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Abstract

This paper estimates Taylor rules featuring instabilities in pol-

icy parameters, switches in policy shocks�volatility, and time-varying

trend in�ation using post-WWII U.S. data. The model embedding the

stochastic target performs better in terms of data-�t and identi�ca-

tion of the changes in the FOMC�s chairmanships. Policy breaks are

found not to be synchronized with variations in policy shocks�volatil-

ities. Finally, we detect a negative correlation between systematic

monetary policy aggressiveness and in�ation gap persistence.
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1 Introduction

Taylor rules are often employed to track the U.S. monetary policy behav-

ior (Taylor (1993)). This paper describes the post-WWII Federal Reserve�s

conduct with a �exible simple rule in which policy parameters are free to

switch between states, policy shocks are heteroskedastic, and trend in�ation

is stochastic.1 We pay particular attention to this last object. According to

Cogley, Primiceri, and Sargent (2009), trend in�ation is the single most im-

portant factor behind the U.S. in�ation dynamics. We then aim at assessing

the role played by the low frequency component of in�ation in the estimation

of the dating of the policy shifts, as well as in the investigation of the rela-

tionship between policy regimes and in�ation persistence. To our knowledge,

this is the �rst contribution dealing with a drifting trend in�ation process

jointly with systematic policy shifts and policy shocks�heteroskedasticity.

We �nd evidence supporting policy switches and time variation in the

estimated in�ation target. Crucially, the timing of the switches in the sys-

tematic policy conduct is sensitive to the de�nition of the in�ation gap (the

di¤erence between raw and trend in�ation) policymakers are assumed to re-

act to. In particular, a constant in�ation target leads to underestimate the

length of the regimes during which the Fed has actively tackled in�ation (gap)

oscillations.2 Moreover, in presence of a passive regime, the model with a

1In this paper we will use the terms "time-varying trend in�ation" and "trend-in�ation"
as synonymous. Ascari (2004) coined the term "trend in�ation" to indicate a strictly
positive level of steady state in�ation around which to approximate �rms�non-linear price-
setting �rst order condition. For a related theoretical investigation on the role played by
trend in�ation in a new-Keynesian framework, see Yun (2005).

2Following Leeper (1991), "active" ("passive") monetary policy refers to a policy that
adjusts the nominal interest rate more (less) than one-to-one with movements in in�ation.
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constant in�ation target indicates a systematic reaction in line with previous

�ndings (see Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide

(2004), among others). However, when embedding trend in�ation in the

model, such a reaction gets downsized. This indicates that models with a

constant in�ation target may underestimate the magnitude of the shift to-

wards a more hawkish policy, so possibly downplaying the relevance of "good

policy" as a driver of the U.S. great moderation.

Interestingly, the model with trend in�ation appears to capture the his-

torical changes in the Fed�s chairmanship more precisely than its restricted

�xed-target counterpart. Regarding the timing issue, shifts in the system-

atic monetary policy conduct are found not to be synchronized with the

shifts in the volatility of the monetary policy shocks. This result suggests

that the popular "pre- vs. post-Volcker" working hypothesis, often employed

to interpret the post-WWII U.S. in�ation swings, may o¤er a misleading

(or, at least, incomplete) picture of the di¤erent phases characterizing the

Fed�s monetary policy conduct. Finally, we �nd a regime-dependent inverse

correlation between the systematic monetary policy aggressiveness and the

persistence of the in�ation gap.

A string of papers has already dealt with instabilities in the U.S. mone-

tary policy rule along several dimensions. Clarida, Gali, and Gertler (2000),

Lubik and Schorfheide (2004), Boivin and Giannoni (2006), and Mavroei-

dis (2009) document breaks in the Federal Reserve�s systematic reaction to

in�ation. Elaborating on this hypothesis, Benati and Surico (2009) and Lu-

bik and Surico (2008) show that a small AD/AS model is able to replicate

the great moderation given a policy break in the late 1970s. With a simi-

lar strategy, Benati and Surico (2008) mimic the reduction in in�ation pre-

dictability occurred since 1985 as documented by, among others, Stock and

Watson (2007) and D�Agostino, Giannone, and Surico (2006). Castelnuovo

and Surico (2009) employ such a policy switch to interpret the instability

in the estimated in�ation response to a monetary policy shock in standard
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VARs. Ireland (2007), Stock and Watson (2007), and Cogley and Sbordone

(2008) lend support to time-varying trend in�ation. Using di¤erent tech-

niques, Schorfheide (2005), Sims and Zha (2006), Liu, Waggoner, and Zha

(2007), and Justiniano and Primiceri (2008) support the relevance of shocks�

heteroskedasticity to explain the U.S. macroeconomic dynamics. Most of

these papers deal with one out of the three possibly relevant ingredients

(systematic regime shifts, policy shocks�heteroskedasticity, trend in�ation)

we consider in our analysis.

Another group of contributions is very closely related to our investiga-

tion. Bianchi (2009) and Davig and Doh (2009) �nd evidence in favor of

recurrent regime-switches in the systematic policy conduct and the volatility

of policy innovations with Markov-Switching DSGE models. However, they

assume the in�ation target to be �xed in the entire post-WWII period, so

falling short of modeling the low frequency evolution of in�ation. Cogley,

Primiceri, and Sargent (2009) �t multivariate VARs with drifting coe¢ cients

and stochastic volatility to a handful of macroeconomic post-WWII U.S. se-

ries, and establish that the predictability of the in�ation gap has evolved

over time and has fallen in the great moderation period. Then, they esti-

mate a new-Keynesian framework over di¤erent, predetermined subsamples,

and �nd the enhanced stability of the Fed�s in�ation target as the single

most important factor behind the reductions in the in�ation gap volatility

and persistence. Di¤erently, we are agnostic as regards the timing of the

policy breaks, and let the data free to speak along this dimension. With

respect to these contributions, we deal with a partial equilibrium approach,

which admittedly misses to exploit possibly informative cross-equation re-

strictions, but it is obviously more robust to model misspeci�cation. Sims

and Zha (2006) and Davig and Leeper (2006a) also perform single-equation

estimations, and �nd evidence in favor of regime-switches and heteroskedastic

monetary policy shocks.3 Again, while they assume a stable in�ation target,

3Notably, Sims and Zha (2006) �nd that their best �tting model displays no changes
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we uncover the role played by trend in�ation in these empirical exercises.

