently high value of the parameterαmax1k introduced in the proof of Lemma 1) such that ΠM

B ≥ ΠIM .
23In this respect, our paper integrates the main conclusion in Economides (1999), according to which separation

of the monopolized production of complementary goods may damage quality.
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systems in the market and the utility function in (1) becomes

U(q, I) =
n1∑
i=1

n2∑
j=1

αijqij −
1
2

β n1∑
i=1

n2∑
j=1

q2
ij + γ

n1∑
i=1

n2∑
j=1

(
qij

n1∑
z=1

n2∑
s=1

qzs − q2
ij

)+ I (29)

where qij represents the quantity of system ij, (i = 1, ....., n1; j = 1, ...., n2), obtained by com-

bining qij units of component A purchased from the ith �rm in sector A (component Ai), and

qij units of component B purchased from the jth �rm in sector B (component Bj). Also in this

case, αij > 0 (i = 1, ..., n1; j = 1, ..., n2), γ ∈ [0, 1]. The budget constraint now takes the form∑n1
i=1

∑n2
j=1 pijqij + I ≤ M , where pij = pAi + pBj (i = 1, ..., n1; j = 1, ..., n2) is the price of

system ij.

The �rst order condition determining the optimal consumption of system tk is

∂U

∂qtk
= αtk − (β − γ) qtk − γ

n1∑
i=1

n2∑
j=1

qij − ptk = 0 (30)

After some tedious algebra, we obtain the demand function for system tk

qtk =

b (αtk − pAt − pBk)− γ

∑
j 6=k

(αtj − pBj)− pAt (n2 − 1)

− γ∑
i 6=t

n2∑
j=1

(αij − pij)

(β − γ) [β + γ (n1n2 − 1)]
(31)

where b = β + γ (n1n2 − 2).

As before, to prevent total market size to change with γ, n1 and n2 we normalize β as

follows24

β = n1n2 − γ(n1n2 − 1) (32)

Given that component At is possibly bought in combination with all n2 components produced

in sector B, total demand for �rm t in sector A is obtained summing qtk in (31) over all possible

values of k, i.e., DAt =
∑n2

j=1 qtj . Similarly, total demand for �rm k in sector B is DBk =∑n1
i=1 qik. Then, maximizing pro�ts ΠAt = pAtDAt with respect to pAt and ΠBk = pBkDBk with

respect to pBk, the equilibrium prices pOAt and p
O
Bk (the superscript �O� stands for �oligopoly in

both sectors�) are, respectively

pOAt = Aᾱ+B (ᾱt − ᾱ) (33)

pOBk = Cᾱ+D (ᾱk − ᾱ) (34)

where ᾱ =
∑n1
i=1

∑n2
j=1 αij

n1n2
is the average quality of all systems available in the market, ᾱt =

∑n2
j=1 αtj
n2

is the average quality of the systems containing component t, and ᾱk =
∑n1
i=1 αik
n1

is the average

quality of systems containing component k. Parameters A, B, C and D are de�ned as follows:

A = n1(1−γ)(n2−γ)
n1n2(3−2γ)+γ2(1+n1+n2)−2γ(n1+n2)

, B = n1
2n1−γ , C = n2(1−γ)(n1−γ)

n1n2(3−2γ)+γ2(1+n1+n2)−2γ(n1+n2)
and

24The second-order condition then becomes γ ≤ n1n2
n1n2+1

.
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D = n2
2n2−γ . The equilibrium price of system tk, pOtk = pOAt + pOBk, is therefore

pOtk = (A+ C) ᾱ+B (ᾱt − ᾱ) +D (ᾱk − ᾱ) (35)

Equilibrium quantities are

qOtk = zᾱ+
αtk − ᾱ

n1n2(1− γ)
+

ᾱt − ᾱ
n2(2n1 − γ)(1− γ)

+
ᾱk − ᾱ

n1(2n2 − γ)(1− γ)
(36)

where

z =
(n1 − γ)(n2 − γ)

n1n2(n1n2(3− 2γ) + γ2(1 + n1 + n2)− 2γ(n1 + n2))
(37)

In order to compute pro�ts, we need to calculate the total quantity of each component sold

in equilibrium. Given that component At (t = 1, ..., n1) is sold in combination with all its n2

complements, its total quantity will be

qOAt =
n2∑
k=1

qOtk =
(n1 − γ)(γ − n2)α

n1(γ(n2(2− γ)− γ) + n1((2− γ)γ + n2(2γ − 3)))
+

(n1 − γ)(ᾱt − ᾱ)
n1(2n1 − γ)(1− γ)

(38)

Similarly, the total quantity of complement Bk (k = 1, ..., n2) sold in equilibrium is

qOBk =
n1∑
t=1

qOtk =
(n2 − γ)(γ − n1)α

n2(γ(n1(2− γ)− γ) + n2((2− γ)γ + n1(2γ − 3)))
+

(n2 − γ)(ᾱk − ᾱ)
n2(2n2 − γ)(1− γ)

(39)

Hence pro�ts for each �rm are

ΠO
At = pOtk · qOAt (40)

ΠO
Bk = pOtk · qOBk (41)

In our n1 × n2 model, the expression for the consumer surplus can be rewritten as

