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Abstract

We investigate a dynamic oligopoly game where goods are differentiated and
prices are sticky. We study the open-loop and the closed-loop Nash equi-
librium, and show that the latter equilibrium entails a larger level of steady
state production as compared to the former; both equilibria entail a larger
level of production in steady state than the static game. We also study the
effects of price stickiness and product differentiation upon the steady state
equilibrium allocation. We find that per-firm equilibrium output is increasing
in both product differentiation and price stickiness.

JEL Classification: D43, D92, 1.13

Keywords: differential games, loop decision rules, product differentia-
tion, price stickiness.



1 Introduction

The aim of this note consists in studying the properties of the equilibria in
a dynamic oligopoly model with price stickiness, along the lines first intro-
duced by Simaan and Takayama (1978) and then extended by Fershtman
and Kamien (1987), and Cellini and Lambertini (2000). The novelty of this
paper rests on the fact that we analyse an oligopoly where goods are differ-
entiated, and we study how good differentiation and price stickiness interact
in shaping the equilibrium allocation.

We take into consideration both the open-loop and the closed-loop Nash
equilibrium. In both cases, an economically meaningful symmetric steady
state exists; this equilibrium is a saddle. We focus on the steady state equi-
librium allocation, and study its determinants. The already known properties
of the differential game involving homogenous goods are confirmed; in par-
ticular, (i) the static game entails a lower level of production as compared to
the steady-state equilibrium production levels of the differential game, and
the steady-state Nash equilibrium production under the open-loop informa-
tion structure is smaller than under the closed-loop rule; (ii) the stickier are
the prices, the higher the steady state Nash equilibrium production levels.
This consistency is not surprising, provided that the homogenous oligopoly
case can be interpreted as a particular case of the present model.

In addition, we show that the degree of differentiation among goods is
effective in determining both the production levels, and the responsiveness
of quantities to price stickiness. In particular, we show that the higher is the
(symmetric) degree of differentiation among goods, the lower is the steady
state level of production. Moreover, the higher is the degree of differentiation,
the lower is the sensitivity of the steady state level of production to the price
stickiness. This means that the degree of differentiation and the degree of
price stickiness affect the steady state equilibrium level of production in much
the same way.

The outline of the paper is as follows. Section 2 introduces the basics of
the model. Section 3 develops the differential game under the open-loop infor-
mation structure, while Section 4 solves the closed-loop game. Both Sections
focus on the steady-state level of production, showing that the steady state
is a saddle, and presenting comparative statics exercises on the production
levels. Section 5 concludes the paper.



2 The setup

A simple way to model price stickiness is to imagine that price adjusts,
in response to the difference between its “notional” level and its current
level. Under this perspective, price can be seen as the state variable of a
dynamic system. Only a part of the difference between the “notional” and
the “current” level of price can be corrected, in the presence of stickiness.
This can be motivated, for instance, by costly adjustment. We formalise this
idea, borrowing from Simaan and Takayama (1978), the following motion low
concerning the price of any good i:!

dpdf_p = p;(t) = s; {D: (1) — ps(1)} (1)

where p;(t) denotes the notional level of price of good i at time ¢, while p;(?)
denotes its current level. Notice that the speed of adjustment is captured by
parameter s;,with 0 < s; < 1. The lower is s;, the higher is the degree of
price stickiness.

As far as the notional price concerns, it is dictated by the demand condi-
tion, deriving from the preference structure of consumers. We assume that
the notional price in any instant ¢ is defined as follows:

pilt) = A(t) = Bg;(t) = DY ¢;(1) (2)
it

This function is borrowed from Spence (1976) and employed by Singh and
Vives (1984), Vives (1985), Lambertini (1997), Cellini and Lambertini (1998,
2002), inter alia. The number of available varieties is assumed to be constant
over time and equal to N, with i € [1, N|. Parameter A measures the market
size or the reservation price, which is assumed to be equal across varieties
for the sake of simplicity. As for parameters B and D, assume 0 < D < B.
Notice that parameter D captures the degree of substitutability between any
pair of different goods. In the limit case D = 0, goods are independent and
each firm becomes a monopolist. In the opposite limit case D = B, the goods
produced by different firms are perfect substitutes and the model collapses

LSee also Fershtman and Kamien (1987). Mehlmann (1988, ch. 5) provides an ex-
haustive exposition of both contributions.Fershtman and Kamien (1990), and Tsutsui and
Mino (1990) present further results on the same model, in the case of a finite horizon.



into the homogeneous oligopoly model. Thus, the higher is parameter D, the
lower is the (symmetric) degree of differentiation.”