Schorfheide (2005) �nds evidence in favor of a switching in�ation target in

the context of a small scale macroeconomic model. Liu, Waggoner, and Zha

(2007) embed Schorfheide�s (2005) in�ation target process in a medium scale

model featuring heteroskedastic macroeconomic shocks, and �nd support for

a constant trend in�ation target over the post-WWII period. Di¤erently, we

focus on a drifting in�ation target process as the one analyzed by Ireland

(2007), Stock and Watson (2007), Cogley and Sbordone (2008), and Cogley,

Primiceri, and Sargent (2009).

Before moving to our analysis, one caveat is in order. Ascari and Ropele

(2009) show that under trend in�ation a "modi�ed Taylor principle" may

apply, since a more aggressive systematic response to in�ation �uctuations is

needed to induce equilibrium uniqueness.4 This implies that, in conducting

our empirical exercise, we run the risk to label as - say - "active" a policy that,

in Ascari and Ropele�s (2009) framework, would possibly lead to multiple

equilibria. However, this does not harm our evidence in favor of an unstable

systematic monetary policy. Moreover, while being theoretically sound, the

quanti�cation of the impact of trend in�ation on the indeterminacy region

in Ascari and Ropele�s (2009) framework has still to be established.5

The structure of the paper reads as follows. The next Section presents

the regime-switching models we estimate. Section 3 proposes and discusses

our empirical �ndings. Section 4 concludes.

in the policy rule coe¢ cients and heteroskedastic policy shocks. Nevertheless, they cannot
reject models with an unstable policy rule on the basis of marginal likelihood comparisons.

4In presence of trend in�ation, the aggregate price index displays an upward trend.
Then, �rms able to reoptimize i) set higher prices and ii) assign a larger weight on expected
- relative to current - realizations of the business cycle to avoid the erosion of relative prices
and real pro�ts. This �attens the Phillips curve and induces an increase in the sacri�ce
ratio. Consequently, a widening of the indeterminacy territory occurs.

5The investigation on this issue is left to future research.
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2 Model and estimation strategy

2.1 Model

We consider a Markov-Switching model (Hamilton (1989)) characterized by

two latent processes, S1 = fS1;t; t = 1; :::; Tg and S2 = fS2;t; t = 1; :::; Tg,
which identify the relevant states regarding, respectively, policy conduct and

conditional variances of the model�s shocks. Our empirical model reads as

follows:

it = (1� �S1;t)(r + �t + �S1;tzt + �S1;tyt) + �S1;tit�1 + �S2;t (1)

��t = (1� ��)�LR + ����t�1 + �S2;t (2)

�t = ��t + zt (3)

zt = �S1;tzt�1 + �S2;t (4)

�S2;t � N (0; �2�S2;t); �S2;t � N (0; �
2
�S2;t

); �S2;t � N (0; �
2
�S2;t

) (5)

where i is the short-term nominal interest rate, � is the in�ation rate,

y is the output gap, r is the unknown long-run real interest rate, �� is

the unobservable (possibly) time-varying in�ation target, z = � � �� is
the in�ation gap. In particular, S1 and S2 are de�ned as two independent

binary Markov chains with transition probabilities from state i to state j

Pr[Sk;t = i j Sk;t�1 = j] = pk;ij, k 2 f1; 2g, and i; j 2 f0; 1g.

We relax the original Taylor rule along di¤erent dimensions. First, we al-

low (but do not necessarily require) policy parameters to be state-dependent.

In particular, in the light of the instability of the U.S. monetary policy con-

duct documented by several empirical investigations, we enable the "Taylor

parameter" � as well as the remaining policy parameters � and � to switch

between the two states. Second, we assume the time-varying in�ation target

to follow the autoregressive process (2), whose persistence is captured by the

parameter �� and whose unconditional mean is �
LR.6 We interpret ��t as

6We assume the variances of the "standard" monetary policy shock and the time-
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trend in�ation underlying the Fed�s policy stance conditional on its under-

standing of the monetary policy transmission mechanism. By contrast, the

long-run in�ation �LR is meant to be consistent with long-run goals such as

sustainable growth and employment. We assume the in�ation gap process

zt to follow the autoregressive process (4). This enables us to estimate the

persistence of the in�ation gap, which is the relevant policy objective (as op-

posed to raw in�ation) in presence of a drifting in�ation target. Consistently,

we allow the persistence parameter �S1 to be regime-dependent. Finally, we

assume shocks to monetary policy, trend in�ation, and the in�ation gap to be

heteroskedastic, mutually uncorrelated independently distributed martingale

di¤erences.

2.2 Estimation strategy

We estimate our model with Bayesian techniques by implementing an e¢ cient

Markov Chain Monte Carlo (MCMC) strategy through the Gibbs sampler.7

To deal with identi�cation issues related to "label-switching" (Hamilton,

Waggoner, and Zha (2007)), we impose some constraints on the parameters�

space. In particular, the "Taylor principle" asserts that monetary authorities

can stabilize the economy by moving the policy rate more than one-to-one

in response to in�ation swings. As in the original rule (Taylor (1993)), eq.

(1) has a built-in one-to-one reaction due to the "Fisher relationship" com-

ponent.8 We then impose �S1=0 > 0 > �S1=1, i.e. we represent "active"

varying in�ation target to be related to the Markov chain S2;t. In fact, one may instead
interpret them as "policy-related" innovations. Further exercises, not shown for the sake
of brevity but available upon request, con�rm the robustness of our results to linking such
shocks to the chain S1;t.

7We con�ne the details of our estimation algorithm to a Technical Appendix, which is
available upon request. A comprehensive review on MCMC methods for regime-switching
models may be found in Frühwirth-Schnatter (2006).

