Non-Linear Market Demand and
Capital Accumulation in a
Differential Oligopoly (Game*

Roberto Cellini* - Luca Lambertini**

* Facolta di Economia, Universita di Catania
Corso Italia 55, 95129 Catania, Italy

fax 39-095-370574; e-mail cellini@mbox.unict.it

** Dipartimento di Scienze Economiche
Universita degli Studi di Bologna
Strada Maggiore 45, 40125 Bologna, Italy
fax 39-051-2092664; e-mail lamberti@spbo.unibo.it

March 13, 2000

Abstract

We investigate a differential oligopoly game where firms compete
in a Cournot market whose demand function is always downward slop-
ing but can take any degree of curvature. There exist two econom-
ically meaningful saddle points, one dictated by demand conditions,
the other by the Ramsey rule. In steady state, optimal capital is
non-decreasing in market size. Then we show that the socially efli-
cient output is independent of the curvature of market demand. This
entails that the welfare loss associated to the Cournot equilibrium
decreases as market size increases.

JEL Classification: 113

Keywords: Cournot competition, curvature of market demand,
capital accumulation, differential games, steady state

*We thank the seminar audience at the University of Trieste for comments and discus-
sion. The usual disclaimer applies.



1 Introduction

The current literature on oligopoly theory usually adopts a static approach
and a linear market demand, with either homogeneous or differentiated goods
(for exhaustive surveys, see Tirole, 1988; Martin, 1993, inter alia). A rela-
tively scanty attention has been devoted to the analysis of the effects of
non-linear demand on firms’ strategic behaviour. In this respect, a relevant
exception is the work of Anderson and Engers (1992, 1994), where Cournot
and Stackelberg equilibria are investigated under the perspective that market
demand can be either convex or concave.! They connect the solution concept
(Nash or Stackelberg) with firms’ optimal commitments in terms of installed
capital.

However, their approach is inherently static, in the sense that capital
accumulation is instantaneous instead of taking place over time. There-
fore, costs enter the generic firm’s objective function only in the form of an
exogenous capacity, so that the output levels chosen on the basis of strate-
gic interaction can indeed be produced if capacity is at least as large as
the equilibrium output determined by the intersection of reaction functions.
Otherwise, firms operate at the boundary of capacity.

The alternative perspective of endogenising capital accumulation is typ-
ically taken by the literature on differential games, where we avail of a rel-
atively small literature on oligopoly. However, the existing contributions
examine intertemporal capital accumulation for production in models with
linear market demand (Simaan and Takayama, 1978; Fershtman and Muller,
1984; Fershtman and Kamien, 1987; Cellini and Lambertini, 1998), or else
investigate firms’ R&D decision in innovation races where the market payoff
associated to the successful innovation is a prize blackboxing market demand
(e.g., Reinganum, 1982a).

Our aim consists in nesting the model introduced by Anderson and Fn-
gers (1992) into a differential game setup, so as to endogenise firms’ capital
commitment and link it explicitly to the curvature of market demand. We
prove that the Cournot oligopoly produces multiple steady state equilibria;
in particular, the economic solution is dictated either by demand conditions,
or by the Ramsey rule of capital accumulation. We also illustrate the re-
lationship holding, in steady state, between demand curvature and capital

LSee also Lambertini (1996) for the analysis of the bearings of the curvature of market
demand on the stability of implicit collusion either in prices or in quantities.



commitment. This can be summarised in the following terms. Suppose de-
mand turns from linear into convex. If so, each firm’s capital decreases. The
opposite happens if we turn a linear demand into a concave one, and it is
increasingly so as concavity increases. The intuition is that in the first case
market size and firms’ optimal outputs decrease, while in the second the
opposite is true.

Then, we evaluate the behaviour of a social planner aiming at welfare
maximisation, to find that the socially efficient output is independent of the
curvature of market demand. This, in connection with the aforementioned
results, entails that the welfare loss associated to the Cournot equilibrium
decreases as market size increases.

