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Abstract

A methodological discussion is proposed, aiming at showing that game the-

ory in particular (and mathematical economics in general) and quantum

mechanics are isomorphic. This result relies on the equivalence of the two

fundamental operators employed in the two fields, namely, the expected value

in economics and the density matrix in quantum physics. This coincidence

can be traced back to the contributions of von Neumann in both disciplines.
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1 Introduction

Over the last fifteen years, a growing amount of attention has been devoted
to the history of game theory. Among other reasons, this interest can largely
be justified on the basis of the Nobel prize to Nash, Harsanyi and Selten in
1994.1

However, the literature dealing with the history of game theory mainly
adopts an inner perspective, i.e., an angle that allows us to reconstruct the
developments of this sub-discipline under the general headings of economics.
My aim is different, to the extent that I intend to propose an interpretation
of the formal relationships between game theory (and economics) and the
hard sciences.

A largely accepted view maintains that the foundations of both game the-
ory and, in general, contemporary mathematical economics are to be found
in The Theory of Games and Economic Behavior (von Neumann and Mor-
genstern, 1944).2 From that work onwards, we observe the widespread use
of the operator known as expected value in economics. Traditionally, and
correctly, the roots of such operator are traced back to statistics (see Fish-

burn and Wakker, 1995, and the references therein). However, this view

LOn the history of game theory, see Aumann (1985, 1987, 1999), Weintraub (1992),
Leonard (1994, 1995) and Myerson (1999), inter alia. On the appraisal of the role of game

theory in contemporary economics, see van Damme and Weibull (1995).

’In von Neumann and Morgenstern (1944), the concept of stable set for cooperative
games complements the minimax theorem (von Neumann, 1928) for noncooperative games.
However, the latter is applicable only in zero sum games. Nash (1950) introduced an
equilibrium concept for non-zero sum noncooperative games, and the bargaining solution

for cooperative games (Nash, 1951).



does not grasp an interesting aspect in common between mathematical eco-
nomics and physics, in particular quantum physics, that is, the fact that both
theories transmit a largely analogous message concerning our knowledge (or
representation) of real world phenomena. Our ex ante knowledge (i.e., our
forecasting capability) is defined in the same probabilistic terms, indepen-
dently of whether we examine the behaviour of subatomic particles or the
behaviour of firms and consumers.

What I want to show in the remainder is that this coincidence (pointing
ultimately to the idea that our knowledge is modelled in the same way irre-
spectively of the specific field?), has been largely shaped through the activity
of a single researcher, John von Neumann, who, over a dozen years (1932-
44) has ‘fixed’ the basic ideas in both disciplines by giving them the same
methodology, thus making them largely isomorphic to each other. The key to
this interpretation is the operator labelled as expected value by economists
and density matrix by physicists.

In the first edition (in German) of Mathematical Foundations of Quantum
Mechanics, von Neumann (1932) adopts the term Erwartungswert, which
in English is expectation value. This also appears in von Neumann and
Morgenstern (1944), while in the following economic literature it usually
becomes expected value. In physics, expectation value is used to indicate
the elementary notion of the mathematical expectation of a random variable,
while density matrix indicates, rather loosely speaking, the random outcome
of an experiment.

In the following section, I offer a succinct view of the formal equivalence

3On this issue, see Penrose (1989).



between the two theories (and the way they build up their predictive power),

through a well known parable in quantum physics.

2 The isomorphism between mathematical eco-

nomics and quantum physics: a sketch

Quantum physics (and its proper subset, quantum mechanics) can approx-
imately be considered (not all physicists agree on this matter) as a gen-
eralisation of Newtonian physics (and mechanics). In particular, when the
phenomena being investigated involve (1) speeds which are considerably lower
than the speed of light in vacuum; (ii) sufficiently low gravity; and (iii) ob-
jects which are neither too small nor too big, then one can proceed according
to the standard Newtonian model. Yet, when it comes either to the very
basic particles (e.g., sub-atomic particles like electrons), or to the behaviour
of objects characterised by an extremely high gravitational force (e.g., black
holes, quasars and pulsars), quantal features become so relevant that they
cannot be disregarded.

