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Abstract

We revisit the discussion about the relationship between price�s

cyclical features, implicit collusion and the demand level in an oligopoly

supergame where a positive shock may hit demand and disrupt col-

lusion. The novel feature of our model consists in characterising the

post-shock noncooperative price and comparing it against the cartel

price played in the last period of the collusive path, to single out

the conditions for procyclicality to arise both in the short and in the

long-run.
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1 Introduction

What are the cyclical properties of prices in a collusive oligopoly hit by
a positive demand shock? In their seminal work, Rotemberg and Saloner
(1986) argue that oligopolies are likely to behave more competitively when
demand rises, especially when price is the strategic variable and the good is
homogeneous. Under these circumstances, in fact, the bene�t from deviation
is larger, and the punishment is diminished because it will be implemented
when the expansionary demand shock will have already been absorbed. As
a results, pricing exhibits a countercyclical pattern when demand increases.
In this paper we insert three main modi�cations into the above framework:
i) the presence of product di¤erentitation; ii) the possibility for �rms to
collude, after the occurrence of the demand shock, on virtually any price
between the monopoly and the Nash equilibrium one; and iii) a speci�c role
for two critical demand aspects: the state of demand before the shock hits
the industry, and the size of the shock itself. We show that in the resulting
framework the traditional Rotemberg and Saloner (R&S) result no longer
holds, and a procylical pricing pattern can emerge depending on a) the state
of demand before the shock hits, and b) the size of the demand shock.
The three modi�cations to the standard R&S framework that we put for-

ward have been discussed separately in the literature. The role of demand�s
features has been investigated by Haltiwanger and Harrington (1991), who
extend the R&S analysis to allow for time-varying �rms� expectations on
future demand, by relaxing the assumption of i.i.d. demand shocks so as
to induce serial correlation in the cycle. As a result, they highlight poten-
tial asymmetries in collusive pricing behavior across di¤erent state of the
business cycle, as their �ndings show that collusion is more di¢ cult during
recessions than during booms.1 Along this path, Bagwell and Staiger (1997)
develop a theory of collusive pricing in a framework where aggregate demand
alternates stochastically between slow and fast growth periods, the transition

1Fabra (2006) shows that this result can be overturned if �rms�capacities are su¢ ciently
small. Along the same line, Knittel and Lepore (2010) show that if the marginal cost of
capacity is high enough, prices in booms are generally lower than prices in recession.
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being governed by a Markov process. They �nd that the cyclical behaviour of
collusive prices depends crucially on the correlation of demand growth rates
over time and the expected duration of booms and recessions. In particu-
lar, collusive prices are procyclical in presence of positive demand correlation
through time, and countercyclical otherwise. Furthermore, the amplitude of
collusive pricing is larger when the recession has a longer expected duration
or, conversely, when the boom phase is shorter.
Secondly, the e¤ect of product di¤erentiation on collusion has been widely

investigated without accounting for the occurrence of demand shocks and tak-
ing the level of collusion as given, in most cases at the frontier of joint pro�ts
(see, among others, Deneckere, 1983; Majerus, 1988; Ross, 1992; Friedman
and Thisse 1993; and Lambertini, 1997). Finally, the interplay between prod-
uct di¤erentiation and the intensity of collusion when shocks hit demand has
been explicitly addressed by Colombo (2002) and Raith (1996). The �rst
contribution adopts the same consumer utility function and therefore also
the same demand structure as in our model but (i) restricts the analysis to
full collusion and (ii) assumes a speci�c distribution for the demand shock
over a �nite and compact support, �nding that under Cournot competition
the likelihood of collusion increases when demand is high provided product
di¤erentiation is very high. The second, again referring to full collusion, uses
instead a Hotelling model with stochastic demand to show that an increase
in product di¤erentiation leads to a decrease in the correlation of the �rms�
demand shocks. This, under imperfect monitoring, makes collusion more
di¢ cult to sustain because distinguishing the e¤ects of random shocks and
deviations from collusion becomes more di¢ cult.
So far, in the attempt to assess the link between demand cycle and prices,

these three aspects (demand shock features, product di¤erentiation and in-
tensity of collusion) have been treated separately. In this paper, we inves-
tigate how the they interact when inserted in the standard R&S framework,
when �rms compete in di¤erentiated oligopoly under both Bertrand and
Cournot behaviour. In both settings, we compare the collusive price �rms
charge under two alternative demand states ("low" and "high") with the
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price charged after the occurrence of a positive demand shock a¤ecting the
high demand state and triggering the output cyclical movement.
Our results show that in such a framework the traditional countercyclical