The remainder of the paper is structured as follows. The setup is laid out
in section 2. Section 3 describes the Cournot oligopoly. Section 4 contains
the analysis of the social optimum. Concluding remarks are in section 5.

2 The model

We borrow the demand structure from Anderson and FEngers (1992, 1994).
The market is served by n firms selling a homogeneous product over time
t € [0,00). The market demand function is defined as follows:

Q) =A—(p(t)" , a>0. (1)

The above function is always downward sloping, and can be either convex
(a € (0,1)) or concave (o« > 1). Firms are quantity-setters, the inverse
demand function being:

p(t) = (A— Q)™ (2)

where Q(t) = Y0, ¢(t), and ¢;(¢) is the individual output of firm i at
time t. Production requires physical capital k, accumulating over time to
create capacity. At any ¢, the output level is y;(t) = f(ki(t)), with f' =
Of (k;(t))/Oki(t) > 0 and f7 = 82 f(ki(t))/Ok:(t)* < 0.

A reasonable assumption is that ¢;(t) < ;(t), that is, the level of sales is
at most equal to the quantity produced. Excess output is reintroduced into
the production process yielding accumulation of capacity according to the
following process:

k(1)
ot

= J(ki(t)) = qi(t) — 6ki(2), (3)



where 6 denotes the rate of depreciation of capital. In order to simplify fur-
ther the analysis, suppose that unit variable cost is constant and equal to
zero. The cost of capital is represented by the opportunity cost of intertem-
poral relocation of unsold output. Firm #’s instantaneous profits i are

mi(t) = p(t)g(t). (4)
Firm 7 maximizes the discounted flow of its profits:
Ji = /oo eipt’ﬂ'l(t) dt (5>
0

under the constraint (3) imposed by the dynamics of the state variable k;(t).
Notice that the state variable does not enter directly the objective function.

For future reference, we first outline the features of the demand function
(2) in terms of the elasticity of demand w.r.t. price, £g . The price elasticity
of demand can be written as follows:

e = - Q)  p(Qa) _ ap®
YT (Q) Q@) A—po

(6)

3 The Cournot equilibrium

In solving the quantity-setting game between profit-secking agents, we shall
focus upon a single firm. The relevant objective function of firm 7 is:

F= [T a) - [A—a() - Q) (7)

where Q_;(t) = 3,4 q;(t) is the total output of the n — 1 rivals of firm 4
at time t. The function (7) must be maximised w.r.t. ¢;(¢), under (3). The
corresponding Hamiltonian function is:

H) = e {alt) - [A—g:(t) — Q (D] + N(0) [ (k1)) — as(t) — Ohi(1)]},
(8)

where \;(t) = p,;(t)e?t, and p,(t) is the co-state variable associated to k; (t)
We adopt the open-loop Nash equilibrium as the solution concept.?

2The limitations affecting the open-loop solution are well known (see Kydland, 1977;
Fudenberg and Tirole, 1991, pp. 520-36, inter alia). In line of principle, the closed-loop
solution would be preferable. However, the form of the instantaneous payoff used in this
setting does not allow us to pursue the closed-loop equilibrium. For a more detailed
discussion of this issue, see Reinganum (1982b), Mehlmann (1988) and Basar and Olsder
(19952).



The necessary and sufficient conditions for a path to be optimal are:

OH(t) o
A (1) = |A—q(l) — ;%(t) + (9)

g(t) - Ao el ?# )] + i) p = 0;
—3253 - 8/39 = 82??) = lp+6—= [ k()] X(0); (10)
lim pi(t) - ki(t) = 0. (11)

Condition (9) implicitly defines the reaction function of firm i to the rivals’
output decisions. Rewrite (9) as follows:

1

e T e Amew-Sae] |
A= al) JZ#‘-’J“)] SR e R A Ll
(12)
that is
A—qt) - g " 1- %:(1) — () =0 (13
ai(t) ;q(t)] [ o (A—alt) — S 0) (t) =0 (13)