CS =
n1n2(1− γ)

2

n1∑
i=1

n2∑
j=1

(qij − q̄)2 +
n2

1n
2
2

2
q̄2 (42)

Using (36), we �nd that

q̄ =
n1∑
i=1

n2∑
j=1

qOij = zᾱ (43)

so that we can de�ne

V ar(q) =

n1∑
i=1

n2∑
j=1

(
qOij − q̄

)2

n1n2
(44)

i.e. the variance of the quantities of the systems sold in equilibrium in the whole market. Finally,

substituting expressions (43) and (44) into the de�nition of consumer surplus in (42), we obtain

CSO =
n2

1n
2
2

2
(
z2ᾱ2 + (1− γ)V ar(q)

)
(45)
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In the remainder of this section we want to investigate the impact that the introduction of

competition in sector A has on consumer surplus and on pro�ts, compared to less competitive

options, like complementary or integrated monopoly. The comparison is rather straightforward in

case all systems produced in oligopoly have the same quality of the unique system produced under

monopolistic settings (so that, by symmetry, V ar(q) = 0). For more general cases, however, the

complexity of the expressions for prices, quantities and pro�ts renders the algebraic analysis

rather di�cult. We will therefore perform numerical simulations.

First, we assume that V ar(q) = 0, with αtk = αIM = αCM = α∗, (t = 1, ..., n1; k = 1, ..., n2)

and we establish the following results.

Proposition 4. When both sectors are oligopolies, V ar(q) = 0, αtk = αIM = αCM = α∗

(t = 1, ..., n1; k = 1, ..., n2),

(a) CSO > CSCM ;

(b) CSO > CSIM if and only if

n1 > n∗1 =
(n2 − 1) γ2

n2(2γ − 1)− γ2
(46)

where n∗1 decreases both with n2 and γ.

(c) Oligopolistic pro�ts ΠAt and ΠBk are always smaller than Πi
CM , hence than ΠIM .

Proof. See Appendix A.

Thus, when there is competition in both sectors, a competitive industry may be preferred to

an integrated monopoly even for a low number of �rms in both sectors. Particularly, two �rms

in both sectors may be enough to solve the tragedy if γ is su�ciently high, as shown in Figure 2.

Figure 2 is obtained assuming V ar(q) = 0, α∗ = 1, n1 = 2 and γ = 0.62. As it can be

readily veri�ed, consumer surplus is always higher under competition than in a complementary

monopoly. It can be further noticed that consumer surplus under competition is increasing in n1

and lies below CSIM for low n1 but becomes larger than CSIM for n1 > 4 (n∗1 = 4.021). Part

(b) of the proposition also suggests that the degree of competition required in one sector (say,

sector A) to increase consumer surplus above CSIM decreases as either the number of �rms in

the other sector or the degree of substitutability increase (as n∗1 is decreasing in both n2 and

γ). This happens because an increase in n2 and/or in γ not only reduces the prices of each

single component sold in sector B but also the prices of all systems, thus increasing consumer

welfare.25 Finally, part (c) con�rms the relationships among pro�ts found in the n×1 case, with

oligopolists always earning the lowest pro�ts and an integrated monopolist the highest.

If V ar(q) were positive, the value n∗1 at which CSO and CSIM cross would be lower. If

�rms produce di�erent qualities and V ar(q) > 0, the number of competing �rms required to

make consumer surplus under competition preferred to that obtained in an integrated monopoly

25As we will also see in the simulations below, oligopolists in sector A react to a decrease in the prices in the
complementary sector B by increasing their own price. Such increase is however limited, and total system prices
overall decrease.
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decreases. In fact, a positive V ar(q) increases CSO in (42), thus increasing the range of the

parameters for which CSO > CSIM .26 The exact changes in prices, quantities, pro�ts and

welfare as the number of �rms and the degree of substitutability between systems vary are

analyzed in the following simulations.

In the �rst simulation we assume a common quality level for all systems (αtk = αIM = αCM =

1, t = 1, ..., n1; k = 1, ..., n2), We then consider an increase in competition in sector B, keeping the

number of �rms in sector A �xed at n1 = 2 thoroughout the simulation.27 Table 1.1 summarizes

the welfare obtained by consumers and producers under integrated and complementary monopoly,

whereas Table 1.2 presents the prices for �rm A1 across the various market con�gurations and

the quantity sold of system q11.
28 The equilibrium quantity of each system falls steadily as

competition in sector B increases. As expected, the increase in n2 produces a decrease in the

prices in sector B, whereas it raises prices in sector A. This is the e�ect of two distinct forces. On

the one hand there is the traditional cross-price e�ect characterising complementary goods (for

which the cross-price elasticity is negative). On the other hand, the increase in competition in

sector B allows �rms in sector A to take advantage of an increasing relative market power for the

provision of the essential component A. Such behavior of quantities and prices can be observed

both when the degree of substitutability among systems is relatively low (γ = 0.2) and when it

is higher (γ = 0.62). The e�ect on welfare is di�erent according to the level of γ. At γ = 0.2,

consumer surplus in oligopoly is always lower than in an integrated monopoly but higher than in

a complementary monopoly. When γ = 0.62, consumer surplus in oligopoly is larger than in the