result does not apply in general, and can indeed �ip over depending on the
interplay between the size of the shock, the demand level observed in the last
collusive period and the market variable being set by �rms. More precisely,
the larger the shock the higher the tendency towards the emergence of a
procyclical pricing pattern, as the natural countercyclical tendency due to
competitive behaviour is o¤set by the larger market size, thereby increasing
the Nash equilibrium price. At the same time, as the di¤erence between the
pre-shock state of demands disappears, we observe the arise of countercycli-
cality, as the model takes an increasingly R&S-like �avour.
Although we do not explicitly model partial collusion, our results su¢ ce to

imply that, if post-shock noncooperative pricing exhibits procyclicality, then
by continuity - and, for any given structure of �rms�intertemporal preferences
- any post-shock partially collusive price (up to the new monopoly price level)
which could be sustained by �rms is necessarily procyclical as well.
An additional motivation of our paper can be found in the link with the

related literature on mark-up cyclical properties, which has relevant macro-
economic implications.2 Although a considerable number of contributions
points towards countercyclicality,3 the empirical literature on mark-up cycli-
cal behaviour is not unambiguous. Donowitz et al. (1986, 1988) �nd evidence
on procyclicality in the US; Chirinko and Fazzari (1994) use a dynamic fac-
tor model to estimate markups, �nding that they are procyclical in nine of
the eleven 4-digit industries they analyze. Updating Bils�(1987) analysis -
in favor of countercyclicality - with more recent and richer data, Nekarda
and Ramey (2010) �nd that all measures of markups are either procylical or
acyclical.

2In imperfectly competitive settings, the size of the government spending multiplier is
increasing function of mark-up countercyclicality but decreasing function of its procycli-
cality (Hall 2009, Woodford 2011)

3See Martins et al (1996) on OECD, Chevalier et al. (2003) on the US, Portier (1995)
on France.
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The rest of paper is structured as follows. Section 2 lays out a simpli�ed
version of the acquired model, delivering the traditional R&S results. Sec-
tions 3 and 4 insert our modi�cations and characterises equilibrium prices
under price- and quantity-setting behaviour, respectively. Section 5 summa-
rizes our results by carrying out a comprehensive analysis of price cyclicality
in the post-shock period only, while section 6 looks at the long-run cyclical
properties of pricing over time. Section 7 concludes.

2 The theoretical status-quo

The following is a simpli�ed version of Rotemberg and Saloner�s (1986) setup,
in which we focus on the behaviour of a cartel formed by two �rms, without
further loss of generality.4 As in their paper, we consider an oligopolistic
market with n � 2 single-product �rms, over an in�nite horizon. Time t is
discrete, with t = 0; 1; 2; :::1; and the demand function pertaining to �rm
i at any time t is qit = fi (pit;p�it) ; where qit and pit are �rm i�s output
and price, respectively, and p�it is the vector of the rival �rms�prices. The
function fi (pit;p�it) is assumed to be at least quasi-concave in pit; and, if
products are substitutes in demand, @fi (pit;p�it) =@pj > 0 for all j 6= i.
Firms have identical technologies represented by the cost function �i = cqi;
with �t > c � 0: The pro�t function of the individual �rm is �it = (pit � c) qit
at any t. �t; which measures the reservation price, is stochastic, and in each
period can take one of two values, a > b > 0; with probabilities p (a) = m
and p (b) = 1�m; and m 2 [0; 1] :
We focus our attention on the situation in which �rms aim at colluding

along the frontier of monopoly pro�ts. The supergame unravels following
the rules of Friedman�s (1971) perfect folk theorem, whereby any unilateral
deviation from the collusive path is punished by a permanent reversal to the

4This exposition relies on (and slightly generalises) the simpli�ed version of the coun-
tercyclical pricing model in Tirole (1988, pp. 248-250). It is formally equivalent to (but
more manageable than) the linear model adopted in Rotemberg and Saloner (1986, p. 396,
expressions (8-9)).
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Nash equilibrium of the constituent stage game forever (the so-called grim
trigger strategy). As in Rotemberg and Saloner (1986), suppose �rms set
prices after having observed the state of demand (either a or b).
At any t; collusion delivers the individual expected cartel pro�t:

E�C = m�M (a) + (1�m)�M (b) (1)

whereE denotes expected values, superscriptC stands for cartel and �M (�t) =
�M (�t) =n; �t = a; b; is the per-period symmetric share of monopoly pro�ts
�M (�t) accruing to each �rm in the cartel phase, given the realization of
the demand state �t: As in Rotemberg and saloner (1986), we pose that if a
�rm contemplates the possibility of deviation, it does so in a period of high
demand, obtaining deviation pro�ts �D (a) in that period. Such deviation at
time t is punished via the in�nite Nash reversion from t + 1 to doomsday.
Taking into account the two possible states of demand and their respective
probabilities, the expected per-period Nash pro�ts amount to