In order to simplify calculations and to obtain an analytical solution, we
adopt the following assumption, based on firms’ ex ante symmetry:

; g;(1) = (n = 1)g(t) (14)

Thanks to symmetry, in the remainder we drop the indication the identity
of the firm and rewrite the FOC as follows:

gt { OO =0y




1
a

where we can write [A — ng;(t)]* = p(t), with ¢ < A/n. Therefore:

A e RRU AU

that 1s:

p()a[A - ng()] — p()g:(t) — a[A — ng()] M()
a [A = ng(t)]

—0 (17)

from which we get:

Alp(t) = M) @ = ¢:(t) {p(t) + na[p(t) = A:(1)]} = 0 (18)
Then, we obtain the symmetric per-firm output:

Alp(t) = AMt)]a

(1) = 19
) = ) ) — nra (19)
which can be rewritten in several equivalent ways, e.g.:
¢'(t) (p(1))"*
A1) = pit) - OO (20

The above discussion, in particular (19-20), produces the following result,
which needs no further proof:

Lemma 1 In equilibrium, the following necessarily holds:

g (t) _ ap(t) _ OA() _
o 0= a 0= ot 0
nd ap(t) g (1) OA(1)
p(t) g (t) _
ot 0= ot 0= ot 0.

Equation (20) can be differentiated w.r.t. time to obtain:

N _y_, o) (pO)" 9" (t)  (L—a)q" () (p(1) * Ip(t) _
ot ot « ot « ot

21



Using the symmetry assumption (14) and differentiating the direct demand
function (1) w.r.t. time, we get:

o' (t)  a(p(t)*" ap(t)
ot n oL (22)

which can be plugged into (21) to yield:

(1) 00 (1 1) A= 0r OO0 20y

o 0 ot o ot

T

from which we derive the following:

Lemma 2 The condition 8)57575) = 0 s satisfied when
either Op(t) =0 or¢*(t) = Aaln+1)
ot n(an + 1)
. 9(1) Aafn+ 1)
p(t aln+1
it dao'(t) = =—""-°/
{ ot 0 and g°(1) n(om—l—l)}’
_ Aa(n+1)

provided A # nqg*(t). The solution ¢*(t) s relevant only for

a € (0,1).

n(an + 1)

However, the condition ¢*(t) = Aa(n + 1)/ [n(an + 1)] is relevant only

_ Aa(n+1)

for « € (0,1), as ¢*(t) = > — for a > 1, the condition would

n(an+1) =~ n
imply p(t) < 0. See also below.
Now rewrite (9) as follows:

¢*(t) = alp(t) = AO] ()" - (24)
The above expression can be differentiated w.r.t. time:

0 [ BO) e

dit dit dit

+

—~
[\
Ot

~

(0= 1) ()" * ()~ ) 2 |



or

LA e (20RO NI
20y

Since p(t) — A(t) = ¢*(t) (p(t))lfa /o, (26) rewrites as:

dp(t)  dA(t)
7—7}- (27)

LA _ (e { 1@ )

Now, using the following information:

208, 16 p (o)) A0 (28)

dp(t) _ _ n(@)'™* | 9¢*(1)
)\(t) — p(t) _ @@

we obtain:
Rl 1+ =0 ) 7] ) | (29)
— ()™ o+ 8~ J k(D) [p@) _a() <Z<t>>1a]
that s,
Lo+ B[+ 2 000 - (30)
= — () p+ 68— (k1) [p@) _a@) (z;(t))la]
Define é + g [1 + O‘T_l g () (p(t))a} — 3 (31)
with s
p ig if g"(t) = %%ZZE? (32)
<0 Aa(n +1)
n(an + 1)



so that (30) simplifies as follows:

WO — 2 o0y o+ 8- ko)) oo - LD gy

Then, notice that for all @ > 1, we have 8 > 0 if n > 1/a. Otherwise, the
sign of 3 is ambiguous.
We are now in a position to state what follows:

Theorem 1 The steady state requirement, dq*(t)/dt = 0 is satisfied if

P(kW) = p+5
* I-a Q Y o
COE'T gy Ao A Ve

p(t) =

and A
pt)=0=q¢"t)=—,Va>1.
n
Ifa € (0,1), g*(t) = A/n does not represent a solution to dg/dt = 0.