γ = 0.2 case (higher substitutability implies �ercer competition among systems), increases with

competition and in particular, for n2 > 4, is also larger than in an integrated monopoly. This

is the main di�erence with the n × 1 case: an high degree of substitutability allows consumers

to buy systems at very low prices when competition prevails in both sectors, and this happens

even when quality is uniformly distributed, so that we might indeed observe CSO > CSIM . We

then consider pro�ts. When γ = 0.2, total pro�ts in sector A increase with n2, whereas they

decrease in sector B. In sector A, the increase in prices and the larger range of complements

each �rm can combine with its product more than compensate for the decrease in the quantity

demanded of existing systems. On the contrary, the decrease in prices in sector B drives this

sector's pro�ts down. The overall e�ect is however positive, with total aggregate pro�ts across

sectors increasing with competition.29 Anyway, as in the n × 1 case, an integrated monopoly

yields the highest pro�ts, a complementary monopoly the lowest, with the competitive market

structure somewhere in the middle. When γ = 0.62, pro�ts in sector A are higher compared to

the γ = 0.2 case (and still increasing in n2), whereas pro�ts in sector B are higher than in the

γ = 0.2 case only for n2 = 2 and n2 = 3. Then they get lower (and they steadily decrease in

26Clearly, a fortiori, CSO > CSCM always when quality variance is positive.
27This is with no loss of generality, given the symmetry of the setting. Note also that we have already provided

analytical results for this case, but the simulation will serve as a benchmark.
28We have chosen �rm A1 and system q11 because they are respectively always present and sold in positive

amount as n2 increases (the same applies for �rms A2, B1 and B2 and quantities q12, q21, q22). Given symmetry,
the behavior of all �rms and systems is the same in any case.

29Total pro�ts ΠO are obtained summing over all �rms in each sector and then summing across sectors.
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n2). Consequently, total aggregate pro�ts are U-shaped, increasing up to n2 = 4 (and reaching

the pro�ts of an integrated monopoly) and then slowly decreasing. They are however always

higher than in the γ = 0.2 case. Summing up consumer and producer surplus, we note that

competition in both sectors can be welfare enhancing compared to an integrated monopoly, even

with a common quality level across systems. Speci�cally, total surplus can get larger than TSIM

with a large degree of substitutability, and this is because the signi�cant increase in consumer

surplus above CSIM more than counterbalances the slight decrease in total pro�ts when n2 > 4.

In the second simulation we assume that �rms are heterogeneous, so that the two sectors

A and B can be characterized by di�erent quality distributions which get re�ected on systems'

qualities. Speci�cally, we assume that the entry of new �rms in one sector allows the composition

of ever better systems, so that competition increases average quality in the market. To obtain

the e�ect of quality decreasing with competition, we set αtk (t = 1, ..., n1; k = 1, ..., n2) as follows

α11 = 8 α12 = 8.5 α13 = 9 α14 = 9.5 α15 = 10

α21 = 7.5 α22 = 8 α23 = 8.5 α24 = 9 α25 = 9.5

Due to our chosen values, the set of systems {1k} (k = 1, ..., 5) has high average quality than

the set {2k} and systems denoted by higher k are better in quality. Table 2 reports equilib-

rium prices, quantities and welfare when competition increases in sector B. It can be veri�ed

that quantity q11 still decreases with n2, although being larger than quantities q11 obtained in

simulation 1 for given γ. As argued above, quality variance increases demand.

As in Simulation 1, prices in sector A increase with n2, whereas prices in sector B decrease.

System prices however decrease in n2. Unsurprisingly, prices are higher with γ = 0.2 than with

γ = 0.62, since competition is �ercer in the second case. When γ = 0.2, consumer, producer

and total surplus are always higher under integrated monopoly. Things change when γ = 0.62;

now �ercer competition among closer substitutes leads to substantially lower system prices, thus

bene�tting consumers (for n2 ≥ 3). This more than compensates for the lower producer surplus

in oligopoly, so that total surplus in the latter con�guration is the highest. Complementary

monopoly yields the lowest surplus, both for consumers and producers. As in the previous

simulation, individual pro�ts decrease in sector B, experiencing the increase in competition,

whereas sector A takes advantage of this by increasing its own pro�ts.30

In the last simulation, we assume that competition worsens average quality in the market,

so that, the larger the number of active �rms, the lower ᾱ, ᾱt and ᾱk. Again, with no loss of

generality, we assume that competition increases in sector B, whereas n1 = 2 throughout the

simulation. To obtain the e�ect of quality decreasing with competition, we set αtk (t = 1, ..., n1;

k = 1, ..., n2) as follows
31

30It should be noticed that both consumer surplus and pro�ts under monopolistic con�gurations increase in
n2. This happens because each oligopoly structure (for each n2) is compared with both types of monopoly at the
same average quality and here, by assumption, ᾱ increases with n2.

31It should be noticed that the coe�cients αtk are the same as in Simulation 2, but in reversed order.
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α11 = 10 α12 = 9.5 α13 = 9 α14 = 8.5 α15 = 8

α21 = 9.5 α22 = 9 α23 = 8.5 α24 = 8 α25 = 7.5

When γ = 0.2, Table 3 shows that individual �rms' and system prices decrease with compe-

tition. Interestingly, prices are declining and lower in sector A. This reverts the trend obseved

in the previous simulations, in which the sector not a�ected by competition was able to limit

the impact or even to take advantage of the increased competition in the complementary sector.