E�N = m�N (a) + (1�m)�N (b) (2)

Assuming �rms share identical time preferences measured by a symmetric
and time-invariant discount factor � 2 (0; 1) ; the stability of price collusion
requires � to meet the following necessary and su¢ cient condition:

E�C
1X
t=0

�t � �D (a) + E�N
1X
t=1

�t (3)

which is satis�ed by all

� � �D (a)� E�C
�D (a)� E�N � E�

� 2 (0; 1) : (4)

If a favourable shock " > 0 occurs in state a (while leaving state b una¤ected)
and exerts permanent e¤ects, the high demand state becomes ba = a + " >
a > b: Accordingly, (4) becomes

� � �D (")� E�C (")
�D (")� E�N (") � E�

� (") (5)
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and, as shown in Rotemberg and Saloner (1986, pp. 394-97), @�� (") =@" > 0:
This property indicates that the critical threshold of the discount factor stabi-
lizing full collusion increases with the good state. This is one of the elements
leading to the (by now classical) interpretation of this model, according to
which �rms should collude less if demand gets higher, as the size of the mar-
ket ensures high pro�ts anyway, and this suggests the idea of countercyclical
pricing.
This is certainly true if products are homogeneous, in which case there

exists a single market demand function Q = F (p) and the Nash punishment
involves marginal cost pricing. If some degree of di¤erentiation is present,
however, the price at the Nash equilibrium will be somewhere above marginal
cost and below the monopoly price �rms would set were they able to sustain
full collusion in state ba; but not necessarily below the monopoly price corre-
sponding to state a; let alone state b. Thus, the cyclical properties of price
must be assessed comparing the price charged after the occurrence of the
shock with the price actually charged before the occurrence of the demand
shock disrupting the collusive path. Whenever the former is greater (smaller)
than the latter, we observe a procyclical (countercyclical) pattern. In what
follows, we will conduct this type of analysis both under price (section 4)
and quantity (section 5) competition, under the condition � 2 (0; E�� (")),
whereby �rms are unable to to meet the requirement for the stability of
collusion, given the new level of the high demand state after the shock.

3 Bertrand behaviour

We model an oligopoly with product di¤erentiation à la Singh and Vives
(1984). If �rms are price setters, the relevant direct demand function for
variety i in any period � � t is

qi =
ba

1 + s (n� 1) �
pi [1 + s (n� 2)]� s

P
j 6=i pj

(1� s) [1 + s (n� 1)] (6)

in which parameter s 2 (0; 1] measures the representative consumer�s prefer-
ence for variety, and therefore is an inverse measure of the degree of product

7



di¤erentiation between any two varieties. Parameter ba = a+ " is the vertical
intercept of variety i�s demand after a positive shock hits the high demand
state, leaving state b una¤ected. For the sake of simplicity, in the ensuing
analysis we stipulate that, if indeed �rms are unable to collude on the fron-
tier of monopoly pro�ts in state ba; they play the symmetric non cooperative
Nash equilibrium price of the stage game. Each �rm sets pi so as to max-
imise the single-period pro�t function �i = (pi � c) qi: The relevant �rst order
condition (FOC) is

@�i
@pi

=
(a+ ") (1� s)� (2pi � c) [1 + s (n� 2)] + s

P
j 6=i pj

(1� s) [1 + s (n� 1)] = 0 (7)

which, under the symmetry condition pi = pj = p for all i; j, delivers the
Bertrand-Nash equilibrium price:

pBN (") =
(a+ ") (1� s) + c [1 + s (n� 2)]

2 + s (n� 3) (8)

This must be compared to the cartel prices the same �rms have practiced
along the collusive path up to t�1, i.e., either pM (a) = (a+ c) =2 or pM (b) =
(b+ c) =2; depending of the observed state of demand.
The minimalistic condition for observing a procyclical price behaviour

after the positive demand shock is the following. If the state at t�1 has been
b; reverting to the Nash equilibrium strategy yields nonetheless an increase
in price provided that pBN (") > pM (b), i.e.,

2 (a+ ") (1� s) + c (n� 1) s� b [2 + s (n� 3)]
2 [2 + s (n� 3)] > 0 (9)

which is satis�ed by all

" > max

�
0;
b [2 + s (n� 3)]� 2a (1� s)� c (n� 1) s

2 (1� s)

�
(10)

with
b [2 + s (n� 3)]� 2a (1� s)� c (n� 1) s

2 (1� s) > 0 (11)

for all

b 2
�
bB �

2a (1� s) + c (n� 1) s
2 + s (n� 3) ; a

�
(12)
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since
2a (1� s) + c (n� 1) s

2 + s (n� 3) > c 8 a > c and s 2 (0; 1) : (13)

The foregoing analysis boils down to the following:

Lemma 1 If the state of demand was b at t� 1 and becomes a+ " at t; the
reversion to Bertrand-Nash pricing implies a procyclical price pattern for all

" > max

�
0;
b [2 + s (n� 3)]� 2a (1� s)� c (n� 1) s

2 (1� s)

�
:

In the remainder of the parameter space, the price pattern is countercyclical.