Consider a population of N single-product firms. The instantaneous pro-
duction cost function of firm ¢ is assumed to be quadratic:

Co(t) = ciga(t) — % GO0 < ¢ < A, (3)

As a consequence, the instantaneous profit function of firm i is:

_Qi<t) . (4>

mi(t) = ¢i(t) - [Pi(t) —GT

For future reference, we report the solution of the static problem, where
the notional price is equal to the current price, and any firm chooses the
quantity to be produced. In such a case, the maximisation of the function:

= q; [A —Bg;, — D Ej# qj} —Ciq; — %qf,with respect to ¢;, and then the
imposition of the symmetry conditions ¢; = g; = ¢ lead to find the following
symmetric Cournot-Nash equilibrium quantity:

(A-¢)
N =T+ DN -1 5)

In the problem we are interested here, however, the current price of any
good is generally different from its notional level. The production decisions of
firms affect notional prices, but current prices evolve subject to the existence
of price stickiness. We assume that firms choose the quantity to be produced,
so that we are in a Cournot framework. More precisely, each player (i.e., each
firm) chooses the path of his control variable ¢;(t) over time, from the present
to infinity, i.e., ¢ € [0, 00), in order to maximize the present value of the profit
flow, subject to (i) the motion laws regarding the state variables, and (ii) the
initial conditions. Formally, the problem of player ¢ may be written as follows:

max Ji = /OOO e Pt g (1) - [pi(t) — ¢ — %qi(t) dt (6)
st PO G -0 e 1) (7
st. pz<0) = Pi,0; (S [17 N] (8>

2A model whereD is a variable, whose dynamics is driven by the investment efforts of
firms devoted to product differentiation is in Cellini and Lambertini (2002).
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Notice that the number of the state variables in the problem of each player
7 1s equal to IV, corresponding to the price of the NV available varieties, while
the control variable is one for each player, specifically, the quantity to be
produced. The factor e ”* discounts future gains, and the discount rate p,
is assumed to be constant.

We solve the problem by considering -in turn- the open-loop solution, and
the closed-loop memoryless solution.

3 The open-loop solution

Here we look for the open-loop Nash equilibrium, i.e., we examine a situation
where firms commit to a production plan at ¢ = 0 and stick to that plan
forever.

The Hamiltonian function is:

Hi<t) = e rit. {%‘(75) : lpi(t) — G — %%(t)] + (9>
+A(t)s; [A = Bai(t) = DY q;(t) — pi(t) | +
J#i
+ Y Ni(6)s; | A= Ba;(t) =D gnlt) - Pj(t)] }
j#i hitj

where \i(t) = pi(t)erit, and pi(t) is the co-state variable associated by player
i to the price of his product, p;(t); similarly, A;(t) = pi(t)ert, with ui(t)
being the co-state variable associated by player i to the price of the good
j # i. As usual, supplementary variables A\ represent co-states in current
value, and are introduce to ease calculation.

The outcome of the open-loop game is summarised by the following:

Proposition 1 When the open-loop Nash equilibrium solution concept is
adopted, a symmetric steady state exists, where the individual output and
the market price are:

s (s+p)(A—0)
oL = G+ pl+B+ DN -1)+sB
. B+ DN = 1)](s + p)(A —¢)

- (s+pl+B+D(N-1)]+sB
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Such a steady state is a saddle.

