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Abstract

This paper revisits a well-known case of optimal fiscal policy in a Ramsey

model where consumer utility is defined over consumption and public goods.

We show that normalising the size of the population to one eliminates the

scope for active policy-making since the decentralised equilibrium coincides

with social planning. Then, we modify the model to allow for a population

of N > 1 agents, whereby restoring the role of the government as a policy-

maker. Both in the Stackelberg case and in the decentralised game, we prove

that optimal fiscal policy and consumption are not only time consistent but

also subgame perfect.
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1 Introduction

As is known from Simaan and Takayama (1973a,b) and Kydland (1977), the

open-loop solution of a Stackelberg differential game is generally affected

by time inconsistency. This has given rise to a wide stream of literature

on time (in)consistency and credibility of optimal fiscal and monetary policy,

starting with Kydland and Prescott (1977) and Calvo (1978), and continuing

with Barro and Gordon (1983a,b) and Lucas and Stokey (1983), to mention

only a few.1 The issue of time inconsistency lies entirely in the temptation

for the government or the central bank to renege initial (open-loop) plans

at any intermediate date and re-optimise their policy instruments given the

state of the economy at that date. Of course, the availability of a reliable

commitment technology would make the resulting open-loop policy plans

time consistent. The question is then, whether we may think that such a

commitment does indeed exist.

A way out of the time inconsistency problem is studied by Cohen and

Michel (1988), and - technically speaking - consists in finding the policy that

solves the Bellman equation of the policy maker, through the value function

approach. The resulting feedback policy rule is surely strongly time consis-

tent.2 Yet, one may argue that the amount of information needed to derive

1This line of research has been constantly pursued along several directions, up to a

recent contribution illustrating the time consistency of the Friedman rule of monetary

policy (Alvarez et al., 2004). Other relevant applications concern the interplay between

economic policy and elections. For exhaustive overviews, see Persson and Tabellini (1990,

2000).
2The literature on differential games distinguishes “weak” from “strong” time consis-

tency: in the former case, the Nash (or Stackelberg) equilibrium is not sugbame perfect,

while in the latter it is so. As an intuitive proof, consider a game spanning over time

running from 0 to T and then consider the game over the sub-interval (t, T ), with t > 0:

in general, players’ optimal choices in the latter setting do not change with respect to the

entire game, only if the initial conditions at time t coincide with the state of the system
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the feedback Stackelberg equilibrium represents too much of a requirement

for the policy maker, who might well be unable to collect and/or use it appro-

priately. If one accepts this view, then time inconsistency can be considered

as the realistic consequence of the fact that policy makers are in some sense

forced to adopt simple (open-loop) solutions as they cannot design feedback

ones.

However, under some specific conditions, open-loop Stackelberg equilibria

can indeed be not only time consistent, but also subgame perfect. This is

indeed the case when (i) the leader’s control variable(s) does not affect the

follower’s co-state variable(s), and therefore the leader cannot manipulate the

follower’s objective function at will, and (ii) feedback effects are absent, in

the sense that all controls variable are independent of the state(s). Condition

(i) is necessary and sufficient for time consistency, but only necessary for

subgame perfection; condition (ii) is necessary but not sufficient to ensure

subgame perfection. When holding together, (i-ii) yield subgame perfect

open-loop Stackelberg equilibria (see Dockner et al., 2000, especially ch. 5;

and Cellini et al., 2004).

The present paper revisits a case of time consistent fiscal policy rule,

recently proposed by Karp and Lee (2003) relying on previous research by Xie

(1997). As a first step, we show that this setup satisfies sufficient conditions

for the resulting optimal fiscal policy to be not only time consistent but

also subgame perfect, since (i) the optimal policy is stationary and (ii) the

reached at time t in the whole game spanning over (0, T ). This invariance in optimal plans

denotes weak time consistency. If the plan invariance holds irrespective of the state at

time t, then time consistency is strong. In the case of sequential moves, i.e., in Stackelberg

games, the open-loop equilibrium is in general neither weakly nor strongly time consis-

tent, as at any date the leader finds in general optimal to change its plan. Thus, the time

consistency we are dealing in this setting, is the strong time consistency, which entails of

course the weak time consistency. For further details see Dockner et al. (2000) and Cellini

et al. (2004).

2



consumption plan chosen by the representative consumer is unaffected by the

state variable at all times during the game.

In addition to that, the setting we investigate allows us to tackle a further

issue that, to the best of our knowledge, has been neglected so far. Xie (1997)

and Karp and Lee (2003) illustrate an open-loop Stackelberg differential game

where the policy maker is the leader and a population of atomistic (i.e., non

strategic) consumers are the followers. The economy is a Ramsey one, and

fiscal policy is aimed at collecting the resources which are needed to produce

a public good. Consumers are taken to be rational but myopic, in the sense

that they are aware of the negative effect exerted by taxation on the capital

accumulation process, while they take the amount of the public good as given,

in that each individual contribution to it is negligible.