As an illustrative example, consider the story traditionally known as
Schrédinger’s paradox or Schrédinger’s cat-in-the-box, which I am about

to tell according to a vulgata commonly adopted in the current literature in

the field.*

4Erwin Scrhédinger, together with Bohr, Einstein, Dirac, Heisenberg and Pauli, is one
of the founding fathers of quantum physics. The remainder of this section borrows from
Hawking and Penrose (1996) and Penrose (1997). For further (and much more technical)
readings, see Sakurai (1985), Schwabl (1992), and Gasiorowicz (1996), inter alia.



This paradox refers to an experiment, where a cat is locked in a box, in
front of a handgun, which is loaded.® The box is opaque to both light and
sound, so that the physicist must open it to observe the cat’s conditions.
The trigger is linked to a sensor, located outside the box, in front of a bulb.
Assume the physicist can switch on the bulb, producing a single quantum
of light (a photon) at a time. The sensor measures the spin of the photon.
In the remainder, I will assume conventionally the following. If the photon
rotates rightwards (i.e., the spin is positive), then the sensor pulls the rope
(and the trigger), and the handgun shoots the cat dead. If instead the photon
rotates leftwards (i.e., the spin is negative), then the sensor does not pull the
rope (and the trigger), so that the cat survives.

The paradox takes place in the physicist’s mind before the experiment is
carried out, or, equivalently, before he opens the box to see whether the cat
is still alive or not. The physicist knows that, ex post, the cat is going to
be either dead or alive. However, ex ante, the two states of the system-cat
(i.e., alive and dead) as well as the two states of the world (that can be
labelled as the handgun shot because the spin was positive, and the handgun
didn’t shoot because the spin was negative) coexist in the experimenter’s

mind. This paradox persists until he opens the box to observe the cat’s

>This can be viewed as a Gedankenexperiment (thought experiment), in that we must
not necessarily lock a cat into a box to verify the validity of what follows. In general, a
Gedankenexperiment “is consistent with the known laws of physics, even though it may
not be technically feasible. So, measuring the acceleration due to gravity on the surface of
the sun is a Gedankenexperiment, whereas measuring the Doppler shift of sunlight as seen
from a space ship moving with twice the velocity of light is nonsense” (Gasiorowicz, 1996,

p. 21, fn. 14). In the present case, replace technically feasible with politically correct.



health conditions.

I will formalise the experiment by introducing the following:

Definition 1 ¢ = {ca,cd} is the wave function, or the state vector of the

system (the cat).

In Definition 1, intuitively, ca = “the cat is alive”; cd = “the cat is dead”.

Moreover,
Definition 2 ¥ = {hs, hds} is the vector of the states of the world.

In Definition 2, intuitively, hs = “the handgun shot (because the spin
was positive)”; hds = “the handgun did not shoot (because the spin was
negative)”.

Finally, we have

Definition 3 ¢ = {ca,cd} is the state vector of the physicist carrying out

the experiment.

The reason why ¢ seems to coincide with the wave function ¢ will become
clear in the remainder. The ex ante overlapping between the states of the

system, is accounted for by the total state vector of the system:

W10 = wlca) + pled) (1)

where both w and p belong to C and |-) is called ket. Its complement (- |
is called bra, and (- |-) is called Dirac’s brackets, after P.A.M. Dirac who
introduced this terminology in 1930 (see Dirac, 1930, 1958%; see also Dirac,
1925).



As soon as the experimenter opens the box to observe the state of the
system, the wave function 1 collapses, that is, there takes place the so-called
reduction of the state vector |,,). Hence, the experimenter observes either
ca or cd, but surely not both states at the same time. On the contrary, as
long as the experimenter does not open the box, the two state coexist in a
quantal sense.’

For reasons that I do not dwell upon here, w and p are complex numbers.”
In particular, what I am interested in, is the information that the modulus
of both w and p is equal to 1/ V2. To the square, this yields 1 /2, which is the
probability that the photon have either a positive or a negative spin. This, as
we shall see in the remainder, has relevant bearings upon my aim of showing
the existence of an isomorphism between quantum physics and mathematical
economics (game theory in particular).

The total state vector of the experimenter can be constructed to look like

that of the system (but recall that the two vectors do not coincide):
<<70tot’ :w<Ca’+p<cd] , (,u:p:l/\/é (2>

In probabilistic terms, the experimenter’s ex ante knowledge about the
states that the system can take ex post is summarised by the so-called density
matrix:

D = Slea) cal + led)ed] 3)

Physicists have lively arguments concerning the alternative interpretation of such a
statement, i.e., whether states ca and cd coexist in parallel universes or in the experi-
menter’s mind. As far as the present paper is concerned this distinction, although intrigu-

ing, can be disregarded.