Proof. The proof largely relies on Lemma 2 and the above discussion. To
complete it, just observe that, for all o > 1, we have

Aa A Aa(n+1)
< =< —7=

34
l+an n  nlan+1) (34)
so that 3 > 0 everywhere, while for all « € (0, 1),
A A 1 A
< < a(n+1) < — (35)
l+an  nlan+1) n

so that 3 > 0, when evaluated in the steady state, where surely o > 1/n. B

We are now able to draw a phase diagram in the space {k, ¢} , in order to
characterise the steady state equilibrium. For the sake of simplicity, consider
first the case o € (0,1). The locus q= dq/dt = 0 is given by ¢ = Aa/(14an)
and f'(k) = p+6 in figure 1. Notice that the horizontal locus ¢ = Aa/(1+an)
denotes the usual equilibrium solution we are well accustomed with from

the existing literature dealing with static market games (see Anderson and
Engers, 1992, 1994; Lambertini, 1996). The two loci partition the space {k, ¢}

9



into four regions, where the dynamics of ¢ is given by (33), as summarised

by the vertical arrows. The locus k= dk /dt = 0 as well as the dynamics of
k, depicted by horizontal arrows, derive from (3). Steady states, denoted by
M, L along the horizontal arm, and P along the vertical one, are identified
by intersections between loci.

Figure 1: Cournot competition, @ < 1 (and 3 > 0 in ss)

q
A
5 I D
G TN
Ao M/ T i L
A N

kp=f"(p+9)
1)

It is worth noting that the situation illustrated in figure 1 is only one out
of five possible configurations, due to the fact that the position of the vertical
line f'(k) = p+6 is independent of demand parameters, while the horizontal
locus ¢ = Aa /(1 + an) shifts upwards as A and/or « increase. Therefore, we
obtain one out of five possible regimes:

[1] There exist three steady state points, with ky; < kp < kg (this is the
situation depicted in figure 1). M is a saddle point; P is an unstable

focus. L is again a saddle point, with the horizontal line as the stable
arm.

10



[2] There exist two steady state points, with ky = kp < kr. Here, M
coincides with P, so that we have only two steady states which are
both saddle points. In M = P, the saddle path approaches the saddle
point from the left only, while in L the stable arm is again the horizontal
line.

[3] There exist three steady state points, with kp < ky; < ky.Here, P is a
saddle; M is an unstable focus; I is a saddle point, as in regimes [1]

and [2].

[4] There exist two steady state points, with kp < kpr = k. Here, points M
and L coincide. P remains a saddle, while M = L is a saddle whose
converging arm proceeds from the right along the horizontal line.

[5] There exists a unique steady state point, corresponding to P. Here, there
exists a unique steady state point, F?, which is also a saddle point.

An intuitive explanation may be given as follows. The vertical locus
f'(k) = p+ 6 identifies a constraint on optimal capital embodying firms’
intertemporal preferences, i.e., their common discount rate. Accordingly,
maximum output level in steady state would be that corresponding to the
capacity such that f'(k) = 6. Yet, a positive discounting (that is, impatience)
induces producers to install a smaller steady state capacity, much the same
as it happens in the well known Ramsey model. On these grounds, define
this level of k as the optimal capital constraint, and label it as k. When the
reservation price A is very large (or « is large, or n is low), points M and
L either do not exist (regime [5]) or fall to the right of P (regimes [2], [3],
and [4]). Under these circumstances, the capital constraint is operative and
firms choose the capital accumulation corresponding to P. As we will see
below, this is fully consistent with the dynamic properties of the steady state
points.