As usual in this kind of analysis, the representative consumer assumption

is coupled with the assumption of a constant returns to scale technology,

so that the production function as well as capital and consumption can be

expressed in per capita terms to ease the exposition. However, if this nor-

malisation translates into the assumption that the representative consumer

summarises in himself the entire economy, then there seems to appear a del-

icate problem as to the scope for active policy-making in this model. This

issue can be explained as follows. In Xie (1997) and Karp and Lee (2003),

the normalisation entails that the amount of the public good available to the

entire economy indeed coincides with the individual contribution imputable

to the taxation of the representative consumer. If this is the case, then

the decentralised equilibrium must necessarily coincide with social planning,

which by definition yields the fist best allocation. As a consequence, one

cannot expect the Stackelberg model with the policy maker as the leader to

perform better than the decentralised equilibrium. The obvious reason for

this result is that in such a case the prisoners’ dilemma behind the private

provision of a public good is simply not there. After proving this, we proceed
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to extend the analysis to the case where the representative agent is one out

of N > 1 symmetric agents operating in the economy, and the amount of

public good available to each of them is indeed the sum of all individual con-

tributions. In this setting, the decentralised equilibrium is worse than social

planning because of the underlying free-riding incentive, and the inefficiency

of the decentralised equilibrium clearly grows larger as the number of agents

increases. This restores the scope for an active role of the policy maker in

correcting such allocative distortion, i.e., it allows us to illustrate a proper

game between the policy maker and the population of atomistic agents, still

preserving the desirable time consistency property of the open-loop Stackel-

berg equilibrium.

The remainder of the paper is structured is as follows. In sections 2 and 3,

following Xie (1997), Dockner et al. (2000) and Karp and Lee (2003, section

5), we illustrate a case of subgame perfect fiscal policy, relying on the open-

loop Stackelberg differential game where the policy maker is the leader and

a population of atomistic consumers are the followers. In the available lit-

erature, this framework is usually considered under the normalization of the

population size to one (i.e., under the single agent assumption). We show

that this approach leads to the conclusion that the differential game is in

fact equivalent to a straightforward optimal control model. In section 4, we

extend the model to account for the existence of a population of consumer,

i.e., abandoning the normalisation usually associated with the representative

agent. This allows us to illustrate a proper game between the policy maker

and the population of private agents, still preserving the desirable proper-

ties of subgame perfection (and therefore time consistency) of the open-loop

Stackelberg equilibrium. In section 5, we present a model in which no pol-

icy action takes place: this setting allows us to study the properties of the

allocation associated to a decentralized economy in which strategic interac-

tion exists only among private agents. Finally (section 6), we compare the
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allocations across the different regimes, focussing on the implications of the

usual single-agent normalization, and the role of public goods. Concluding

remarks are gathered in section 7.

2 Xie’s and Karp-Lee’s models revisited

A competitive economy, existing over t ∈ [0,∞) , is summarised by a repre-
sentative agent whose instantaneous utility function is defined as follows:

U (t) = ln c (t) + ln g (t) (1)

where c (t) is consumption and g (t) is public expenditure at time t. The

consumer accumulates productive capital k (t) in order to produce output

according to the production function

y (t) = Ak (t) , A > 0 (2)

and the government chooses a tax rate θ (t) ∈ [0, 1] in order to raise the funds
needed to finance the public expenditure, g (t) = θ (t) y (t) at any t ∈ [0,∞) .
Therefore, capital (the state variable) accumulates according to the following

Ramsey dynamics:
·
k = A [1− θ (t)] k (t)− c (t) . (3)

The consumer chooses consumption in order to maximise:Z ∞

0

e−ρt {ln c (t) + ln g (t)} dt (4)

where ρ ∈ [0,∞) is the discount rate, subject to (3) and to the initial condi-
tion k(0) = k0 > 0.

The model assumes that the government plays as a Stackelberg leader,

while the agent plays as a Stackelberg follower, that is, taking the choice of

the leader, θ (t) as given.
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Therefore, the follower’s Hamiltonian is:

HF = e−ρt {ln c (t) + ln g (t) + λF (t) [A (1− θ (t)) k (t)− c (t)]} (5)

where λF (t) = µF (t)e
ρt is the co-state variable (evaluated at time t) asso-

ciated with the state variable k(t). At this stage, it is worth noting that

taxation explicitly appears only in the kinematics of capital, while the argu-

ment of the instantaneous utility is expressed as public expenditure. This

means that the atomistic consumer is directly affected by the tax rate only

when deciding how much to accumulate.