Proof. In order to find the open-loop Nash equilibria, we have to solve the
following first-order condition:

D) =0 (10)

along with the adjoint equations

COH () N

op) ~ o PN (1)
OH () OX(1) .
Coplny T ot Y )

The first order condition and the adjoint equations have to be considered
along with the initial conditions {p;(0) = pi,O}i\il and the transversality con-
ditions, which set the final value of the state and/or co-state variables:

lim Al(t) - pi(t) = 0, lim N () - ps(t) = 0. (13)

t— o0

>From (10),(11) and (12) we obtain respectively:

gi(t) = pi(t) — i = Ai(t)s;B — DY Xi(t)s, (14)
it
ON(t ;
N (s 0~ ) (15)
ONL(1) .
8jt = <3j + pi))‘j<t) (16)
Now we introduce some symmetry assumptions, so that we focus on sym-
metric equilibria. In particular we assume: s; = s; = s; p;, = p; ¢; = ¢.

Moreover, in the symmetric equilibrium, ¢; = ¢; = ¢, and p; = p; = p. Even-
tually, we pose )\2 = Aown, and )\3- = Aother for any j # ¢. This amounts to
stating that each player attaches a co-state variable to the price of his own
product, and a co-state variable to the price of any other variety. It is worth
stressing that we can not postulate A, = Aotner, since the effect of the price
of the variety produced by each firm on his own profit, is obviously different
from the effect of the price of the varieties produced by the opponents.
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Differentiating equation (14) w.r.t. time, and taking into account the
symmetry assumptions (so that ¢ and j subscripts and superscripts can be
omitted), we obtain:

dQ<t) _ dp_@) — sB d)‘owTL(t) d)‘other (t)

e dt dt dt

The dynamic constraint and equations (15) and (16) rewrite, respectively,
as follows:
dp(t)

— (N —=1)sD (17)

—= = s[A = By(t) - DN = Dg(t) - p(t) (18)
%¥%ﬁ22@+pMmM0_Q@ (19)
W = (54 ) Aather (1) (20)

This means that, for any player, the dynamics of all relevant variables
may be described by a system of four dynamic equations. The system can
be written in matrix form as follows:

p(1) s —s[B+D(N-1)] 0 0 p(t)
a®) )| 0 —sB  —(N —1)sD q(t)
Aown(t) | 0 —1 (s+p) 0 Aown (1)

L )"other<t) i ! ’ ’ <8 + p) )‘other<t>
(21)

It easy to show that a (non-trivial) steady state does exist in this dynamic
system. We denote by p>, ¢, Aoo . Aoy, the steady state levels of the rele-
vant variables, namely, the price, the output level, and the co-state variables
associated with the own price and with the price of different varieties, re-
spectively. From equation (17) it is immediate to note that if dp/dt = 0,
dAown/dt = 0, dAstner/dt = 0 hold simultaneously, then dg/dt = 0. From
equation (19) we note that dA,,,/dt = 0 entails A\Jo = ¢ /(s + p), while

own

from equation (20) we note that dA,pe,/dt = 0 entails X5, = = 0. Equation

(18) shows that dp/dt = 0 entails p® = A — [B + D(N — 1)]¢g*°. Using

equation (14) under the symmetry conditions, we obtain:

o _ (s+p)(A—0)
L= s+ )1+ B+ D(N —

)]+ sB (22)



Simple substitutions permit us to fully characterize the steady state mar-
ket allocation under the open loop information structure:

_ [B+DWN=D](s+p)(A-¢)

5+p0+B+DN —1)+sB
G (A=) (24)
own = s+ p)l+B+ DN —1)+sB

(23)

OO
Por

As a final point, we have to investigate the stability property of the steady
state. We already know that, in the case of homogenous oligopoly, the steady
state is a saddle, completely described by a dynamic system of 2 differential
equations in 2 variables, namely price and quantity (see Cellini and Lam-
bertini, 2000). In the present, more general, setting with a differentiated
oligopoly, four variables (and four differential equations) are necessary to
fully characterise the dynamics of the system - even under the particular
case of the symmetric equilibrium. In order to have that the steady state is
stable in the saddle point sense, it is sufficient that exactly two out of the
four characteristic roots of the Jacobian matrix associated with the dynamic
system (that is, the Jacobian in system (21)), have a negative real part. This
is the case indeed in the problem at hand: two out of four characteristic roots
of the Jacobian matrix in (21) are real and positive; the other two roots have
negative real parts.®> This condition implies that the steady state is stable
in the saddle point sense. This means that given the initial level of price
p(0) = po and the condition Ayipe,(0) = 0 (which also satisfies the transver-
sality condition), one can find initial values ¢(0) > 0 and A,,,(0) > 0, such
). This