Moreover, demand of a given system (say q11) decreases with competition. In fact, equation

(36) implies that equilibrium quantities are positively a�ected by both the system's quality αtk

and by average qualities. For a given αtk, a decrease in average quality has a negative impact

on demanded quantity.32 However, �rms in sector A enjoy higher (though declining) pro�ts;

they are still able to extract a higher surplus than their complementors operating in the more

competitive sector. Overall pro�ts are lower than their integrated monopoly counterpart but

higher than in a complementary monopoly. Consumer surplus decreases with competition: lower

prices and increased variance are not enough to compensate for the decline in quality. Again,

consumer surplus is highest in integrated monopoly and lowest in complementary monopoly.33

When γ = 0.62, a �fth �rm in sector 2 obtains no demand because of a too low quality level.

This is why the most competitive feasible market structure is at n2 = 4. System prices and quan-

tities decrease as n2 increases (and prices are lower than in the γ = 0.2 case, whereas quantities

are higher). Interestingly, comparing consumer surplus across market con�gurations, it can be

noticed that CSO < CSIM for n2 = 2 but CSO > CSIM for n2 ≥ 3. This happens because

the comparison is performed for the same quality level (αIM is set equal to ᾱ for each value of

n2), but quality variance is increasing. Similarly to the n × 1 case, then, as variance increases,

consumer welfare might be greater in competition than with an integrated monopoly. Finally,

although pB1 has the usual pattern (as competition increases in sector B, pB1 decreases), pA1

has a non-monotonic behavior. First, it increases from n2 = 2 to n2 = 3. This is the same

behavior displayed in previous simulations; as competition increases in sector B and the price

of the complements decrease, �rms in sector A react by raising their prices. However, we have

just checked that when γ = 0.2 and competition decreases quality, pA1 instead decreases in n2.

And in fact, when n2 = 4, pA1 is lower than in both the n2 = 2 and the n2 = 3 cases. What

happens is that average quality is getting so low that �rms in sector A are forced to lower their

prices. The initial increase when competition is still relatively low (and average quality high) is

made possible by the high degree of substitutability γ, that renders competition especially �erce

in sector B. This is not possible anymore when further competition takes quality to very low

levels. Pro�ts follow the same pattern: they increase in sector A when n2 goes from 2 to 3 but

then decrease. The �ercer competition due to high substitutability does not allow �rms in sector

A to counteract the decline in demand due to lower average quality by reducing price as it was

32At n2 = 6 the quantity of the lowest quality systems becomes negative, implying that increased competition
is not sustainable in such market con�guration. That's why simulation 3 considers n2 only up to 5.

33Here consumer surplus and pro�ts under monopolistic con�gurations decrease in n2 since ᾱ decreases with
higher n2.
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able to do when γ = 0.2. Finally, pro�ts in sector B always decrease and so do total pro�ts.

However, ΠO > ΠIM > ΠCM because of the high quality variance exogenously produced in the

simulation, and this result, combined with the trend observed for consumer surplus, produces

an increasing trend for sociale welfare. In fact, as n2 increases, total surplus increases as well,

surpassing the corresponding integrated monopoly value for n2 ≥ 3.

5 Conclusions

Complementary monopoly may be worse than an integrated monopoly, in which all such comple-

mentary goods are o�ered by a single �rm. This is �the tragedy of the anticommons�. We have

considered the possibility of competition in the market for each complement, presenting a model

in which n imperfect substitutes for each perfect complement are produced. We have proven

that, if at least one complementary good is produced in a monopoly, an integrated monopoly

is always superior to a more competitive market setting. Consequently, favoring competition in

some sectors, leaving monopolies in others may be detrimental for consumers. Competition may

be justi�ed if and only if the goods produced by competitors di�er in quality, so that also average

quality and variance become important factors to consider.

We have also proven that, when competition is introduced in each sector, the tragedy may be

solved for relatively small numbers of competing �rms in each sector if systems are close substi-

tutes, and this even in the limit case of a common quality level across systems. Unsurprisingly,

the higher the degree of substitutability and the level of competition in other sector, the more

concentrated a sector can be, while still performing better than an integrated monopoly in terms

of consumer surplus.
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A Proofs

A.1 Proof of Lemma 1

In order to prove that
∂pM

Bk

∂γ < 0 we note �rst that this is always true if α1k < ᾱ. In fact, ∂
∂γ

n(1−γ)
n(γ−3)−2γ =

− 2(n−1)n

(n(3−γ)−2γ)2
< 0 and ∂

∂γ
n

2n−γ = n
(2n−γ)2

> 0. If α1k > ᾱ, it may be that
∂pM

Bk

∂γ > 0 for a su�ciently high

value of α1k, and in particular for α1k> α̃1k, where α̃1k is obtained solving
∂pM