The first order conditions (FOCs) are:3

∂HF

∂c (t)
=

1

c(t)
− λF (t) = 0 (6)

− ∂HF

∂k (t)
=

·
λF (t)− ρλF (t)⇔

·
λF (t) = λF (t) [ρ−A (1− θ(t))] (7)

and the transversality condition is:

lim
t→∞

e−ρtλF (t)k(t) = 0. (8)

Note that the adjoint equation (7) does not feature the feedback effect

∂HF

∂θ (t)
· ∂θ (t)
∂k (t)

(9)

exerted by state k (t) on control θ (t) , i.e., the present solution is indeed of

the open-loop type.

From (6), we obtain:

c(t) =
1

λF (t)
(10)

This entails that, at any instant t, the co-state variable of the follower is

independent of the tax rate θ(t). Therefore, the game is uncontrollable by the

3The indication of exponential discounting is omitted for the sake of brevity.
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leader (Xie, 1997), and the open-loop Stackelberg solution is time consistent

(Karp and Lee, 2003, Lemma 1, p. 356).

It is possible to further characterize the follower’s problem. Substituting

(10) into (3) and multiplying all terms by λF (t) we obtain

λF (t)
·
k(t) = A (1− θ(t))λF (t)k(t)− 1 (11)

Consider now (7) and multiply all its terms by k(t) :

k(t)
·
λF (t) = k(t)λF (t) [ρ−A (1− θ(t))] (12)

The sum of (11) and (12) gives:

k(t)
·
λF (t) + λF (t)

·
k(t) = d[k(t)λF (t)]/dt = λF (t)k(t)ρ− 1. (13)

The solution of the differential equation (13) is

[k(t)λF (t)] = 1/ρ+Qeρt (14)

where Q is an integration constant. In order to satisfy the transversality

condition (8), it is necessary to set Q = 0. Thus, [k(t)λF (t)] = 1/ρ, and

considering (10), we have:

c(t) = ρk(t). (15)

Thus, the dynamic constraint can be rewritten as

·
k = A [1− θ (t)] k (t)− ρk(t) (16)

whose solution is

k(t) = k0 exp

·Z t

0

[(1− θ(s))A− ρ]ds

¸
(17)

and hence

c(t) = ρk0 exp

·Z t

0

[(1− θ(s))A− ρ]ds

¸
(18)
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The above dynamic equations describes the choices pertaining to the con-

sumer when he’s taking the follower’s role.

In order to characterise the optimal fiscal policy, we have to build the

policy maker’s Hamiltonian. The government chooses θ(t) in the leader’s

position, so as to maximise the discounted utility of the representative con-

sumer, under the constraints (3) and (7), and under the follower’s optimal

consumption decision c(t) = 1/λF (t), which is accounted for by the leader.

The corresponding Hamiltonian function is

HL = e−ρt {ln [1/λF (t)] + ln [Ak (t) θ (t)] + λL (t) [A (1− θ (t)) k (t) +

−1/λF (t)] + ϕL (t)λF (t) [ρ−A (1− θ)]} (19)

where λL(t) = µL(t)e
ρt and ϕL(t) = 'L(t)e

ρt are the co-state variables (eval-

uated at time t) associated with the state variable k(t) and the follower’s

co-state variable λF (t), respectively.

The FOCs of the leader are :4

∂HL

∂θ (t)
=

1

θ(t)
−A (λL(t)k(t) + ϕL(t)λF (t)) = 0 (20)

− ∂HL

∂k (t)
=

·
λL(t)− ρλL(t) (21)

− ∂HL

∂λF (t)
=

·
ϕL(t)− ρϕL(t) (22)

At this stage, it is worth noting again that neither (21) nor (22) contain

feedback effects due to the fact that the representative consumer’s FOC,

equation (10), does not contain the state variable k (t), so that the govern-

ment’s FOCs are defined for the attainment of the open-loop solution.

Equations (20-22) imply, respectively:

θ(t) = 1/[AλL(t)k(t)− ϕL(t)λF (t)] (23)

4Again, we omit the indication of time and exponential discounting for the sake of

brevity.
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·
λL(t) = λL(t) [ρ−A (1− θ(t))]− 1

k(t)
(24)

·
ϕL(t) =

λ2FA (1− θ(t))ϕL(t) + λF (t)− λL(t)

λ2F (t)
(25)

Now substitute λF (t) = 1/(ρk(t)) into the state dynamics, to obtain

·
k = A [1− θ (t)] k (t)− ρk (t) , (26)

that is

λL(t)
·

k(t) = λL(t)A [1− θ (t)] k (t)− c (t)λL(t). (27)

By multiplying all terms of (24) by k(t) we obtain:

k(t)
·
λL(t) = k(t)λL(t) [ρ−A (1− θ(t))]− 1. (28)