"See the appendix. For further discussion, see, inter alia, Sakurai (1985), Schwabl

(1992) and Gasiorowicz (1996).



which is defined as the scalar product of the two total state vector, i.e.,
|9V0r) * {Vpor]- The introduction of the density operator can be traced back
to Dirac (1930, 1958") and reappears in von Neumann (1932 [1955]). This
indicates that the isomorphism between (i) the theory of expected utility,
game theory and contemporary mathematical economics in general, on one
side; and (ii) quantum mechanics on the other side, can hardly be considered
as accidental.

In Theory of Games and Economic Behavior, von Neumann makes use
of a toolkit borrowed from Dirac’s formalisation of quantum mechanics,®
However, von Neumann does not bother to make it explicitly known either

to economists or to physicists.

Expression (3) can be rewritten equivalently as follows:
1 1
D = §<ca]ca> + §<cd]cd> : (4)

from which there emerges a clear analogy with what economists would call
expected value. Indeed, w? = p?> = 1/2 are the probabilities that the spin
of the photon be either positive or negative. Therefore, the density matrix
corresponds to the expected value of the experiment, which an economist
would write:

1 1
E(experiment) = E(ca |ca) + §<Cd | ed) . (5)

Notice that the above reads the same in both disciplines, independently of
whether we write it as in (4) or as in (5), L.e., “with probability 1/2 T will

8von Neumann himself motivates his interest in quantum physics on the basis of his

dissatisfaction with Dirac’s formalisation of the theory (Dirac, 1930, 1958%), in particular

with the 6 function (see the author’s preface in von Neumann, 1932 [1955]).



observe a dead cat because the cat is in fact dead (or, because the handgun
shot, as the spin was positive), and with the same probability I will observe
that the cat is still alive (because the handgun did not shoot, as the spin was
negative)”. Observe that the meaning of symbol | in brackets is exactly the
same in both cases.

The above describes the procedure usually adopted in economics to solve
games in mixed strategies.’

At this stage, one could rewrite (5) in terms of the vector of the states of
the world, ¥ :

E(esp) = 1(0@] hds) + %(cd | hs) . (6)

2
Now I would like to stress that, when economists build up the expected
value of an agent’s payoff, they face exactly the same kind of paradox which
I have illustrated above concerning the reduction of the state vector in the
Schrédinger’s cat example. Hence, also in economics the issue is the transi-
tion from the ex ante (quantal) prevision to the ex post (Newtonian) obser-

vation. In both settings, the limit to our knowledge is inherently given by

the indeterminacy'’ associated to (i) the measurement in physics and (ii)

®The same discussions taking place amongst economists concerning the interpretation
of a Nash equilibrium in mixed strategies as opposed to the pure-strategy equilibrium, also
occur amongst physicists as to the credibility of the quantistic description of the world,
as opposed to the Newtonian description. The latter discussion can be traced back to the
famous dispute between Niels Bohr and Albert Einstein, who, while being one the fathers
(although less than voluntarily) of quantum theory, claimed that “God doesn’t toss any
dies”. For a contemporary revisitation of the dispute, see Hawking and Penrose (1996),

with Hawking in Bohr’s role and Penrose in Einstein’s.

10T his is the so-called Heisenberg’s principle, which can be given a vulgata through the

following example. We cannot know at the same time how fast an electron is moving, and



the (random) transition {rom a mixed strategy to a particular pure strategy
in game theory.!!
The analogy with well known situations in game theory is quite immedi-

ate. Consider the following game in normal form.

B
s d
A a wala,s),mp(s,a) wala,d),7p(d,a)
b 7wal(b,s),7p(s,b) wa(b,d), 75(d,D)

Matrix 1

In general, the game represented in matrix 1 has at least an equilibrium
in mixed strategies (and possibly several in pure strategies). Define as «
the probability that player A chooses strategy a, and 3 the probability that
player B chooses s. Obviously, the probabilities that b and d are chosen are,
respectively, 1 — a and 1 — . We can write the expected value of the payoff

accruing to player A :
E (WA) = Oéﬂ?TA<CL, S) + Oé(l - ﬂ)ﬂA<a’7d) +
(1—a)pra(d,s)+ (1 —a)(l—F)ma(b,d), (7)

which A must maximise w.r.t. o. We can construct F (74) likewise. In the

physicists’ jargon, expression (7) could be defined as the density matrix of

where it is. The knowledge we can produce confines to the wave function, yielding the

probability that the electron be within a certain interval, given its speed.