8It is straightforward to rewrite the Taylor rule (1) in the following (somewhat more
conventional) version: it = (1 � �S1t)(
S1t + e�S1t�t + �S1tyt) + �Stit�1 + �S2;t where

S1t � r � �S1t��t , e�S1t � 1 + �S1t . When conditioning to a single state, Woodford
(2003) shows that the systematic monetary policy reaction to in�ation required to pin
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systematic monetary policy with �S1=0 . Following Cogley, Primiceri, and

Sargent (2009), we also assume a lower mean of the in�ation gap persistence

in correspondence to a tighter systematic policy. Consistently, we employ the

priors �S1=0 � N (0:4; 0:1) and �S1=1 � N (0:6; 0:1). Notice that, these priors
notwithstanding, the data are left free to speak as regards the relationship

between policy conduct and the in�ation gap persistence. As for the second

chain, we impose �2�S2=0 > �
2
�S2=1

(again, to avoid label switching).

Importantly, we do not take any a-priori stand on the timing of any of

the switches we model. When investigating parameter instabilities with �xed

coe¢ cient-models, researchers typically split the U.S. samples at dates cor-

responding to the beginning of Paul Volcker�s FOMC chairmanship or the

great moderation. This choice is somewhat "natural" and clearly based on

historical events. However, it has some drawbacks. First, it rules out the

possibility of regime switches possibly occurred in the 1960s and during the

great moderation. Second, it forces policy parameters and volatility shocks

to switch contemporaneously. A sample-splitting strategy implemented with

�xed coe¢ cients is, by construction, ill-suited to study this situation. By

contrast, with our approach, which allows policy parameters and shocks to

independently shift over time, we are well-equipped to detect heteroskedas-

ticity in the policy shocks within an active systematic policy regime.

We focus on two di¤erent policy rules. Our more �exible model allows

the in�ation target to follow the process (2). To appreciate the contribution

of such stochastic process in our regime-switching context, we also estimate

down a unique equilibrium in a new-Keynesian framework, i.e. the "Taylor principle", ise�S1t > 1� (1� �)�St=�, where � is �rms�discount factor and � is the slope of the Phillips
curve. Notably, if policymakers�reaction to business cycle �uctuations �St > 0, a value
of e�S1t lower than one (i.e. a value of �S1t lower than zero) can still be consistent with
a unique equilibrium. Therefore, the set of constraints we impose to identify the states
might induce an overestimation of the "passive" monetary policy phases. We performed an
ex-post check based on our estimated �S1t and �St and conditional to � = 0:99 and � = 0:1
(a calibration widely adopted in the literature), and veri�ed that such overestimation does
not occur, i.e. the "passive" states we obtain remain unchanged when considering the
exact Woodford�s (2003) uniqueness condition.

8



a version of the model conditional on a �xed in�ation target, i.e. ��t = �
LR

at all times. We �t these two models to U.S. quarterly data spanning the

sample 1955:I-2007:II.9

3 Empirical evidence

3.1 Trend in�ation

Figure 1 displays the U.S. in�ation rate along with our two di¤erent esti-

mated in�ation targets in the post-WWII period. The estimate (posterior

mean) of the �xed in�ation target is 2.09%. A very di¤erent picture emerges

when allowing the target to vary over time. The minimum value is estimated

to be 1.12 in 1962:II, a phase during which in�ation was well under control.

Not surprisingly, the highest estimate for trend in�ation falls in 1980:IV, at

the end of the in�ation drift occurred in the 1970s and just before the dra-

matic disin�ation of the early 1980s. In �rst approximation, trend in�ation

oscillates around a relatively moderate value during the mid-1950s up to mid-

1960s, then it drifts up in correlation with raw in�ation, somewhat stabilizes

around a new mean value in the second part of the 1970s, dramatically falls

at the beginning of the 1980s, and �nally stabilizes during the great mod-

eration. Our estimated in�ation target is very close to the one proposed by

Ireland (2007) and Stock and Watson (2007), belongs to the 90% credible set

put forth by Cogley and Sbordone (2008), and it is in line - at least, in �rst

approximation - with the latent factor identi�ed by Cogley, Primiceri, and

Sargent (2009).

9We retrieved the short-term policy rate (e¤ective federal funds rate), the seasonally
adjusted real GDP level Yt, the estimate of the potential output made by the Congressional
Budget O¢ ce Y �t , and the seasonally adjusted GDP de�ator Pt from the Federal Reserve
Bank of St. Louis�website. Quarterly observations of the federal funds rate were obtained
by averaging monthly observations. The output gap was computed as the percentualized
log-deviation of the real GDP from its potential level, i.e. yt � 100 log(Yt=Y

�
t ). The

in�ation rate was calculated as the quarter-by-quarter annualized growth rate of the GDP
de�ator, i.e. �t � 400 log(Pt=Pt�1).
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3.2 Estimated coe¢ cients and policy shifts: Model com-
parison

Table 1 reports the posterior mean estimates - along with the [5th; 95th]

percentiles - of our policy rules. Several considerations are in order.

First, in presence of a �xed in�ation target, the estimated Taylor rule

parameters under the active and passive regime line up with those proposed

in the literature.10 By contrast, we observe a dramatic fall in the Taylor

parameter under passive monetary policy when trend in�ation is stochastic.

The in�ation reaction is basically halved with respect to that estimated

under the �xed in�ation target assumption, i.e. it moves from 0:79 to 0:35, a

value much lower than those proposed in the literature. Interestingly, under

the active monetary policy regime the posterior mean of the Taylor parameter

is quite comparable between models in terms of magnitude. Consequently,

the presence of a time-varying in�ation target appears to augment the di¤er-

ence between the reactions to in�ation in the two regimes. Notably, Cogley,

Primiceri, and Sargent (2009) �nd a much larger value of � when focusing on

the 1970s. The di¤erence between their results and ours is likely to be due to

their choice of performing full-system estimations conditional to equilibrium

uniqueness, a choice that forces the parameter � to assume values satisfying

the Taylor principle.