Summing up (27) and (28) yields

λL(t)
·

k(t) + k(t)
·
λL(t) = d[λL(t)k(t)]/dt = −1. (29)

This differential equation has the simple solution:

[λL(t)k(t)] = G− t. (30)

where G is an integration constant. Hence,

λL(t) = (G− t)/k(t) = (G− t)λF (t)ρ. (31)

Substituting (31) into (25) and multiplying all its terms by λF (t) we obtain

λF (t)
·
ϕL(t) = λF (t)A (1− θ(t))ϕL(t) + 1− (G− t)ρ. (32)

Now consider the dynamic constraint regarding λF (t) and multiply all its

terms by ϕL(t), so to obtain

ϕL(t)
·
λF (t) = ϕL(t)λF (t) [ρ−A (1− θ(t))] (33)
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Combining (32) and (33) yields

d[λF (t)ϕL(t)]/dt = λF (t)ϕL(t)ρ+ 1− (G− t)ρ. (34)

whose solution is:

[λF (t)ϕL(t)] = Qeρt +G− t− (2/ρ) (35)

where Q and G are integration constants. It is now possible to rewrite

condition (23) as follows:

θ(t) =
1

A[G− t−Qeρt − (G− t) + (2/ρ)]
=

ρ

A(2− ρQeρt)
(36)

The condition θ(t) ≥ 0 for any t (including the limit case where t tends to

infinity) leads to set Q = 0, and provides the solution

θ(t) =
ρ

2A
(37)

Notice that the tax rate representing the solution of the optimal problem

of the policy maker is constant over time. In particular, it is independent of

k (t) for all t ∈ [0,∞) . This, jointly with the fact that (10) is also independent
of the capital endowment at any instant, makes the optimal tax rate chosen

by the leader not only time consistent but also subgame perfect:

Proposition 1 The optimal taxation policy set by the government in the

open-loop Stackelberg game is part of a subgame perfect equilibrium.

To this regard, it is worth stressing that the additive separability of the

Hamiltonian function w.r.t. state and control variables is sufficient but by no

means necessary to ensure the subgame perfection of the open-loop Stackel-

berg outcome (see Cellini et al., 2004). This has the consequence that the

optimal policy defined by (37) is stationary (see Karp and Lee, 2003, p. 357).
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The above exposition summarises the main argument contained in Xie’s

as well as Karp and Lee’s analysis, to prove the subgame perfection of the

optimal taxation policy in the case of a logarithmic utility function.

Now, taking into account the leader’s optimal behaviour, we can write

the time path of the choice variable set by the private agent as well as the

time path of the capital stock: plugging (37) into (17) and (18) we have,

respectively:

k(t) = k0 exp

·Z t

0

[(1− θ(s))A− ρ]ds

¸
= k0 exp

·
2A− 3ρ
2

· t
¸

(38)

c(t) = ρk0 exp

·Z t

0

[(1− θ(s))A− ρ]ds

¸
= ρk0 exp

·
2A− 3ρ
2

· t
¸

(39)

Note that k(t) and c(t) monotonically increase over time, provided that A >

3ρ/2. Public spending evolves according to the following equation

g(t) = θAk(t) = ρk(t)/2 =
1

2
ρk0 exp

·
2A− 3ρ
2

· t
¸

(40)

Capital, consumption and the public good entails the condition A > 3ρ/2.

In the next section, we re-examine the issue of optimal taxation in an optimal

control setting.

3 The optimal control problem of the repre-

sentative agent

The aim of this section is to highlight that the Stackelberg game is indeed

inefficient in terms of its welfare performance, as it introduces strategic inter-

action in a model that, per se, would be an optimal control problem with a

single agent. To do this, we may proceed as follows. We keep the assumption

of a single agent, and suppose this representative consumer/producer (or a

benevolent planner) chooses both consumption and taxation, using the piece
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of information g (t) = Ak (t) θ (t) everywhere. Thus, he faces the following

problem:

max
c(t),θ(t)

Z ∞

0

e−ρt {ln c (t) + ln [Ak (t) θ (t)]} dt (41)

s.t. :
·
k(t) = (1− θ (t))Ak (t)− c (t) ; (42)

k(0) = k0 > 0

The corresponding Hamiltonian is:

H = e−ρt {ln c (t) + ln [Ak (t) θ (t)] + λ(t) [A (1− θ (t)) k (t)− c (t)]} (43)

Taking FOCs, we obtain:

∂H
∂c (t)

=
1

c(t)
− λ(t) = 0⇔

⇔ 1

c(t)
= λ(t) (44)

∂H
∂θ (t)

=
1

θ(t)
− λ(t)Ak(t) = 0⇔

⇔ 1

λ(t)Ak(t)
= θ(t) (45)

− ∂H
∂k (t)