00 A
own? other

that the system converge to the steady state(p™, ¢, A
concludes the proof.l

Notice that the present result encompasses the result from the model with
product homogeneity.* Notice also that the steady state level of production,
under the open-loop information structure is larger than its counterpart in
the static Cournot game. This is easily proved, by confronting (22) with (5).
Consistently, the steady state level of price is smaller in the dynamic game as

3One characteristic root is (s + p); the expressions of remaining three roots are rather
heavy. One of them is real and positive; the two remining roots are complex, with negative
real parts.

*In fact, when D = B = 1 the level of ¢ given by equation (22) of the present paper
coincides with the steady state level of production in the homogenous oligopoly model
presented by Cellini and Lambertini (2000) - see in particular their equation (12).
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compared to the static game. This result is well known in the literature (see,
e.g., Simaan and Takayama, 1978, Reynolds, 1987, Piga, 2000, inter alia). It
means that the prolonged time of non-cooperative interaction leads to higher
levels of production (and lower prices) as compared to static interaction.

Simple comparative statics exercises on the steady state level of produc-
tion g3, lead to the following results, holding for all N > 1.

(1) 9¢Zr /0D < 0 : the higher is D, that is, the higher is the substi-
tutability among goods (and the lower is the differentiation) the smaller is
the steady state level of production in the symmetric open-loop Nash equi-
librium. The intuition behind this result could be provided by the following
argument: a higher substitutability among varieties means a smaller demand
for any individual firm, and hence lower market power. Consequently, the
reaction of firms leads to an equilibrium where production is lower.

(ii) dgy/0s < 0 : the lower is the price stickiness (i.e., the larger is s),
the smaller is the steady state production; put differently, the stickier are the
prices, the larger the production in steady state is. This result is well known
in the literature on differential oligopoly games with sticky prices (see also
Piga, 2000; Cellini and Lambertini, 2000). A rough intuition for this result
is provided by the following argument: when prices are sticky, the current
production levels of firms are weakly effective in moving current prices; this
fact leads firms to high levels of current and future production. On the
contrary, when prices move largely in response to production decisions, firms
choose to shrink the output levels.

(i) 62¢%, /(98O D) > 0: this cross derivative measures how the sensitivity
of steady state production to differentiation is affected by price stickiness.
In this respect, note that the higher is s, i.e., the less sticky are prices, the
higher is the sensitivity of production with respect to differentiation. Since
differentiation and price stickiness have the same effect on production, their
mutual interaction strengthens the effect on individual equilibrium output.

4 The closed-loop solution

Under the closed-loop information structure, firms do not precommit on any
path and their strategies at any instant may depend on all the preceding
history. In this situation, the information set used by firms in setting their
strategies at any given time is often simplified to be only the current value of



the state variables at that time. The relevant equilibrium concept is in this
case is labelled closed-loop memoryless Nash equilibrium; it is strongly time
consistent (see, e.g., Dockner et al., 2000).

The outcome of the closed-loop game is summarised by the following:

Proposition 2 When the closed-loop memoryless Nash equilibrium solution
concept 18 adopted, a symmelric steady state exists, where the individual out-
put and the market price are:

o U(s+p)(A=c)
“r T W+ )L+ B+ DN 1)+ sB] - (N — 1)s2D?
S, = A—[B+ DN -1,

where U = p+ s(1+ B + D(N — 2)). Such a steady state is a saddle.