Moving to the remaining parameters, the policy reaction to business cycle

oscillations is clearly larger than zero, and the policy moves are implemented

with substantial gradualism. The persistence of the in�ation target is large,

with an estimated posterior mean of �� equal to 0:97, i.e. a process close to

the random walk employed by Ireland (2007), Cogley and Sbordone (2008),

Stock andWatson (2007), and Cogley, Primiceri, and Sargent (2009).11 Mon-

etary policy shocks and shocks to the in�ation gap are clearly heteroskedastic.

10See Clarida, Gali, and Gertler (2000), Table II page 157; Lubik and Schorfheide (2004),
Table 3 (�rst and third columns), page 206.
11Consequently, the impact of the long run target �LR on the estimated trend in�ation

is de facto negligible.
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Also trend in�ation shocks turn out to be heteroskedastic, thus corroborating

the evidence recently put forth by Cogley, Primiceri, and Sargent (2009).

Second, our dating of the active/passive regimes displays several depar-

tures with respect to the "pre- vs. post-Volcker appointment" reading of the

post-WWII U.S. in�ation dynamics. Figure 2 - top panel - plots the evolution

of the probability of being in an active monetary policy regime. While the

1970s are clearly associated to a passive monetary policy regime, the 1960s

are actually related to an active systematic policy conduct. The 1980s and

1990s are also characterized by switches in the policy stance. In particular,

the 1991 recession is clearly pin-pointed as a phase in which the Fed acted

passively.

Third, Figure 2 - top panel - reveals relevant di¤erences in the dating

suggested by the �xed vs. trend in�ation target models. In particular, the

former suggests a switch towards an aggressive monetary policy in 1983:I,

temporally well over the beginning of Paul Volcker�s chairmanship in August

1979. By contrast, the trend in�ation model suggests a shift to active policy

in 1980:IV, shortly after Volcker�s appointment. Going back in time, on Feb-

ruary 1970, Burns was appointed by Richard Nixon as chairman of the Fed.

As stressed by Bianchi (2009), Burns is typically regarded as responsible for

the great in�ation drift of the 1970s, possibly due to political pressures com-

ing from the White House. Our trend in�ation model dates the switch from

active to passive monetary policy in 1969:II, very close to Burns�appoint-

ment. By contrast, the �xed target model clearly anticipates such event, with

a dating suggesting 1968:I. As regards the 1991 recession, the trend in�ation

model identi�es more precisely such an event, suggesting a passive policy

in correspondence to the subsample 1989:III-1993:III, much shorter than the

1987:IV-1994:I implied by the �xed target model. The passive conduct might

be interpreted in the light of possible fears for future de�ation and economic

recession leading the Fed to loosen systematic monetary policy so to in�uence

agents�expectations. In general, the model with a constant in�ation target
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appears to underestimate the length of the subsamples in which the Fed has

actively fought in�ation swings.

Importantly, the superiority of the trend in�ation model is given formal

statistical support. We compute the marginal likelihood via the method

developed by Chib and Jeliazkov (2001).12 This method combines a sequence

of reduced runs of the MCMC algorithm, performed to evaluate the posterior

distributions of the parameters, with a particle �lter step, used to compute

the likelihood function (see Doucet, de Freitas, and Gordon (2001) for a

review of the literature). Our marginal likelihood-based comparison, engaged

on the basis of the �gures reported in Table 1 (last row), suggests a di¤erence

of about 22 log-points. In the language of Kass and Raftery (1995), this is

"very strong" evidence in favor of time-varying trend in�ation.

Fourth, our posterior probabilities provide evidence against contempo-

raneous instabilities in the systematic monetary policy vs. policy shocks�

volatility. In particular, Figure 2 shows that the recession occurred at the

beginning of the 1960s correlates with a passive monetary policy conduct

featured by low volatile policy shocks. By contrast, the two recessions in

the 1970s are associated to passive monetary policy / high policy shocks,

an evidence consistent with the high in�ation and output volatilities in the

1970s according to standard AD/AS models. Another interesting asynchrony

emerges when looking at the 2001 recession, which occurred in the aftermath

of the �dot-com�bubble burst. In fact, we �nd no systematic policy switch,

a result we interpret as the Fed�s attempt to stabilize in�ation expectations.

However, there is evidence of a switch towards high policy shocks�volatility.

Notably, this is a very di¤erent situation with respect to the systematically

passive monetary policy that occurred in the 1970s.

The di¤erence in these two latter policy conducts (i.e. active monetary

policy with high policy shocks vs. passive monetary policy) may be bet-

12A detailed explanation of our algorithm is presented in a Technical Appendix available
upon request.
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ter appreciated when thinking of a regime-contingent Taylor rule coupled

with a standard linearized new-Keynesian AD/AS framework. Working on

the standard hypothesis of rational expectations formed on the basis of the

policy regime in place, a systematically active monetary policy is able to

anchor in�ation expectations no matter what the volatility of the (white

noise) policy shock is. Consequently, if a linearized model returns a reliable

approximation of the U.S. economic dynamics, one may interpret the 2001

episode as a reaction to the stock market crash leading to a temporary de-

viation with respect to the Taylor rate conditional on a long-run reaction

Taylor parameter satisfying the Taylor principle. Of course, a higher-order

of approximation of the new-Keynesian framework would acknowledge the

role of second moments (namely, switches in the policy shock volatilities)

in in�uencing agents�expectations. To our knowledge, the e¤ects of policy

switches and heteroskedasticity in a non-linear monetary policy framework

are still to be explored.