Notice that, since both steady state points located along the horizontal
locus entail the same levels of sales, point L is surely inefficient in that it
requires a higher amount of capital. Point M, as already mentioned above,
corresponds to the optimal quantity emerging from the static version of the
game. It is hardly the case of emphasising that this solution encompasses
both monopoly (when n = 1) and perfect competition (as, in the limit,
n — o0). In M, marginal instantancous profit is nil.

11



We can sum up the above discussion as follows. The unique efficient and
non-unstable steady state point is P if kp < kj;, while it is M if the opposite
inequality holds. Such a point is always a saddle. Individual equilibrium
output is ¢f, = Aa/(1 + an) (where subscript ss stands for steady state) if
the equilibrium is identified by point M, or the level corresponding to the
optimal capital constraint k if the equilibrium is identified by point P. The
reason is that, if the capacity at which marginal instantaneous profit is nil
is larger than the optimal capital constraint, the latter becomes binding.
Otherwise, the capital constraint is irrelevant, and firms’ decisions in each
period are solely driven by the unconstrained maximisation of single-period
profits. It is apparent that, in the present setting, firms always operate at full
capacity. The possibility for firms to choose capacity strategically has been
extensively debated in static settings, modelled either as one-shot games (see
Levitan and Shubik, 1972; Kreps and Scheinkman, 1983; Davidson and De-
neckere, 1986; Osborne and Pitchick, 1986), or as repeated games (see Brock
and Scheinkman, 1985; Benoit and Krishna, 1987; Davidson and Deneckere,
1990). However, this literature envisages the possibility for firms to choose
capacity in order to affect the equilibrium behaviour at the market stage,
which in our model would correspond to the steady state in M. From the
above discussion, we know that such a decision never arises in the differential
game, where the endogenous boundary to capacity accumulation is given by
the Ramsey rule, which, by definition, does not appear in the static games
on capacity constraints.

When optimal output is ¢}, the steady state price is

p- () (30

14+ an
The per-firm instantaneous profits in steady state are
P}

w=a () (37)

1+ an

~ e ~
while they are 7%, = k (A — nk:) “ if optimal output is k.

Now consider the case o > 1. Here, there exists the additional horizontal

A Aa
arm given by ¢ = — >
n l4+an

. The overall situation is depicted in figure 2.

12



Figure 2: Cournot competition, o > 1 (and 3 > 0 always)

Aclnt) | _ _ _ _ _ _|_ _ __ _ _ ___ ______

n(an+1)
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1

N
)
/

14+an

kp=f"Yp 6)1

_I_
JH(8)

Points M, P and L are characterised as in the previous case (where
a € (0,1)). The features of points U and V can be quickly summarised
as follows. From the direction of arrows in figure 2, it appears that point U
is completely unstable, while point V is clearly inefficient, and can be dis-
regarded. Notice finally that U portrays a situation where Cournot players
would indeed behave as perfect competitors. This also appears in the first
order condition of the static game (see, e.g., Lambertini, 1996, p. 331), where
g = A/n is a minimum. Steady state profits per-firm are as above.

It is worth stressing that the foregoing analysis encompasses the set-
tings examined by Fershtman and Kamien (1984) and Cellini and Lamber-
tini (1998). Fershtman and Kamien (1984) consider an homogenous-good
duopoly where firm always sell a quantity equal to the installed capacity at

time t. Therefore, in their paper the steady state at ¢ = does not ap-

+an
pear. Cellini and Lambertini (1998) extend Fershtman and Kamien’s model,

to account for the equilibrium dictated by demand parameters. Although
allowing for product differentiation, they confine to a linear demand setup.
Theorem 1 produces the following relevant corollaries:

13



Corollary 1 In the steady state at M, the elasticity of demand w.r.t. price

1
18 constant and it 18 = — for alla > 0.
n

*
E:stypss

Proof. To prove the above Corollary, plug the steady state output of the
overall population of firms, Q*, = ng*, = nAa/(1 4+ an) into (6) to obtain:

~ L (33)

T

*
E:stpss

The explanation for this result is intuitive. In general, the pricing behav-
iour of a Cournot oligopoly is described by:

S; /

(@) (14 2) =<l (39
where s; = ¢;/Q and c;(qi) define, respectively, the market share and marginal
cost of firm i. (see Novshek, 1980). In our setting, c;(qi) is constant, so that
optimal per-firm output is chosen so as to determine the price as a constant
markup over marginal cost.

Corollary 2 As the number of firms tends to infinity, the steady state equi-
librium at point M reproduces perfect competition, for all o > 0.

A
Proof. To prove the above statement, recall that Q% = ngl, = 17:_ a ,
an
and check that A
lim ——— = A. (40)

Corollary 3 The steady state capital is everywhere non-decreasing in c.

Proof. To prove the above result, it suffices to observe that, given the
assumptions about technology, then in general dq(t)/9k(t) > 0 to the left of

point P, and
. ok*(t)| . Oq*(t)
sign B0 (= sign -y

14



in the same range, where clearly dg*(t)/0a > 0. This holds for all k*(t)
as determined by point M. If M coincides with P, then the optimal cap-
ital endowment is given by the Ramsey rule. This argument implies the
Corollary. B

The above entails that the dynamic description of a Cournot oligopoly
with non-linear demand allows us to endogenise and characterise, to some
extent, production costs in the form of intertemporal accumulation of capital.
This has to be contrasted with the static approach to the same market, where
accounting for firms’ size in the form of installed capital gives rise to corner
solutions in output levels, since in the static model there is no endogenous
optimization describing the rational choice of capacity.

4 The social optimum

The solution of the planner’s problem can be quickly dealt with, as its analysis
is largely analogous to but simpler than the oligopoly equilibrium. First of all,
notice that, as operative unit production cost is constant (and nil), and tech-
nology is concave (or equivalently, there are decreasing returns to scale, since
we have assumed f' = 9f (k;(t))/0k;(t) > 0 and 7 = 8 f(k;(t))/0k;(t)? <
0), the planner finds it optimal to decentralise production in n firms (or
plants).

The social planner maximises social welfare, defined as the sum of pro-
ducer and consumer surplus:

SW(t) =11(t) + CS(t) (41)
where
(t) = Z (1) (42)
with m;(t) = gi(t) (A — Q(t))~ , and

o) = [T (- s st = 9= [ - (- Q)| )

Technicalities are largely analogous to the case of the Cournot oligopoly.
Therefore, we confine to the characterisation of the planner’s solution in
terms of outputs and capital endowments.

15



The steady state solutions for the planner are f'(k;(t)) = p 4+ 6 and
qSP(t) = A/n, where the superscript SP stands for social planning. Notice
that the demand-driven solution corresponds to an overall output Q5F(t) =
A. The latter is the perfectly competitive output for the whole market, at
which p(t) = 0. It is then trivial to prove that this also coincides with the
steady state of the Bertrand market game.?

Notice that the above argument concerning capacity-constrained com-
petition extends to this case as well. Under either Bertrand competition or
social planning, firms operate at full capacity in steady state along both arms
(f'(ki(t)) = p+ 6 and ¢5F(t) = A/n). Under no circumstances they would
find it rational to limit capacity in order to play a Cournot equilibrium a Ila
Kreps and Scheinkman (1983).

In the steady state given by ngSF(t) = A, we have:

SP SP QAT
SWSS = CSSS = (44>
1+«

while obviously TI¢F = 0.

Finally, we can assess the welfare distortion associated to the steady state
Cournot equilibrium where (%, = ng},, compared to the above social opti-
mum. We obtain the following:

Proposition 1 The welfare distortion due to Cournot competition is de-
creasing both in o and in n.