Bk

∂γ = 0 with respect to α1k.
We then check whether α̃1k is a feasible value for an above-average quality. To do that, we compute �rst
the highest α1k compatible with a given average ᾱ, αmax1k , which is obtained when the remaining n − 1
�rms produce such low-quality systems αmin1s < ᾱ, s 6= k as to optimally set their price equal to marginal
cost (so that they remain active in sector B), that is pMBs = 0. From (9), we obtain:

αmin1s =
ᾱ(n− γ)(1 + γ)
n(3− γ)− 2γ

(47)

Setting α1s = αmin1s for all �rms s 6= k, we obtain αmax1k solving

(n− 1)αmin1s + αmax1k

n
= ᾱ (48)

i.e., αmax1k = nᾱ− (n− 1)αmin1s . Substituting such value into
∂pM

Bk

∂γ , we have

∂pMBk
∂γ

∣∣∣∣
α1k=αmax

1k

=
(n− 1)nᾱ

[
2γ2 − n

(
1 + 4γ − γ2

)]
(2n− γ) [n(γ − 3) + 2]2

< 0.

Hence, αmax1k < α̃1k always and
∂pM

Bk

∂γ < 0 for all γ∈
[
0, n

n+1

]
.

Similarly, in order to prove that
∂pM

Bk

∂n < 0 for all n ≥ 2, we note from (9) that
∂pM

Bk

∂n < 0 always if

α1k > ᾱ, since ∂
∂n

n(1−γ)
n(3−γ)−2γ = − 2(1−γ)

(n(3−γ)−2γ)2
< 0 and ∂

∂n
n

2n−γ = − γ
(2n−γ)2

< 0. If α1k < ᾱ, it may be

that
∂pM

Bk

∂n > 0 for a su�ciently low value of α1k. We then prove that
∂pM

Bk

∂n < 0 at the minimum possible

value of α1k, α
min
1k . Substituting αmin1k from (47) we obtain

∂pM
Bk

∂n

∣∣∣
α1k=αmin

1k

= nᾱγ(γ2−1)

(2n−γ)(n(3−γ)−2γ)2
, which

is negative for all relevant values of γ and n.

A.2 Proof of Proposition 1

Di�erentiating
∂pM

1k

∂ᾱ = − (2γ−1)[1+(n−2)γ]
[3+γ(2n−5)][2+γ(2n−3)] > 0 for all γ < n

n+1 .

We now prove that p̄M1k decreases with n. From (8) it can be readily veri�ed that
∂pM

A1
∂n > 0, whereas

Lemma 1 demonstrates that
∂pM

Bk

∂n < 0. It is then su�cient to prove that
∂pM

A1
∂n <

∣∣∣∂pM
Bk

∂n

∣∣∣ when ∣∣∣∂pM
Bk

∂n

∣∣∣ takes
its minimum value (i.e., when it is closest to zero). Note �rst that

∂pM
Bk

∂n = − γ(α1k−ᾱ)

[2+(2n−3)γ]2
− 2(1−γ)ᾱ

[3+(2n−5)γ]2
,

which reaches its minimum value when α1k = αmin1k (where αmin1k is de�ned in the proof of Lemma 1), since

− γ(α1k−ᾱ)

[2+(2n−3)γ]2
is positive and maximum at αmin1k . It is then easy to verify that

∂pM
A1
∂n −

∣∣∣∂pM
Bk

∂n

∣∣∣
αik=αmin

ik

=

−
¯α(1−γ)(2+4γ(n−2)+(8−7n+2n2)γ2)

(1+γ(n−1))(3+γ(2n−5))2(2+γ(2n−3))
< 0 for all γ and n.

A similar proof works for
∂pM

1k

∂γ .

The e�ect on CSM is a direct consequence of the in�uence of γ and n on system prices.
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A.3 Proof of Proposition 2

Part 1). In this case α1k = ᾱ, (k = 1, ..., n) and σ2
α = 0. From (23), consumer surplus under compe-

tition is CSM = n2

2 Ã
2ᾱ2. Comparing it with consumer surplus under integrated and complementary

monopoly, given by (24) and (27), respectively, we note immediately that the di�erence CSM −CSIM =
ᾱ2n(1−γ)(n(γ−5)+4γ)

8(n(3−γ)−2γ)2 is negative, while the di�erence CSM − CSCM =
ᾱ2(n(6γ(n−1)+γ)+5γ2)

18(n(3−γ)−2γ)2 is positive,

for all n ≥ 2 and γ ∈ [0, 1].
Part 2). When σ2

α > 0, subtracting CSIM from CSM and solving for σ2
α, it is immediate to obtain

σ2
CS in expression (28). When σ2

CS < 0, competition is always preferred. The relevant case is thus
σ2
CS > 0, which holds when ᾱ < αIM

2Ãn
. It can be veri�ed that αIM < αIM

2Ãn
, so that it is possible to have a

case in which ᾱ < αIM and CSM > CSIM .
Given that CSM is increasing in n and γ, the minimum value of σ2

α required to have CSM ≥ CSIM ,
σ2
CS , must be decreasing in n and γ.