=
·
λ(t)− ρλ(t)⇔

⇔
·
λ(t) = λ(t) [ρ−A (1− θ(t))]− 1

k(t)
(46)

to be considered with the transversality condition

lim
t→∞

e−ρtλ(t)k(t) = 0. (47)

Substituting (44) into the constraint (42) we have
·
k = A [1− θ (t)] k (t)−

1/λ(t), i.e.:

λ(t)
·
k(t) = λ(t)A [1− θ (t)] k (t)− 1. (48)
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Consider now condition (46) and multiply all its term by k(t), so as to obtain

k(t)
·
λ(t) = k(t)λ(t) [ρ−A (1− θ(t))]− 1 . (49)

Summing up (48) and (49), we obtain

λ(t)
·
k(t) + k(t)

·
λ(t) = d[λ(t)k(t)]dt = ρk(t)λ(t)− 2 (50)

whose solution is [λ(t)k(t)] = (2/ρ)+Qeρt, whereQ is an integration constant,

which has to be set equal to zero in order to fulfill the transversality condition

(47). Hence, we obtain λ(t) = 2/[ρk(t)], and, from (44) and (45), by simple

substitutions:

c(t) =
ρk(t)

2
(51)

θ(t) =
ρ

2A
(52)

It is immediate to see that the solution of this optimal control problem co-

incides with the Stackelberg game as concerns the taxation rule, as long as

(52) coincides with (37). The intuition behind the coincidence that we have

just identified is that the policy maker borrows the objective function of the

representative (atomistic) consumer and chooses the optimal policy acting

on behalf of such consumer.

However, thanks to simple substitutions we can find the time path of all

other relevant variables in the present setting of the command optimum prob-

lem, and we can check that they are different with respect to the Stackelberg

game. Specifically, in the present optimal control problem, the dynamics of

the capital stock is
·
k(t) = A [1− θ (t)] k (t)− c (t) = (A− ρ)k(t), from which

it is immediate to derive:

k(t) = k0 exp[(A− ρ) · t] (53)

and hence

c(t) =
ρ

2
k0 exp[(A− ρ) · t] (54)
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while public spending evolves according to

g(t) = θAk(t) = ρk(t)/2 =
1

2
ρk0 exp [(A− ρ) · t] (55)

Note that capital, consumption and public good increase over time as long

as A > ρ. This condition is milder than the one generated by the Stackelberg

setting.

4 Stackelberg game vs command optimum with

strategic private agents

In this section, we study the Stackelberg game and the command optimum

allocation, when the private sector is populated by N > 1 agents. In this

case, the usual inefficiency affecting the private provision of a public good is

observed, as the economy is populated by a multiplicity of agents, each one

being driven by the incentive to free ride upon his mates’ contributions.

Examine first the Stackelberg game. Each private agent i (with i =

1, ...N) chooses his consumption level ci(t), and behaves as a follower with

respect to the government (leader) setting the tax policy, i.e., the tax rates

θi (t) , i = 1, ...N, at any t ∈ [0,∞).
It is worth stressing that any private agent benefits from the whole

amount of the public good (which is non-rival and non-excludable), the

amount of public good available at any date t being G(t) =
PN

i=1 gi (t) =PN
i=1 θi(t)Aki(t). As in the previous sections, all variables are measured in

per capita terms, but considering explicitly N > 1 entails a crucial difference

between this and the previous setup, in that G (t) 6= gi (t) .

Thus, each private agent i faces the following problem:

max
ci(t)

Z ∞

0

e−ρt {ln ci (t) + lnG(t)} dt (56)
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s.t. : G(t) =
NX
h=1

θh(t)Akh(t) (57)

·
kh(t) = A (1− θ (t)) kh (t)− ch (t) ; (h = 1, ...N) (58)

kh(0) = kh0 > 0; (h = 1, ...N) (59)

The corresponding Hamiltonian is:

HF = e−ρt
(
ln ci (t) + ln

"
NX
h=1

Aθh(t)kh(t)

#
(60)

+
NX
h=1

λih(t) [A (1− θ (t)) kh (t)− ch (t)]

)

The FOCs are:
∂HF

∂ci (t)
=

1

ci(t)
− λFii(t) = 0 (61)

− ∂HF

∂ki (t)
=

·
λFii(t)− ρλFii(t)⇔

⇔
·
λFii(t) = λFii(t) [ρ−A (1− θ(t))] (62)

− ∂HF

∂kij (t)
=

·
λFij(t)− ρλFij(t)⇔

⇔
·
λFij(t) = λFij(t) [ρ−A (1− θ(t))] (for all j 6= i) (63)

The problem exhibits separate dynamics concerning the state variables kh

(h = 1, ...N), so that we can set λFij(t) = 0 for j 6= i.