Proof. The relevant Hamiltonian function is still (9), while the first order
condition and the adjoint equations for the player i are as follows:

%7;1%) =0 (25)
IH,; () H; (1) 9g; (%) B 8)\2(75) i
Tl 2o o PN (26)

hti

OH, () M () Oqi(t)  ONi(t) i
Cop(t) 2 daqn(t) Op; (1) Ot P (27)

Also in this case the first order condition and the adjoint equations have
to be considered along with the initial conditions {p;(0) = pi,O}i\; and the
transversality conditions (13).

The terms

hti

O, () Og;(t)
Iqn(t) Ip;(t)
appearing in (26) and (27) capture strategic interaction, in any instant of

time, through the feedback from states to controls, which is by definition
absent under the open-loop solution concept. Whenever the expression in

(28)

(28) is zero for all j, then the closed-loop memoryless equilibrium collapses
into the open-loop Nash equilibrium (see, e.g., Driskill and McCalfferty, 1989);
this is not the case in the present setting.
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04,() _ | i

In order to solve this problem, we take into account that

O;(1)
h =1 while 04 (1) = 0 otherwise, and 04;(1) = 11iff h = j while 04;(1) =0
O;(t) Op;(t) Op;(t)
otherwise. From (25),(26) and (27) we obtain respectively:
gi(t) = pi(t) — i = Ai(t)s;B — DY Xi(t)s, (29)
J#i
ON(t ;

MO (4 00X0) ~ 00 (30)

ON(t) 4 4 4 4
— = (o + s) X5 (1) + s DA(E) + DY X, ()s; + su B, (t) (31)

hti,j
Now we introduce the usual symmetry assumptions, in order to focus on
the symmetric equilibria. In particular, s; = s; = s, = s; p, = p; ¢; = ¢;
furthermore, ¢; = ¢; = ¢,and p; = p; = p. Moreover, we pose A= Aown, and
we postulate the symmetry assumption )\3. = )\2 = Aother fOr any j # i, h # i.
These assumptions permit us to write equation (29) as follows:

Q<t) = p(t) —c- SB)‘owTL(t) - SD<N - 1))‘other (32>

In the symmetric steady state the following relationships hold:
() from (26) : A%, = ¢ /(p+ 5);
(ii) from (27) : Nogyor = —sDAXS [ p+s(1+ B+ D(N —2))];
(iii) from the dynamic constraint: p>* = A — [B + D(N — 1)]¢>.
Subsequent substitutions into equation (32) lead to find the following
relation holding in steady state:

sBg> N s2D?(N — 1)g>

(p+s) [p+s(1+B+DN-2)](p+5s)
(33)

so that the steady state level of production, under the symmetric closed-loop

memoryless Nash equilibrium turns out to be:

o _ U(s+p)(A—c)
L T Gstp) 1+ B+ D(N—1) +sB]— (N — 1)s2D? (34)

U = p+s(1+B+ DN -2)

10



In the remainder of the Section we discuss, in turn, the dynamic properties
of the steady state, and the role of the parameters in determining the steady
state production under the closed-loop information structure, as compared
to the open-loop and the static game Nash equilibria.

As far the first point is concerned, the dynamic system (under symmetry)
can be written in matrix form as follows:

p(t) p(t)
9t q(t)
o) | 7 | Aty | o
Aother (1) Aother ()
—s —s[B+ D(N —1)] 0 0
g | 1 0 —sB —(N —1)sD
|0 —1 (s+p) 0
0 0 0 s+ p+ sB+ D(N — 2)]

Also in this case, it is possible to find the characteristic roots of the
Jacobian matrix in (35), and it is possible to check that exactly two out of
the four characteristic routs have negative real parts. Therefore, the steady
state is stable in the saddle point sense - that is, given the initial conditions,
the steady state is reached only for one appropriate combination of the control
variable and co-state variables, at the initial time. This dynamic feature of
the steady state is consistent with the analogous result in the particular case
of homogeneous oligopoly, where the 2x2 dynamic system presents a steady
state, which is a proper saddle (see Cellini and Lambertini, 2000, Section 5).
This concludes the proof.ll

Simple comparative statics exercises on the steady state level of produc-
tion ¢, lead to the following points, confirming all the substantial con-
clusions about the steady state production under the open-loop informa-
tion structure: for all N > 1, (i) 9¢%, /0D < 0 ; (ii) dgy/0s < 0 ; (iii)
9?2¢%, /(0s0D) > 0.