A.4 Proof of Lemma 2

Di�erentiating qMik in (13) with respect to γ we get

∂qMik
∂γ

=
(n− 1)ᾱ

(n(3− γ)− 2γ)2
+

(2n2 + γ2 − n(1 + 2γ))(α1k − ᾱ)
n(1− γ)2(2n− γ)2

(49)

When n ≥ 2 and γ ∈
[
0, n

n+1

]
, the �rst term on the right-hand side of (49) is positive. The second

term is positive if α1k > ᾱ and negative otherwise. Thus,
∂qM

ik

∂γ > 0 always if α1k > ᾱ. If α1k < ᾱ,

the maximum negative value of the second term in (49) is taken when α1k reaches its minimum feasible

value, αmin1s (see equation (47) in the proof of Lemma 1). Evaluating
∂qM

ik

∂γ at α1k = αmin1k we obtain
∂qM

ik

∂γ

∣∣∣
α1k=αmin

1s

= − (n(4n−6γ−1)+γ2(2+n))(n−γ)ᾱ
n(2n−γ)(1−γ)(n(3−γ)+2γ2 < 0. Thus, given that

∂qM
ik

∂γ is continuous in α1k, there

exists α̂1k < ᾱ such that
∂qM

ik

∂γ ≥ 0 for α1k ≥ α̂1k and negative otherwise.

Di�erentiating qMik in (13) with respect to n we get

∂qMik
∂n

=
((3− γ)n(2− n)− 2γ2)ᾱ

n2(n(3− γ)− 2γ)2
+

(2n(n− 2γ) + γ2)(α1k − ᾱ)
n2(γ − 1)(2n− γ)2

(50)

When n ≥ 2 and γ ∈
[
0, n

n+1

]
, the �rst term on the right-hand side of (50) is negative. The second

term is negative if α1k > ᾱ and positive otherwise. Thus,
∂qM

ik

∂n < 0 always if α1k > ᾱ. If α1k < ᾱ,

the maximum positive value for the second term of (50) occurs when α1k = αmin1k . Evaluating
∂qM

ik

∂n at

α1k = αmin1s we obtain
∂qM

ik

∂n

∣∣∣
α1k=αmin

1s

= − (n−γ)γ(1−γ)ᾱ
n(2n−γ)(n(3−γ)−2γ)2 < 0. Thus, ∂q

M
ik

∂n < 0.

De�ne total quantity as

QM ≡
n∑
k=1

qMik =
ᾱ(n− γ)

n(3− γ)− 2γ
(51)

Di�erentiating (51) with respect to γ and n we obtain ∂QM

∂γ = n(n−1)ᾱ
(n(3−γ)−2γ)2 > 0 and ∂QM

∂n = γ(1−γ)ᾱ
(n(3−γ)−2γ)2 >

0 in the admissible range of the parameters.

A.5 Proof of Proposition 3

Part (a). Comparing ΠM
A1 in (14) and ΠA

CM in (27), we obtain ΠM
A1 − ΠA

CM = (n−1)ᾱ2γ(n(6−γ)−5γ)
9(n(3−γ)−2γ)2 > 0

in the relevant parameters' range. We then compare ΠM
A1 with the pro�t of an integrated monopoly and

ΠM
A1 − ΠIM = −nᾱ(1−γ)(n(5−γ)−4γ)

4(n(3−γ)−2γ)2 < 0. Note that limn→∞ΠM
A1 = ᾱ2

(3−γ)2 , which is in any case smaller

than ΠIM when γ ∈
[
0, n

n+1

]
. Only at γ = 1 we would have ΠM

A1 = ΠIM .

Part (b). From Lemmas 1 and 2, both pMBk and qM1k decrease with n. Then both ΠM
Bk and ΠM

B also
decrease with n.
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To prove the impact of γ on ΠM
B , let us di�erentiate expression (17) with respect to γ. We �nd:

∂ΠM
B

∂γ
=
n(n(2n− 3γ) + γ(2− γ))

(2n− γ)3(1− γ)2
σ2
α −

n(n− 1)(n+ γ(n− 2))
(n(3− γ)− 2γ)3

ᾱ (52)

It might then happen that
∂ΠM

B

∂γ > 0 if σ2
α is high enough for given ᾱ. It is a well-known result in statistics

that the maximum variance σ2
αmax in a discrete distribution is attained when n

2 �rms have quality equal
to the minimum value in the range and n

2 �rms have quality equal to the maximum value in the range
(see Plackett, 1947). In our speci�c case, the minimum value in the range is given by αmin1k , whereas the
maximum value has to be computed given the average ᾱ and the fact than n

2 �rms produce αmin1k . De�ne

such maximum α̌ =ᾱ
(
n− (n−γ)(1+γ)

n(3−γ)−2γ

)
. Then maximun variance would be σ2

max = 1
2 ᾱ

2
(

(1−γ)2(2n−γ)2

(n(3−γ)−2γ)2

)
+(

n− 1 + (n−γ)(1+γ)
n(3−γ)−2γ

)2

. By di�erentiating ΠM
B with respect to γ and solving the derivative with respect

to σ2
α, it is possible to verify that

∂ΠM
B

∂γ ≥ 0 i� σ2
α ≥ σ2

0 = (n−1)ᾱ2(2n−γ)3(1−γ)2(n−2γ+nγ)
(n(3−γ)−2γ)3(2n2−3nγ−γ(1−2γ)) . To compare σ2

0

with σ2
max, we evaluate the expression σ

2
max − σ2

0 numerically for all admissible values of γ and we �nd

that σ2
max > σ2

0 for all n ≥ 2, implying that
∂ΠM

B

∂γ > 0 for σ2
α su�ciently high.