1 Observe that the interpretation I am proposing here does not modify the established
wisdom about the source and evolution of the theory of expected utility (see, inter alia,

Fishburn and Wakker, 1995).



the game for player A, and could be rearranged as follows:

D(wa) = ab(mala,s)s) +a(l = B)(zala,d)|d) +

(1 = a)B(ma(b, s)]s) + (1 = a)(1 = P)(ma(b,d)|d) . (8)

One could raise the objection that, in a game, probabilities are chosen by
players, while in physics they are given by Nature. As a counter-objection,
one could put forward the model of the market for lemons (Akerlof, 1970) or
the games illustrated in Bassan, Scarsini and Zamir (1997), or else point to
the games with incomplete information (Harsanyi, 1967), where the states of
the world are mutually exclusive and realise with probabilities dictated by
Nature.

As an illustrative example of the latter class of games, one could examine
the behaviour of a firm (say, for simplicity, a monopolist) in a market where
the demand function is stochastic (see Leland, 1972; Klemperer and Meyer,
1986, 1989, inter alia). Suppose demand can take any value 9;, i = 1,2, ...n,
with 9; > J;_1 . Deline as

e p;(¥;) the probability of 9;, with >\  p;(9;) = 1;
e 7;(Y;,q;) the profit accruing to the firm in state i.

The states of the world {¥;} may refer to the political situation, the oil
crisis, and so on and so forth. What matters is that they relate the profits of
the firm to exogenous environmental features controlled by Nature. Ex ante,
the firm chooses the output level in order to maximise the expected value
of profits, le., E(m) = Y. pi(¥;) - m:i(Y;,¢;). This could be translated in

the jargon of physics by saying that the firm aims at maximising the density

10



matrix of profits. Ex post, the equilibrium profits accruing to the firm will
depend upon the precise realisation of . That is, the value of m becomes
known as soon as the reduction of the state vector takes place.

There are economic problems where the economic agent’s ex ante knowl-
edge is sufficient to reveal with certainty how the situation will look like ex
post. To illustrate this issue, consider the following simplified version of Ak-
erlof’s (1970) lemons market, where lemons are low-quality second-hand cars.
A customer, interested in buying a second-hand car, faces a population of sell-
ers, each offering a car whose quality can be either g = H or g = L (H > L),
with probability p(H) = p(L) = 1/2. The metaphor usually adopted to tell
this story is that Nature extracts randomly one seller from the population of
sellers, half of which have good quality cars. Therefore, a priori, the potential
buyer can compute the expected quality as E(q) = (H + L)/2. This is also
the price the buyer is willing to pay. In the symbology adopted in physics,

such expression would write as the following density matrix of quality:
1 1
D(q) = g{H|H) + S(LIL) - 9)

This, ex ante, entails the overlapping of qualities (or states) in a quantal
sense. In the present case, however, the collapse of this overlapping takes
place before the transaction is carried out. To see this, examine the sellers’
perspective. Each seller knows the quality of his own car. Hence, any car
which is being offered on the market, given the buyer’s evaluation E(q) =
(H + L)/2, must necessarily be a poor quality one. Therefore market fails

because the buyer know that he could only buy a lemon at too high a price.

11



Appendix: Dirac’s notation

Dirac (1930, 1958%) introduced the following notation that applies to finite
dimensional vector spaces as well as to Hilbert spaces.
Associate to the wave function ¢ a state vector |[¢0) , called ket, and define

the quantity (| as bra.!? Then,

/ dzp = (o) (a1)

The integral involving an operator W can be written as

/ dag Wip = (W) = (o] W |49) (a2)

If a number w is considered, then it can be taken out of brackets, with:

(plw) = w {p|) (a3)
and
(wely) = w* ([¥) (ad)
The density operator is
D = |4} (¥ (a5)

Now, since 1)) = > . w; |u;) , we have

D =) (W] =Y (wi)” |us) (us] (a6)

%

or, more generally,

D =) (]| = sz‘wa‘ Jui) (uyl (a?)

12, %
¥

is the complex coniugate wave function. See Gasiorowicz (1996).

12
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