Finally, we �nd statistical evidence in favor of the two-chain set up as

opposed to the single chain framework. When conditioning to a single chain

S1 = S2= S, we obtain marginal likelihoods reading �466:81 for the trend
in�ation model, and �467:79 for the �xed target framework, i.e much worse
than �432:62, which is the marginal likelihood of our best model. Again, our
model embedding the stochastic in�ation target turns out to be statistically

superior. More importantly, the comparison between the two models with

trend in�ation substantially favors the more �exible two-chain framework,

with a di¤erence in terms of log-points of the marginal likelihood of about

34. This result corroborates Bianchi�s (2009) and Davig and Doh�s (2009)

�ndings on the relevance of modeling di¤erent chains for policy parameters

and policy shocks, and casts doubts on the standard "pre- vs. post-Volcker"

interpretation of the post-WWII U.S. monetary policy conduct.
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3.3 In�ation gap persistence

In the light of our empirical evidence, the evolution of the in�ation gap is of

great interest from a policy standpoint. Figure 3 displays the scatter plot of

the realizations of �S1 occurring under the passive monetary policy regime

against those obtained under the more aggressive one.13 Pairs located near

the 45 degree line indicate constant persistence between the two regimes.

By contrast, pairs clustered below the 45-degree line represent a decrease in

persistence in correspondence to a systematic policy switch towards active

monetary policy.

The in�ation gap persistence turns out to be substantially lower in cor-

respondence to an active monetary policy. As much as 96:59% of the pairs

are located below the 45-degree line. The percentages collected by Table 2,

and computed on the basis of di¤erent thresholds (that basically shift the

line downward), suggest a remarkable drop in the in�ation gap persistence

in correspondence to a switch towards a more aggressive systematic mone-

tary policy. In terms of posterior means, the in�ation gap persistence falls

from �S1=1 = 0:55 to �S1=0 = 0:25. These �gures corroborate some recent

evidence put forward by Cogley and Sbordone (2008) and Cogley, Primiceri,

and Sargent (2009), are similar to the in�ation gap�s normalized spectrum at

zero frequency (median values) proposed by Benati and Surico (2008), and

support their �ndings on the negative correlation between monetary pol-

icy aggressiveness and the persistence of the in�ation gap. Di¤erently from

these contributions, our result is obtained by considering subsamples iden-

ti�ed with a data-driven procedure, which limits the weight of subjective a

priori assumptions on the timing of the regime shifts.

13These scatter-plots are constructed by employing 25,000 draws from our empirical
posterior densities.
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4 Conclusions

This paper estimates regime-switching Taylor rules with trend in�ation for

the post-WWII U.S. economy. We �nd evidence in favor of regime shifts,

monetary policy shocks heteroskedasticity, and time-variation of the in�a-

tion target. Policy breaks are found not to be synchronized with variations

in policy shocks�volatilities. Importantly, the estimated Taylor rule parame-

ters and regime switches are sensitive to the choice of the in�ation de�nition

entering the Taylor rule. In particular, a framework embedding an in�ation

gap modeled with a stochastic trend in�ation process returns a representa-

tion of the Fed�s policy conduct closer to historical events (as opposed to

that suggested by a �xed in�ation target rule). Interestingly from a policy

standpoint, we �nd that a more aggressive systematic policy is associated

to a lower in�ation gap persistence. We also �nd evidence of "temporary"

deviations from the Taylor rate conditional on active systematic policy, i.e.

situations in which highly volatile policy shocks are consistent with the Fed

meeting the standard Taylor principle. Possibly, this last �nding calls for the

employment of non-linear models to assess the impact of such highly volatile

policy shocks on private sector�s in�ation expectations.

Our �ndings o¤er support to four quite exciting lines of research. The �rst

regards the estimation of DSGE models with regime switching techniques.

Given the instability we found in the U.S. policy rule, two issues are in order.

First, how to solve the model in which agents are endowed with a density

over future possible policy outcomes? Second, how do models embedding

this ingredient square with the data? Theoretical contributions by Davig

and Leeper (2007), Davig and Leeper (2009), Farmer, Waggoner, and Zha

(2008), and Farmer, Waggoner, and Zha (2009),14 and empirical endeavors

by Bianchi (2009) and Davig and Doh (2009) o¤er �rst answers to these

questions.

14Further considerations on this issue are proposed by Zha (2010).
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The second research line refers to the empirical role played by the time-

varying in�ation target. Our exercise shows that the use of a stochastic

process for trend in�ation like the one in Ireland (2007), Cogley and Sbordone

(2008), Stock and Watson (2007), and Cogley, Primiceri, and Sargent (2009),

leads to a Taylor rule enjoying a superior �t of the data. This moves the

attention from raw in�ation to the in�ation gap as the relevant policy object.

First investigations on its properties - mainly, its persistence - have been

performed by Cogley and Sbordone (2008), Benati and Surico (2008), and

Cogley, Primiceri, and Sargent (2009).

Third, it is key to understand why the in�ation target evolved over time.

Imperfect knowledge of the economic structure leading to a changing per-

ception of the in�ation-output trade-o¤ by the Fed is one of the candidate

explanations. Interesting e¤orts in this direction have already been under-

taken by Cogley and Sargent (2005b), Primiceri (2006), Sargent, Williams,

and Zha (2006), and Carboni and Ellison (2009).

Finally, once established that the time-varying in�ation target is an im-

portant ingredient to describe the U.S. in�ation rise and fall in the post-

WWII U.S. in�ation, the switch from the positive to the normative stand-

point appears to be warranted. How should monetary policy be conducted in

presence of trend in�ation? Interesting �rst attempts to tackle this issue are

Ascari and Ropele (2007) and Ascari and Ropele (2009), but more research

in this largely unexplored territory is clearly needed.
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Figure 1: Raw In�ation Rate and Estimated Trend In�ation.
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Figure 2: Fixed In�ation Target vs. Trend In�ation: Estimated
Probabilities. Description of the models provided in the text. Smoothed
estimates of the probability of being in the �active�monetary policy regime
(upper panel) and in the �high�volatility regime (lower panel). Grey vertical
bars identify NBER recessions, red vertical bars identify Fed�s chairmanships.
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Param: Prior Fixed Target Time-Var. Target
r N (2:0; 1:0) 3:07

[2:19;3:88]
2:95

[1:99;3:76]

1 + �S1=0 N (1:7; 0:1)I[1;5] 1:69
[1:12;2:30]

1:67
[1:14;2:28]

1 + �S1=1 N (0:7; 0:1)I[0;1] 0:79
[0:47;0:99]