Part (c). When σ2
α = 0, then all systems have the same quality level α1k, k = 1, ..., n. If this level is

such that α1k = αIM = αCM , then the di�erence ΠM
B −ΠB

CM = − (n−1)ᾱ2γ(3n+γ(n−4))
9(n(3−γ)−2γ)2 is always negative

in the admissible parameters' range. We know that ΠB
CM < ΠIM , hence, a fortiori , ΠM

B − ΠIM < 0. As

for Producer Surplus, PS ≡ ΠM
A1 + ΠM

B =
ᾱ2[n2(2−γ)−n(3−γ)γ+γ2]

[n(3−γ)−2γ]2
. It is easy to check that PS − ΠIM =

− nᾱ2(1−γ)2

4(n(3−γ)−2γ)2 < 0. Also, ΠM
A1 + ΠM

B − ΠA
CM − ΠB

CM = PS − 2Πi
CM = (n−1)ᾱ2γ(n(3−2γ)−γ)

9(n(3−γ)−2γ)2 which is

always positive in the relevant parameters' range.
Part (d). The �nal result is immediate and is obtained solving ΠM

Bk = ΠIM with respect to σ2
α.

Then ΠM
Bk ≥ ΠIM i� σ2

α ≥ σ2
ΠB

= (n−1)ᾱ2(1−γ)γ(2n−γ)2(n(3+γ)−4γ)
9n(n−γ)(n(3−γ)−2γ)2 , where σ2

ΠB
< σ2

max for all n ≥ 3
(numerical evaluation for all admissible values of γ). For n = 2, σ2

ΠB
> σ2

max, implying that ΠM
Bk < ΠIM .

As for Producer Surplus, the result is obtained solving ΠM
A1 + ΠM

B = ΠIM with respect to σ2
α. Then

ΠM
A1 + ΠM

B ≥ ΠIM i� σ2
α ≥ σ2

PS = nᾱ2(1−γ)2(2n−γ)2

4(n−γ)(n(3−γ)−2γ)2 . Also, it is possible to establish (through numerical

evaluation) that σ2
PS < σ2

max for all n ≥ 2.

A.6 Proof of Proposition 4

Part (a). The proof is immediate, setting V ar(q) = 0 in (42) and comparing the resulting expression
with CSCM .

Part (b). Solving CSO −CSIM = 0 with respect to n1, i.e.
n2

1n
2
2

2 z2q2− α∗2

8 = 0, yields two solutions,

n11 = (n2−1)γ2

n2(2γ−1)−γ2 and n12 = γ(n2(4−γ)−3γ)
n2(5−2γ)−(4−γ)γ , so that CSO > CSIM i� either n1 < n12 or n1 > n11. It

is possible to verify, however, that n12 < 1 for all γ and n2 in the admissible range of the parameters.
Therefore, CSO ≥ CSIM i� n1 ≥ n11 and n11 = n∗1 in (46).

Di�erentiating (46) with respect to γ,
∂n∗1
∂γ = − 2(n2−1)n2(1−γ)γ

(n2(1−2γ)+γ2)2 < 0, whereas di�erentiating it with

respect to n2 yields
∂n∗1
∂n2

= − (1−γ)2γ2

(n2(1−2γ)+γ2)2 < 0.
Part (c). For this part, it su�ces to prove that either ΠAt or ΠBk is always smaller than Πi

CM . The
other is implied by the clear symmetry. Moreover, being Πi

CM < ΠIM , this implies also that ΠAt and
ΠBk are smaller than ΠIM . By comparing ΠAt with ΠA

CM , we �nd that

ΠAt −ΠA
CM =

1
9
α∗2

(
9(n1 − γ)(n2 − γ)2(1− γ)

n2(γ(n2(γ − 2) + γ) + n1(n2(3− 2γ) + (γ − 2)γ))2
− 1
)

(53)

Numerically solving (53) with respect to n1 for given values of n2 and considering all the admissible

values γ ∈
[
0, n1n2

n1n2+1

]
, it is possible to check that (53) admits two solutions ña and ñb and that both are

always lower than 1 when not imaginary. Simulations show that ΠAt−ΠA
CM ≥ 0 for ña ≤ n1 ≤ ñb (when

ña and ñb are real) and ΠAt−ΠA
CM < 0 when ña and ñb are imaginary. This implies that ΠAt−ΠA

CM < 0
in the relevant range of the parameters. The same proof can be applied to ΠBk.
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Figure 2: Consumer surplus under three di�erent regimes when competition is present in both sectors.
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CSIM CSCM ΠIM ΠCM TSIM TSCM

0.125 0.055 0.25 0.22 0.375 0.275

Table 1.1: Welfare under integrated and complementary monopoly in simulation 1.