In this oligopoly with differentiated goods, like in the homogenous good
case, the steady state level of production turns out to be larger under the
closed-loop information structure, than under the open-loop, as the compari-
son between equations (22) and (34) makes clear. Both levels are larger than
the production of the static Cournot game. This fact can be explained on the

11



following grounds. The closed-loop output level is higher than the open-loop
output level because, taking into account feedback effects, each firm tries to
preempt the rivals. Since this holds for all firms alike, the outcome is that
the closed-loop steady state production exceeds the open-loop steady state
production.” In turn, the open-loop steady state output exceeds the static
(or myopic) output because in the static game there is no time for adjust-
ment and therefore firms have no way of trying to overproduce in order to
preempt the rivals.

As a consequence, from the firms’ viewpoint, the static situation (or, a
situation where firms are myopic) is the most profitable one. On the con-
trary, the steady state allocation in the closed-loop memoryless equilibrium
is socially preferred both to the open-loop steady state and to the static
equilibria.

Fershtman and Kamien (1987, pp. 1159-61) also investigate the properties
of the limit game, where the speed of adjustment s tends to infinity. They
show that, in such a case, the open-loop equilibrium coincides with the Nash
equilibrium of the static game. However, considering an infinitely high speed
of price adjustment seems more a mathematical curiosum than a theoretically
relevant case, in that whenever s > 1, the instantaneous change in price is
larger than the error p(t) — p(t). If we consider the case s = 1 as the limit
case, we can check that, in such a situation, both ¢, and ¢g; are larger than
the static Cournot-Nash output for all N > 1 and all p > 0.

Finally, as the number of firms becomes infinitely large, optimal individ-
ual output tends to zero independently of the solution concept. As the mar-
ket becomes perfectly competitive, open-loop and closed-loop steady state
solutions coincide with the static Cournot-Nash solution, which is itself re-
producing the perfectly competitive outcome.

5 Concluding remarks

In this paper we have investigated the properties of a dynamic oligopoly game
with sticky prices and differentiated products. It is important to stress that
the rigidities we have dealt here with, are real rather than nominal, provided
that we have taken a partial equilibrium approach, with sticky relative prices.

°This is usually observed when firms control variables are output levels, investment
levels, etc. (see, e.g., Reynolds, 1987).
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We have shown that the dynamic rule governing the price motion (and
in particular the degree of price stickiness) affect the final allocation, i.e.,
the steady state under the Nash equilibrium of the dynamic game. In par-
ticular two properties are worth mentioning : (i) in the (subgame perfect)
closed-loop memoryless Nash equilibrium a steady state exist, which is sta-
ble in the saddle point sense, where the production is larger and the price is
lower as compared to the open-loop steady state solution; (ii) irrespective of
the equilibrium concept one adopts, in the dynamic framework, the steady
state output levels and price levels are, respectively, higher and lower then
their counterparts in the static game. Property (i) can be reformulated by
saying that, if firms are unable to initially commit to a given output plan
for the whole time horizon, then subgame perfection entails overproduction
(for analogous results see Spence, 1979; and Reynolds, 1987). Property (ii)
suggests that the dynamic nature of interaction leads forms to over-produce,
as compared to the Nash equilibrium of a static interaction.

The above mentioned results are analogous with the findings from the
homogeneous oligopoly model. In the present paper, additional results have
been found, concerning the effects of the differentiation among the goods pro-
duced by firms upon steady state allocations. Under both the open-loop and
the closed-loop solution concepts, the higher is the substitutability among
goods, the lower is the steady state level of production; the tougher is the
price stickiness, the higher the steady state level of production. Under this
respect, the degree of price stickiness and the degree of product differentiation
exert the same qualitative effects on the steady state output level.
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