0:35
[0:01;0:88]

�S1=0 N (0:25; 0:15) 0:50
[0:05;0:95]

0:57
[0:09;0:96]

�S1=1 N (0:25; 0:15) 0:84
[0:46;0:99]

0:86
[0:56;0:99]

�S1=0 N (0:8; 1:0) 0:96
[0:92;0:99]

0:94
[0:90;0:97]

�S1=1 N (0:8; 1:0) 0:85
[0:77;0:91]

0:74
[0:52;0:88]

�2�S2=0 IG(2:5; 0:75) 1:76
[1:23;2:554]

1:80
[1:22;2:68]

�2�S2=1 IG(2:5; 0:75) 0:11
[0:08;0:16]

0:11
[0:07;0:16]

�LR N (2:0; 0:075) 2:09
[1:78;2:36]

2:03
[1:74;2:33]

�� N (0:9; 0:1) � 0:97
[0:92;0:99]

�2�S2=0 IG(2:5; 0:75) � 0:63
[0:20;1:60]

�2�S2=1 IG(2:5; 0:75) � 0:18
[0:09;0:32]

�S1=0 N (0:4; 0:01) 0:42
[0:25;0:61]

0:25
[0:07;0:45]

�S1=1 N (0:6; 0:01) 0:87
[0:79;0:95]

0:55
[0:33;0:78]

�2�S2=0 IG(2:5; 0:75) 2:76
[1:96;3:91]

1:66
[0:71;2:71]

�2�S2=1 IG(2:5; 0:75) 0:68
[0:49;0:95]

0:45
[0:27;0:74]

p01;S1 Beta(5; 95) 0:05
[0:02;0:09]

0:05
[0:02;0:09]

p01;S1 Beta(5; 95) 0:05
[0:02;0:08]

0:06
[0:02;0:10]

p01;S2 Beta(5; 95) 0:06
[0:03;0:10]

0:06
[0:03;0:10]

p01;S2 Beta(5; 95) 0:05
[0:02;0:08]

0:04
[0:02;0:07]

log(ML) � �454:87 �432:62

Table 1: Estimated Monetary Policy Rules: Fixed vs. Time-Varying
In�ation Target. Figures reported in the Table are posterior means;
[5th,95th] percentiles of the simulated posteriors in squared brackets. Mo-
ments of the priors generally report the mean and standard deviation of the
density in brackets, with the exception of the Beta priors for the switch-
ing probabilities, which are de�ned by their shape parameters. Log Marginal
data density computed using the output of the MCMC simulators. The model
favored by the data attains the highest marginal data density. Description of
the di¤erent models: See Figure 1. Details on estimation procedure reported
in the text.
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Figure 3: In�ation Gap Persistence: Scatter Plots. Figure scatter-
plotting realizations of the persistence parameter, x-axis: Passive monetary
policy vs. y-axis: Active monetary policy. Pairs constructed by drawing
25,000 realizations from the estimated posterior densities.

�S1=0 < �S1=1 � k;%
k = 0:05 93:78
k = 0:10 89:43
k = 0:20 74:06

Table 2: In�ation Gap Persistence, Joint Density: Probabilities.
Furher explanations on the statistics reported in the table are detailed in the
text.
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Technical Appendix

1 MCMC methodology

In the following, we describe our inferential solution for the model

it = (1− ρS1,t)[r̄ + πt + αS1,tzt + βS1,tyt] + ρS1,tit−1 + εS2,t (1)

π∗t = (1− ρπ)πLR + ρππ∗t−1 + ξS2,t (2)

πt = π∗t + zt (3)

zt = φS1,tzt−1 + ηS2,t (4)

εS2,t ∼ N (0, σ2
εS2,t), ξS2,t ∼ N (0, σ2

ξS2,t), ηS2,t ∼ N (0, σ2
ηS2,t) (5)

In particular S1,t, S2,t are the unobservable two-state first order Markov

chains with transition probability matrix Π = {pk,ij} , k ∈ {1, 2} , i, j ∈
{0, 1}.

The goal of the inferential procedure is to estimate the latent switch-

ing regimes processes Sk = {Sk,t, t = 1, . . . , T}, the unobservable inflation

target π∗ = {π∗t , t = 1, . . . , T} and the parameters θ. The observed in-

terest rate is denoted by I = {it, t = 1, . . . , T}, while X = (π,y), where

π = {πt, t = 1, . . . , T} is the inflation rate and y = {yt, t = 1, . . . , T} is the

output gap.

Since for non-linear latent factor models the likelihood function is not

available in closed form, inference has to be based on approximations or
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numerical evaluations. Markov Chain Monte Carlo (MCMC) basically avoids

the need to directly computing the likelihood function that is expressed in

terms of a highly multivariate integral. The basic idea behind MCMC is

to build a Markov chain transition kernel starting from a given initial point

and with limiting invariant distribution equal to the posterior distribution of

the quantities of interest. Under suitable conditions (see Robert and Casella,

1999, ch. 6-7), such a transition kernel converges in distribution to the target

posterior density. In practice, the chain is updated to a new position by first

simulating from a given proposal distribution, then by eventually accepting

the move.

In our framework, given the starting vector (θ(0),S
(0)
1 ,S

(0)
2 ,π∗ (0)) we sim-

ulate through MCMC the trajectory of the Markov chain {θ(j),S(j),S
(j)
2 ,π∗ (j), j =

1, . . . , n} whose draws converge to the posterior distribution p(θ,S1,S2,π
∗|I,X).

Once convergence is achieved, inference can be based on the serially depen-

dent sample generated. More precisely, estimates of the latent factors and of

the posterior mean of θ are given respectively by averaging over the realiza-

tion of the chain, i.e., P̂ r[Sk,t = 1|I,X] = n−1
∑n

j=1 S
(j)
k,t , π̂∗t = n−1

∑n
j=1 π

∗(j)
t

and θ̂ = n−1
∑n

j=1 θ(j). To account for serial correlation in the draws, we

estimated the numerical standard error of the sample posterior mean using

the approach implemented in Kim, Shephard, and Chib (1998). MCMC for

switching regime ARMA models have been introduced in Albert and Chib

(1993) and in McCulloch and Tsay (1993) whereas their inferential approach

have been successively generalized in Billio, Monfort, and Robert (1999)

and in Kim and Nelson (1999). In particular Frühwirth-Schnatter (2001)

proposed an MCMC based solution to address for the parameters identifi-
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cation problems related to the switching regime models (see also Frühwirth-

Schnatter, 2006 for a comprehensive treatment of this topic).