γ = 0.2

n2 = 2 n2 = 3 n2 = 4 n2 = 5 n2 = 6 n2 = 7 n2 = 8 n2 = 9 n2 = 10

pA1 0.32 0.324 0.325 0.326 0.327 0.3277 0.328 0.3285 0.3286

pB1 0.32 0.31 0.308 0.306 0.305 0.304 0.303 0.302 0.301

p11 0.64 0.634 0.633 0.632 0.632 0.6317 0.631 0.6305 0.6296

q11 0.09 0.06 0.045 0.036 0.03 0.026 0.023 0.02 0.018

CSO 0.0648 0.0663 0.067 0.0675 0.0677 0.0679 0.0681 0.0682 0.0683

ΠA1 0.0576 0.0589 0.0595 0.0599 0.0602 0.0604 0.0605 0.0606 0.0607

ΠB1 0.0576 0.0378 0.0282 0.0224 0.0186 0.0156 0.0139 0.0124 0.0111

ΠO 0.2304 0.2315 0.2321 0.2324 0.2326 0.2327 0.2328 0.2329 0.2330

TSO 0.295 0.298 0.2991 0.2999 0.3 0.3007 0.3009 0.3012 0.3013

γ = 0.62

pA1 0.2621 0.2713 0.2753 0.2775 0.2789 0.2798 0.2806 0.2811 0.2816

pB1 0.2621 0.2359 0.2248 0.2186 0.2146 0.2119 0.2098 0.2083 0.2781

p11 0.5242 0.5073 0.5001 0.4961 0.4935 0.4918 0.4905 0.4895 0.4887

q11 0.1189 0.0821 0.0624 0.0504 0.0422 0.0363 0.0318 0.0283 0.0255

CSO 0.1132 0.1213 0.1249 0.1269 0.1282 0.1291 0.1298 0.1303 0.1307

ΠA1 0.0623 0.0668 0.0688 0.0699 0.0706 0.0711 0.0715 0.0717 0.0719

ΠB1 0.0623 0.0387 0.0281 0.0220 0.0181 0.0154 0.0134 0.0118 0.0106

ΠO
0.2494 0.24995 0.25 0.24998 0.24995 0.24993 0.2499 0.24989 0.24987

TSO 0.3626 0.3713 0.3749 0.3769 0.3782 0.3791 0.3797 0.3802 0.3806

Table 1.2: Impact of competition when �rms are homogeneous.

γ = 0.2 γ = 0.62

n2 = 2 n2 = 3 n2 = 4 n2 = 5

pA1 2.69 2.80 2.90 2.99

pB1 2.69 2.32 2.24 2.17

p11 5.38 5.12 5.14 5.16

q11 0.72 0.42 0.27 0.18

CSO 4.33 4.84 5.38 5.97

CSIM 8 8.51 9.03 9.57

CSCM 3.55 3.78 4.01 4.25

ΠA1 4.07 4.42 4.72 5.02

ΠB1 4.07 2.09 1.48 1.13

ΠO 14.78 15.83 16.88 17.96

ΠIM 16 17.01 18.06 19.14

ΠCM 14.22 15.125 16.05 17.01

TS0 19.11 20.67 22.27 23.94

TSIM 24 25.52 27.09 28.72

TSCM 17.78 18.91 20.07 21.27

n2 = 2 n2 = 3 n2 = 4 n2 = 5

2.24 2.39 2.49 2.58

2.24 1.67 1.50 1.38

4.49 4.06 3.99 3.96

0.95 0.51 0.28 0.14

7.66 9 10.21 11.47

8 8.51 9.03 9.57

3.55 3.79 4.01 4.25

4.57 5.17 5.62 6.02

4.57 1.94 1.26 0.88

16.04 17.16 18.31 19.51

16 17 18.06 19.14

14.22 15.12 16.05 17.01

23.70 26.16 28.52 30.98

24 25.52 27.09 28.71

17.78 18.91 20.07 21.27

Table 2: Impact of competition when �rms are heterogeneous and competition increases quality.
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γ = 0.2 γ = 0.62

n2 = 2 n2 = 3 n2 = 4 n2 = 5

pA1 3.17 3.12 3.06 2.99

pB1 3.17 3.14 3.16 3.19

p11 6.34 6.26 6.22 6.18

q11 1.1 0.8 0.65 0.56

CSO 6.03 6 5.97 5.96

CSIM 11.3 10.7 10.12 9.57

CSCM 5 4.75 4.5 4.25

ΠA1 5.65 5.5 5.27 5.02

ΠB1 5.65 3.84 2.96 2.44

ΠO 20.83 19.88 18.91 17.97

ΠIM 22.56 21.39 20.25 19.14

ΠCM 20.05 19.01 18 17

TS0 26.86 27.13 24.88 23.94

TSIM 33.86 32.08 30.37 28.71

TSCM 25.07 23.77 22.5 21.27

n2 = 2 n2 = 3 n2 = 4 n2 = 5

2.64 2.66 2.62 -

2.64 2.46 2.43 -

5.28 5.12 5.05 -

1.65 1.27 1.07 -

10.63 11.12 11.3 -

11.28 10.7 10.12 -

5 4.75 4.5 -

6.32 6.41 6.25 -

6.32 4.22 3.28 -

22.6 21.5 20.5 -

22.6 21.4 20.25 -

20 19 18 -

33.22 32.66 31.8 -

33.84 32.08 30.04 -

27.07 23.77 22.5 -

Table 3: Impact of competition when �rms are heterogeneous and competition decreases
quality.
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