Proof. Consider that the welfare distortion, i.e., SWSF — SW?, is propor-
tional to the difference between the output level of the planner and the overall
steady state production of the Cournot firms:

A
SP Q* — 7 (45>

88 88 1+Oé/n,

which is everywhere decreasing both in o and (obviously) in the number of
firms operating in the Cournot setting, n. This implies the Proposition. B

The fact that the welfare loss associated to oligopoly is decreasing in
the number of Cournot agents is not surprising at all. The intuition behind

3This is due to the assumption of product homogeneity. With differentiated products
(as in Cellini and Lambertini, 1998), equilibrium outputs under both social planning and
Bertrand competition would depend upon .

16



an analogous effect, associated with an increase in «, can be immediately
interpreted as follows. Any increase in « entails that the area between the
demand function and the axes (p and Q) becomes larger. The same holds for
each individual output ¢l,. Thus, increasing the size of the market translates
into increasing the toughness of competition and welfare. Given the socially
efficient output at Q37 (t) = A, the foregoing argument implies that the
Cournot welfare loss must decrease as o becomes higher.

If the planner operates with a single firm, the picture modifies as follows.
Expression (42) becomes:

Q=

(1) = Q) (A= Q1))

The relevant Hamailtonian is then:

(46)

H(t) =e " {II(t) + CS() + MO [f (k(1) — Q) = k()]}  (47)

where again A(t) = p(t)e?t, and p(t) is the co-state variable associated to
k(t). For the sake of brevity, we can confine attention to the following FOCs:

IH(D) (A= Q)= 240 — Q()(1 +20)] — A(t) _
oQ(t) cvert =0 (48)

and

OH(t)  owp(t)  OA(t)
TR o A

Irom (48) we easily obtain:

=[p+ 6= J(EW)AL). (49)

sign {%Et)} — sign {a2 (A— Q). X(t)} (50)

from which we derive the steady state solutions for the planner, f'(k(t)) =
p+6 and Q5 (t) = A. Notice that, given decreasing returns to scale, although
the demand-driven solution remains the same as above, with ¢S (t) = A/n,

we would obviously observe f'(k;(t)) > f'(k(t)) both in the demand-driven
equilibrium and in the Ramsey equilibrium. As a result, we have:

Proposition 2 The Cournot outcome coincides with social planning at the
Ramsey equilibrium, if and only if the number of plants is the same in the
two setlings.

17



5 Concluding remarks

We have taken a differential game approach in order to study how market
demand - in particular, the curvature of the demand function - affects firms’
behaviour concerning the accumulation of capacity over time, in a Cournot
oligopoly.

The main results can be summarised as follows. First, there are configu-
rations of parameters (i.e., sufficiently high discount and depreciation rates,
and/or a sufficnetly concave demand function) where capacity in steady state
is dictated by the pure capacity accumulation rule a la Ramsey. In such cases,
the long-run equilibrium does not replicate the optimum of the static prob-
lem, the reason being that firms are very impatient or capital depreciates
too fast.. As a comnsequence, the capacity required to suatin the “market
optimum” which we are accustomed with from the static analysis is too ex-
pensive, in terms of the discounted value of the investement. The same
argument applies as o becomes increasingly high, i.e., demand becomes in-
creasingly concave.

On the contrary, in the parameter range where the steady state repli-
cates the static solution, we obtain that the curvature of demand affects not
only the output (as it happens in the static game), but also the optimal ca-
pacity. In particular, the link is positive: the higher is «, the larger is the
accumulated capacity in the steady state equilibrium.

As to the social optimum, when the steady state occurs in correspondence
of the Ramsey equilibrium, then it coincides with the Cournot equilibrium
if the planner operates with the same n firms playing the noncooperative
market game. Therefore, social welfare in steady state coincides in the two
regimes. Otherwise, this coincidence disappears. Otherwise, when the steady
state replicates the market equilibrium, oligopoly is inefficient and the dead-
weight loss due to Cournot behaviour decreases in «, the reason being that
the Cournot market approaches perfect competition as « increases, while the
socially efficient output is unaffected by the curvature of demand.