Moving the whole vector (θ,S1,S2, π
∗) in block can be inefficient, since

it is highly multivariate. We implement our MCMC strategy through the

Gibbs sampler, an algorithm that efficiently simulates each element or block

of (θ,S1,S2,π
∗) in turn from its full conditional distribution, i.e., the distri-

bution conditioned on the data and the remaining components of the vector.

In this case the acceptance probability of moving each sub-block of the vec-

tor is 1. As suggested in Shephard (1994) and Carter and Kohn (1994)

amongst others, updating the whole latent process Sk in block from its joint

distribution given the data and the other parameters should reduce the au-

tocorrelation between states and then speed up the convergence of the chain

to its invariant distribution.

To take care of the regime switches, we provide an efficient algorithm

based on the multi-move Gibbs sampler proposed in Chib (1996) to update

the states S1,t and S2,t, t = 1, . . . , T , whereas we update the parameters and

the latent process π∗t one component at a time.

To simplify the notation, in the following we call θj the generic j -th

block1 of the vector θ = {θj, j = 1, . . . , J}, θ−j− = (θ1, . . . , θj−1) and θ−j+ =

(θj+1, . . . , θJ). We summarize the algorithm as follows:

1It is worth noting that a block of parameters can be a sub-vector of parameters or a
singleton.
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MCMC algorithm

• Initialize the chain at (θ(0),S
(0)
1 ,S

(0)
2 ,π∗ (0))

• At step j = 1, . . . , n

– Update θ one-at-a-time from the full conditional

p(θi|S(j−1)
1 , S

(j−1)
2 , π(j−1),θ

(j)

−i− , θ
(j−1)

−i+ , I,X) through the Gibbs

sampler algorithm;

– Draw (S
(j)
1,1, . . . , S

(j)
1,T ) in block from p(S1|S(j−1)

2 , θ(j),π(j−1), I, X);

– Draw (S
(j)
2,1, . . . , S

(j)
2,T ) in block from p(S2|π(j−1),θ(j),S

(j)
1 , I,X);

– Draw (π
∗ (j)
1 , . . . , π

∗ (j)
T ) one-at-a-time from the conditional

p(π∗t |S(j)
1 ,S

(j)
2 , π

∗ (j)
t−1 , π

∗ (j−1)
t+1 ,θ(j), I,X), through Gibbs sampler.

• j = j + 1

In the next subsections we describe the details of the algorithm.

1.1 Updating the parameters

The use of conjugate priors makes it straightforward to update θ. It is easy to

show that the conditional posteriors of σ2
ε,i, σ

2
ξ,i and σ2

η,i are Inverse Gamma,

pk,ij are Beta, whereas all the remaining parameters are Gaussian. Since the

full conditional distribution can be simulated directly, each sub-movement of

the chain is accepted with probability 1.

The main issue when estimating regime switching models is identifica-

tion, since the labeling of the states can be permuted without modifying
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the marginal likelihood. It is thus common in the literature to impose some

constraints on the parameters’ space. In particular, we find it useful to iden-

tify S2,t by imposing σ2
εS2=0 > σ2

εS2=1 and we implement it in our algorithm

through the permutation sampler of Frühwirth-Schnatter (2001). Further-

more, to identify the first regime S1,t we hypothesize:

(i) 0 < αS1=0 < 5 and −1 < αS1=1 < 0;

(ii) φS1=0 ∼ N (0.4, 0.1) and φS1=1 ∼ N (0.6, 0.1)

We notice that (i)-(ii) are informative to identify the two states. If for

instance we reverse the constraint, i.e. 0 < αS1=1 < 5 and −1 < αS1=0 < 0

we obtain the exact reverse labeling of the probability of being in S1.

1.2 Updating Sk

We update Sk = (Sk,1, . . . , Sk,T ) in block, moving the two vectors according

to the algorithm proposed in Chib (1996). In the following we focus on S1

since the procedure for S2 is in principle the same. To keep the notation

concise, we define a generic vector Sk,t1:t2 = (St1 , . . . , St2). The method

exploits the following decomposition

p(S1|π∗, I,X,S2,θ) = p(S1,T |π∗, I, X,S2, θ)
T−1∏
t=1

p(S1,t|π∗, I,X, S2,S1,t+1:T ,θ),

(6)

in which the generic term of the product is

p(S1,t|π∗, I,X,S1,t+1:T ,S2, θ) ∝ p(S1,t|I1:t,π
∗
1:t,X1:t, S2,1:t, θ)p(S1,t+1|S1,t,θ).

(7)
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In particular p(S1,t|I1:t,π
∗
1:t,X1:t, S2,1:t, θ) can be written as

p(S1,t|I1:t, π
∗
1:t, X1:t,S2,1:t,θ) ∝

p(S1,t|I1:t−1,π
∗
1:t−1,X1:t−1,S2,1:t−1,θ)p(it, πt, π

∗
t , S2,t|π∗

1:t−1, X1:t−1, S2,1:t−1,θ)

(8)

where

p(S1,t|I1:t−1, π
∗
1:t−1, X1:t−1, S2,1:t−1,θ) =

=
1∑

j=0

p(S1,t|S1,t−1 = j, θ)p(S1,t−1 = j|I1:t−1,π
∗
1:t−1,X1:t−1,S2,1:t−1,θ)

(9)

These two latter distributions can be numerically evaluated in a recursive

fashion by setting the distribution of the initial state S1,1 as the station-

ary distribution of the Markov chain, p(S1,1|θ). Once computed all these

quantities, S1,T is sampled from p(S1,T |π∗, I, X,S2, θ), that is a Binomial

random variable, while the remaining states can be directly simulated from

p(S1,t|π∗, I,X,S2, S1,t+1:T ,θ), starting from S1,T−1 until S1,1.