We assume symmetry across private agents and across tax rates so that

ci (t) = cj (t) = c (t), ki (t) = kj (t) = k (t) and θi (t) = θj (t) = θ (t) for any

i, j at any t, so that we have G(t) = Nθ(t)Ak(t). As a consequence, also

λFii(t) = λFjj(t) = λF (t) holds.

It is immediate to check that, under symmetry, the solution of the problem

is formally identical to the solution of the problem investigated by Xie (1997)
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and Karp and Lee (2003) (see above, section 2), and in particular c(t) =

1/λF (t).

The government, in the position of the Stackelberg leader, faces the fol-

lowing problem (in which the symmetry across private agents has been al-

ready taken into account):

max
θ(t)

Z ∞

0

e−ρtN {ln c (t) + lnG(t)} dt (64)

s.t. : G(t) = Nθ(t)Ak(t)
·
k(t) = A (1− θ (t)) k (t)− c (t)

k(0) = k0 > 0

c(t) = 1/λF (t)
·
λF (t) = λF (t)[ρ−A(1− θ (t))]

The corresponding Hamiltonian function is

HL = e−ρt {N ln [1/λF (t)] +N ln [NAk (t) θ (t)] +NλL (t)A (1− θ (t)) k (t)+

−1/λF (t) +NϕL (t)λF (t) [ρ−A (1− θ)]} (65)

Apart from the multiplicative term N and a from an additive term lnN

in the objective function, (65) coincides with the problem characterised in

section 2. Its complete solution is:

θ(t) =
ρ

2A
; (66)

k(t) = k0 exp

·
2A− 3ρ
2

· t
¸
; (67)

c(t) = ρk0 exp

·
2A− 3ρ
2

· t
¸
; (68)

G(t) = θ(t)NAk(t) =
ρ

2
Nk0 exp [(A− ρ) · t] . (69)

The outcome of the open-loop Stackelberg equilibrium is subgame perfect

(and therefore also time consistent), since (61) is independent of k (t) and
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θ (t) , and the optimal tax rate is constant. Hence, the equivalent of Propo-

sition 1 also holds here.

As to the command optimum in the case of a population of N identical

private agents, the problem can be written as :

max
c(t),θ(t)

Z ∞

0

e−ρtN {ln c (t) + ln [NA] + ln k (t) + ln θ (t)]} (70)

s.t. :
·
k(t) = (1− θ (t)) k (t)− c (t) ; k(0) = k0 > 0

so that it is formally equivalent to the problem we have solved in section 3,

except for the multiplicative factor N and the constant additive term ln(NA)

in the objective function. Its complete solution turns out to be:

θ(t) =
ρ

2A
; (71)

k(t) = k0 exp [(A− ρ) · t] ; (72)

c(t) = ρk0 exp [(A− ρ) · t] ; (73)

G(t) = θ(t)NAk(t) =
ρ

2
Nk0 exp [(A− ρ) · t] (74)

The conclusion is that the explicit consideration of a multiplicity of strategic

private agents, which entails a proper strategic interaction within the private

sector (along with the interaction between the private sector and the gov-

ernment) does not undermine the subgame perfection of the optimal fiscal

policy.

5 The decentralized economy

Suppose that each of N identical private agents choose the level of individual

consumption ci(t), and the share θi(t) of the individual income devolved to

the purchase of a public good, which remains of course non-rival and non-

excludable. Thus, the total amount of public good available at any date t is

G(t) =
PN

i=1 θi(t)Aki(t).
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In this setting, where the government’s intervention is assumed away, and

each private agent i solves the following problem with respect to the control

variables ci(t) and θi(t):

max

Z ∞

0

e−ρt {ln ci (t) + lnG(t)} dt (75)

s.t. : G(t) =
NX
h=1

θh(t)Akh(t)

·
kh(t) = A (1− θ (t)) kh (t)− ch (t) ; (h = 1, ...N)

kh(0) = kh0 > 0; (h = 1, ...N)

The corresponding Hamiltonian function can be written as

Hi = e−ρt
(
ln ci (t) + ln

"
A

Ã
θi(t)ki(t) +

X
j 6=i

θj(t)kj(t)

!#
+

+λii(t) [A (1− θi (t)) ki (t)− ci (t)] +
X
j 6=i

λij(t) [A (1− θj (t)) kj (t)− cj (t)]

)
(76)

and the FOCs are:
∂Hi

∂ci (t)
=

1

ci(t)
− λii(t) = 0 (77)

∂Hi

∂θi (t)
=

ki(t)

ki(t)θi (t) +
P

j 6=i kj(t)θj (t)
− λii(t)Aki(t) = 0 (78)

− ∂Hi

∂ki (t)
=

·
λii(t)− ρλii(t)⇔ (79)

⇔
·
λii(t) = λii(t) [ρ−A (1− θi(t))]− θi(t)

ki(t)θi (t) +
P

j 6=i kj(t)θj (t)

− ∂Hi

∂kj (t)
=

·
λij(t)− ρλij(t)⇔ (80)

⇔
·
λij(t) = λij(t) [ρ−A (1− θj(t))]− θj(t)

ki(t)θi (t) +
P

j 6=i kj(t)θj (t)
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to be considered with the transversality condition limt→∞ e−ρtλii(t)ki(t) = 0.