18



References

[1]

[10]

[11]

[12]

Anderson, S.P. and M. Engers (1992), “Stackelberg vs Cournot
Oligopoly FEquilibrium”, International Journal of Industrial Organiza-

tion, 10, 127-35.

Anderson, S.P. and M. Engers (1994), “Strategic Investment and Timing
of Entry”, International Economic Review, 35, 833-53.

Basar, T. and G.J. Olsder (1982, 1995?), Dynamic Noncooperative
Game Theory, San Diego, Academic Press.

Benoit, J.-P. and V. Krishna (1987), “Dynamic Duopoly: Prices and
Quantities”, Review of Economic Studies, 54, 23-35.

Brock, W. and J. Scheinkman (1985), “Price Setting Supergames with
Capacity Constraints”, Review of Economic Studies, 52, 371-82.

Cellini, R. and L. Lambertini (1998), “A Dynamic Model of Differenti-
ated Oligopoly with Capital Accumulation”, Journal of Economic The-
ory, 83, 145-55.

Davidson, C. and R. Deneckere (1986), “Long-Run Competition Capac-
ity, Short-Run Competition in Price, and the Cournot Model”, RAND
Journal of Economics, 17, 404-15.

Davidson, C. and R. Deneckere (1990), “Fxcess Capacity and Collu-

sion”, International Economic Review, 31, 521-41.

Fershtman, C. and M.I. Kamien (1987), “Dynamic Duopolistic Compe-
tition with Sticky Prices”, Econometrica, 55, 1151-64.

Fershtman, C. and E. Muller (1984), “Capital Accumulation Games of
Infinite Duration”, Journal of Economic Theory, 33, 322-39.

Fudenberg, D. and J. Tirole (1991), Game Theory, Cambridge, MA,
MIT Press.

Kamien, M.L., and N. Schwartz (1979), “Optimal Capital Accumulation
and Durable Good Production”, Zeitschrift fiir National Okonomie, 37,
25-43.

19



[13]

[20]

[21]

[22]

[23]

[24]

Kreps, D. and J. Scheinkman (1983), “Quantity Precommitment and
Bertrand Competition Yield Cournot Outcomes”, Bell Journal of Eco-
nomics, 14, 326-37.

Kydland, F.E. (1977), “Equilibrium Solutions in Dynamic Dominant
Player Models”, Journal of Economic Theory, 15, 307-24.

Lambertini, L. (1996), “Cartel Stability and the Curvature of Market
Demand”, Bulletin of Economic Research, 48, 329-34.

Levitan, R. and M. Shubik (1972), “Price Duopoly and Capacity Con-

straints”, International Economic Review, 13, 111-23.
Martin, S. (1993), Advanced Industrial Economics, Oxford, Blackwell.
Mehlmann, A. (1988), Applied Differential Games, New York, Plenum

Press.

Novshek, W. (1980), “Cournot Equilibrium with Free Entry”, Review
of Economic Studies, 47, 473-86.

Osborne, M. and C. Pitchik (1986), “Price Competition in a Capacity-
Constrained Duopoly”, Journal of Economic Theory, 38, 238-60.

Reinganum, J. (1982a) “A Dynamic Game of R&D: Patent Protection
and Competitive Behavior”, Econometrica, 50, 671-88.

Reinganum, J. (1982b), “A Class of Differential Games for Which the
Closed Loop and Open Loop Nash Equilibria Coincide”, Journal of Op-
timization Theory and Applications, 36, 253-62.

Simaan, M. and T. Takayama (1978), “Game Theory Applied to Dy-
namic Duopoly Problems with Production Constraints”, Automatica,

14, 161-66.

Tirole, J. (1988), The Theory of Industrial Organization, Cambridge,
MA, MIT Press.

20