2 Marginal Likelihood computation

In Bayesian statistics it is common practice to use the marginal likelihood to

measure the goodness-of-fit. This quantity is defined as

m(I,X|M) =

=

∫
p(I,X|π∗,S1,S2, θ,M)p(π∗, S1,S2|θ,M)p(θ|M)dθdπ∗dS1dS2,

(10)
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where (M, θ) indicate a given model M and its parameters and p(θ|M)

are the prior distributions. In the following we suppress the model index

M for conciseness. Many techniques have been proposed in the literature to

evaluate the marginal likelihood. A review on some Monte Carlo alternatives

is given in Han and Carlin (2001). In many cases it is useful to recur to the

following decomposition

m(I, X) =
p(I,X|θ)p(θ)

p(θ|I,X)
, (11)

that is valid for each point θ on the parameter’ space. Since this ratio is not

dependent on the specific choice of θ, to compute the marginal likelihood is

sufficient to estimate the posterior p(θ|I,X) and the likelihood p(I, X|θ) at

a fixed point θ∗.

2.1 Computing the posterior distribution of θ at θ∗

The first problem is to estimate the posterior p(θ∗|I,X), that is computed

through the method proposed in Chib and Jeliazkov (2001) and is based on a

sequence of reduced run of the same MCMC algorithm used for the inference.

The method consists in dividing the parameters vector θ in blocks, and at

each step of the algorithm associate to the i -th block, a given value θ∗i . In

this way we split the vector into two parts, θ∗−i− and θ−i+ . The estimate of

the posterior at θ∗ is then given by

p̂(θ∗|I,X) =
J∏

i=1

p̂(θ∗i |I,X,θ∗−i−), (12)

where each factor p̂(θ∗i |I,X,θ∗−i−) can be computed as

p̂(θ∗i |I,X,θ∗−i−) =
1

M

M∑
j=1

p(θ∗i |I,X, π∗(j), S(j)
1 , S

(j)
2 ,θ∗−i− ,θ

(j)

−i+) (13)
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in which θ
(j)

−i+ , S
(j)
k and π∗(j) are M draws from the same MCMC algorithm

used for the inference but with (θ1, . . . , θi) fixed to (θ∗1, . . . , θ
∗
i ).

2.2 Computing the likelihood

The second issue is to compute p(I,X|θ∗). In fact, the likelihood function is

not known in closed form due to the presence of latent factors, and has to be

evaluated by integrating their effects out. Integration has been performed by

a particle filtering procedure (see Doucet, de Freitas, and Gordon, 2001 for a

detailed description on this topic). Particle filter algorithms provide a sub-

optimal but feasible solution to the Bayesian filtering problem. Consider the

general state-space model defined by the density p(xt|xt−1, θ) that describes

the evolution of the latent states xt and by p(wt|xt, θ) that specifies the

observable wt. Our goal is to estimate the distribution p(xt+1|w1:t+1,θ)

given p(xt|w1:t, θ) in which, as before, w1:t = (w1, . . . , wt) is the past history

of the observable process up to time t. We also require the knowledge of the

initial distribution p(x0|θ), of the transition distribution p(xt+1|xt, θ) t ≥ 0,

and of the measurement distribution p(wt+1|xt+1, θ), t ≥ 1. The key idea

is to approximate the filtering density p(xt+1|w1:t+1,θ) by a discrete cloud

of points called particles, x
(j)
t+1, j = 1, . . . , N , and a set of weights ω

(j)
t+1 as

follows

p̂(xt+1|w1:t+1, θ) =
N∑

j=1

ω
(j)
t+1δ(xt+1 − x

(j)
t+1), (14)

where δ(·) is the Dirac delta measure. The cloud of points at time t + 1 are

chosen by using the importance sampling principle, in which the importance
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density is q(xt+1|x(j)
t , wt) and the weights are

ω
(j)
t+1 ∝ ω

(j)
t

p(wt+1|xt+1, θ)p(x
(j)
t+1|x(j)

t ,θ)

q(x
(j)
t+1|x(j)

t , yt)
j = 1, . . . , N. (15)

In our context xt = (π∗t , S1,t, S2,t), whereas the observable vector at t is

wt = (it, πt, yt). The algorithm can be summarized as follows:

Particle filter algorithm

• At time t, given a weighted sample (π∗t , S1,t, S2,t, ωt)
(j) , j = 1, . . . , N

from p(π∗t , S1,t, S2,t|I1:t, X1:t,θ
∗)

– Draw (π∗t+1, S1,t+1, S2,t+1)
(j), j = 1, . . . , N from the importance

density, that in our case is p(π∗t+1, S1,t+1, S2,t+1|π∗ (j)
t , S

(j)
1,t , S

(j)
2,t ,θ

∗).

– Compute ω
(j)
t+1 using eq. (15).

– Store
(
π∗t+1, S1,t+1, S2,t+1, ωt+1

)(j)
, j = 1 . . . , N that provide an

approximation of p(π∗t+1, S1,t+1, S2,t+1|I1:t+1,X1:t+1,θ
∗);

• t=t+1

Once the states are filtered, it is easy to evaluate the likelihood by

p(I, X|θ∗) =
T∏

t=1

p̂(it, πt, yt|I1:t−1,X1:t−1,θ
∗) (16)

where p(it, πt, yt|I1:t−1,π1:t−1,θ
∗) can be estimated by integrating out the

latent processes through a Monte Carlo procedure, for instance by simu-

lating the state (S1,t, S2,t, π
∗
t ) from p(S1,t, S2,t, π

∗
t |(S1,t−1, S2,t−1, π

∗
t−1)

(j),θ∗),

j = 1, . . . , N and in which (S1,t−1, S2,t−1, π
∗
t−1)

(j) is the outcome of the filter-

ing procedure at time t− 1.
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