Assume now the symmetry conditions ki (t) = kj (t) = k (t) , θi (t) =

θj (t) = θ (t) ; as a consequence λii(t) = λjj(t) = λ(t). The first order condi-

tions rewrite as follows:

c(t) = 1/λ(t) (81)

θ(t) = 1/ [NAλ(t)k(t)]⇒ c(t) = Nk(t)Aθ(t) (82)
·
λ(t) · [Nk(t)θ(t)] = λ(t) [ρ−A (1− θi(t))] · [Nk(t)θ(t)]− θ(t). (83)

Condition (83) may be written as

k(t)
·
λ(t) = k(t)λ(t) [ρ−A (1− θi(t))]− (1/N). (84)

Moreover, condition (81) may be inserted into the dynamic constraint, to

yield:

λ(t)
·
k(t) = k(t)λ(t) [A (1− θ(t))]− 1. (85)

Summing up (84) and (85) we have:

k(t)
·
λ(t) + λ(t)

·
k(t) =

d(k(t)λ(t))

dt
= k(t)λ(t)ρ− 1 +N

N
(86)

whose solution is

k(t)λ(t) =
(1 +N)/N

ρ
+Q · eρt (87)

where Q is an integration constant, which has to be set equal to zero in order

to fulfill the transversality condition. Thus,

k(t)λ(t) =
(1 +N)

Nρ
(88)

and hence, from (81)

c(t) =
N

1 +N
ρk(t) (89)

Finally, from (82), we derive

θ(t) =
1

AN(λ(t)k(t))
=

ρ

A(1 +N)
(90)
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By simple substitutions into the state dynamics, we also obtain

·
k(t) = A (1− θ (t)) k (t)− c (t) = (A− ρ)k(t) (91)

whose solution is

k(t) = k0 exp[(A− ρ)t]. (92)

Thus,

c(t) = ρ
N

1 +N
k0 exp[(A− ρ)t]. (93)

Also in this case, it is immediate to see that consumption and capital

increase over time as long as A > ρ. To summarise this discussion, we may

state:

Proposition 2 The open-loop solution of the Nash game among agents choos-

ing both consumption and taxation is subgame perfect.

6 A comparative assessment across regimes

Now we are in a position to compare the relevant variables across three differ-

ent institutional settings: (i) the Stackelberg game in which the government

leads and private agents follow (labelled by the superscript SE), (ii) the com-

mand optimum (labelled by CO), and (iii) the decentralized equilibrium with

no government action (labelled by DE). The comparison can be performed

in the general case that N private agents populate the economy, as well as

in the particular case in which N = 1. We are particularly interested in the

performance of the welfare indicator across the aforementioned settings.

The obvious candidate as a measure of welfare is:

V =

Z ∞

0

e−ρt {ln c (t) + lnG(t)} dt (94)

describing the total welfare enjoyed by any single private agent in the econ-

omy over the time horizon covered by the model.

20



In the Stackelberg game, we have

V SE =

Z ∞

0

e−ρt
½
ln
h
ρk0 · e(

2A−3ρ
2

·t)
i
+ ln

·
ρN

2
k0 · e(

2A−3ρ
2

·t)
¸¾

dt (95)

which turns out to give:

V SE =

·
e−ρt ·

½
− ln [ρNk0/2]

ρ
− ln [ρk0]

ρ
− (2A− 3ρ)(ρt+ 1)

ρ2

¾¸+∞
0

=

=
ln(1/2) + lnN + 2 ln(ρk0)

ρ
+
(2A− 3ρ)

ρ2
(96)

Under the command optimum, we have

V CO =

Z ∞

0

e−ρt
½
ln

·
ρk0
2
· e(A−ρ)t

¸
+ ln

·
ρN

2
k0 · e(A−ρ)t

¸¾
dt (97)

which amounts to:

V CO =

·
e−ρt ·

½
− ln [ρNk0/2]

ρ
− ln [ρk0]

ρ
− 2(A− ρ)(ρt+ 1)

ρ2

¾¸+∞
0

=

=
ln(1/4) + lnN + 2 ln(ρk0)

ρ
+
2(A− ρ)

ρ2
(98)

Finally, in the decentralized setting,we have:

V DE =

Z ∞

0

e−ρt
½
ln

·
ρN

1 +N
k0e

[(A−ρ)t]
¸
+ ln

·
ρN

1 +N
k0e

[(A−ρ)t]
¸¾

(99)

which is equal to:

V DE =

·
e−ρt ·

½
−2 ln [ρNk0/(N + 1)]

ρ
− 2(A− ρ)(ρt+ 1)

ρ2

¾¸+∞
0

=

=
2 ln[1/(N + 1)] + 2 lnN + 2 ln(ρk0)

ρ
+
2(A− ρ)

ρ2
(100)

It is immediate to check that:

(i) V CO − V SE = (1− ln 2)/ρ > 0 for all N ≥ 1;
(ii) V CO − V DE = ln[(1 + N)2/(4N)]/ρ, which is nil for N = 1 and is

strictly positive for N > 1;
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(iii) V SE − V DE = (1/ρ)(ln[(1 + N)2/(2N)] − 1] which is negative for
N = 1 and positive for N > 1.

All the above results can be summarized as follows:

Proposition 3 (a) if N > 1, then V CO > V SE > V DE; (b) if N = 1, then

V CO = V DE > V SE.

In words, if we consider the normalization of population to one, then the

decentralised equilibrium and the social optimum coincide, and the policy

maker may not be able to improve upon the private optimum by appropri-

ately choosing the tax rate θ (t) .More specifically, if the policy maker acts as

a Stackelberg leader in this framework, he leads the system to an inefficient

outcome. This is due to the fact that the action of the policy maker intro-

duces strategic interaction in the problem, which - in the absence of an active

economic policy by the government - is indeed a simple optimal control prob-

lem with a single agent. In sum, normalising the population to one leaves no

room for policy making, because the usual prisoners’ dilemma associated to

the provision of public good disappears and the private provision of public

goods is not problematic any more.

As a remedy, to revive active policy making, we propose an alternative

framework that duly accounts for the size of the population and the strategic

interaction among agents, while preserving the normalisation of the produc-

tion function. In such a case, the action of the policy maker as the leader

permits the economy to reach a better result as compared with the decentral-

ized economy. Obviously, the Stackelberg outcome is inefficient with respect

to the command optimum allocation, where strategic interaction among gov-

ernment and private agents is absent by definition.
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7 Concluding remarks

This paper has dealt with a well-known issue in the literature on macroe-

conomic policy, namely the time (in)consistency of the optimal fiscal policy

in a dynamic setting where the government acts as a leader and private

agents follow. It is well known that, in such a framework, fiscal policy can

be time consistent only under specific circumstances. The present paper has

focussed on one such circumstance, namely the set of conditions considered

in the model recently proposed by Karp and Lee (2003), on the basis of a

previous model by Xie (1997). Thanks to specific assumption concerning

preferences, they have highlighted a case where optimal fiscal policy is time

consistent.

In the present paper we have stressed two features that were not pin-

pointed by either Xie (1997) or Karp and Lee (2003): (i) under the as-

sumption of logarithmic utility for the representative consumer, the optimal

taxation associated with the open-loop Stackelberg outcome is not only time

consistent but also subgame perfect because additive separability of the ob-

jective function entails that there are no feedback effects, and therefore the

resulting optimal open-loop policy is stationary; (ii) the normalization of the

population of consumers to one (which is a standard assumption in this line

of literature, and usually accompanies all those analyses based on the rep-

resentative agent hypothesis) indeed plays a significant role in shaping the

properties of the fiscal policy: specifically, it rules out the problems con-

nected with the inefficiency of the private provision of public good, and, in

so doing, it also eliminates the scope for active policy-making.

Our model has shown that two different sources of inefficiency operate in

this model, when a multiplicity of private agents is duly accounted for. The

first is represented by the “standard” inefficiency usually associated with the

private provision of public goods, which disappears if the “game” collapses
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into an optimal control model when the size of the population is normalised

to unity. The second type of inefficiency is entailed by the interaction be-

tween the private sector and the government, which arises, on the contrary, if

the population is indeed normalised to one. Under this assumption, the per-

formance of the decentralised economy would exactly replicate the command

optimum; as a consequence, transforming the optimal control problem of the

single agent into a Stackelberg game (whereby strategic interaction is intro-

duced ad hoc in a model that a priori is not strategic) yields an inefficient

outcome.

Moreover, we have shown that the subgame perfection (or strong time

consistency) of the optimal fiscal rules produced by the model are robust to

the introduction of proper strategic interaction among private agents. This

has also allowed us to proceed to a thorough assessment of the welfare proper-

ties of the decentralised economy, the command optimum and the Stackelberg

game. In particular, our core result is that there is a scope for policy making,

with the government taking the leader’s role, only if the economy consists

of at least two agents. If so, then intuitively the decentralised equilibrium

is the outcome of a prisoners’ dilemma with welfare falling short of the first

best.
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