It is worth noting that Lemma 1 entails that if b is su¢ ciently lower
than a, then any positive shock a¤ecting the high demand state produces
a procyclical price behaviour, the switch from collusive to Bertrand-Nash
pricing notwithstanding.
Now we can turn our attention to the case in which at t�1 �rms were col-

luding in correspondence of the high demand state a. The relevant compar-
ison is therefore between the same Bertrand-Nash equilibrium price pBN (")
and the cartel price pM (a), with

pBN (")� pM (a) = 2" (1� s)� (a� c) (n� 1) s
2 [2 + s (n� 3)] > 0 (14)

for all

" >
(a� c) (n� 1) s

2 (1� s) > 0 (15)

always, in the admissible range of parameters. This implies:

Lemma 2 If the state of demand was a at t� 1 and becomes a+ " at t; the
reversion to Bertrand-Nash pricing implies a procyclical price pattern for all

" >
(a� c) (n� 1) s

2 (1� s)

The opposite holds for all " 2 (0; (a� c) (n� 1) s= [2 (1� s)]) :
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It is easily checked that the condition appearing in Lemma 2 is more
demanding than that identi�ed by Lemma 1. To do so, de�ne

"Bb �
b [2 + s (n� 3)]� 2a (1� s)� c (n� 1) s

2 (1� s)
"Ba �

(a� c) (n� 1) s
2 (1� s)

(16)

where superscript B mnemonics for Bertrand, while the meaning of subscript
a; b refers to the demand state in the last stage of the collusive path. Then,
observe that

"Ba � "Bb =
(a� b) [2 + s (n� 3)]

2 (1� s) > 0

everywhere. Accordingly, we may claim:

Proposition 3 The condition " > "Ba su¢ ces to ensure that the reversion
to Bertrand-Nash behaviour involves a procyclical price pattern irrespective
of the demand state realised in the last period of the cartel path.

Obviously, "Ba is independent of b: The graph of
�
"Ba ; "

B
b

	
in the space

(b; ") is drawn in Figure 1. In area I, in which " > "Ba ; procyclical Bertrand-
Nash pricing obtains at t for all b 2 (c; a) ; irrespective of whether the state at
t� 1 was a or b. In area II, in which " 2

�
"Bb ; "

B
a

�
procyclicality is observed

at t only if the state of demand at t � 1 was b. Finally, in area III, the
pricing behaviour at the Bertrand-Nash equilibrium is countercyclical.

10



Figure 1 Critical shock levels in the space (b; ").
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The intuition behind Proposition 3 is straightforward, as the necessary
and su¢ cient condition for observing a price increase when collusion breaks
down is more demanding if the state of demand was high in the last period of
the collusive path. The next section replicates this analysis under Cournot
behaviour.

4 Cournot behaviour

Here, the inverse demand for each product variety i as soon as the shock
takes place is

pi = ba� qi � sX
j 6=i

qj (17)
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so that the resulting FOC writes as follows:

@�i
@pi

= a+ "� c� 2qj � s
X
j 6=i

qj = 0 (18)

for any vector of the rivals� output levels. The symmetric Cournot-Nash
output solving (18) is

qCN (") =
a+ "� c

2 + (n� 1) s (19)

giving rise to the following Cournot-Nash price, incorporating the shock:

pCN (") =
a+ "+ c [1 + (n� 1) s]

2 + (n� 1) s (20)

Proceeding as in the Bertrand case, one has to compare (20) with both
collusive prices prevailing either instate b or a before the occurrence of the
shock. Taking pM (b), one �nds

pCN (") > pM (b), (21)

2 (a+ "� b)� (b� c) (n� 1) s
2 [2 + s (n� 1)] > 0

which is satis�ed by all

" > max

�
0;
b [2 + s (n� 1)]� 2a� c (n� 1) s

2

�
(22)

with
b [2 + s (n� 1)]� 2a� c (n� 1) s

2
> 0 (23)

for all

b 2
�
bC �

2a+ c (n� 1) s
2 + s (n� 1) ; a

�
(24)

Accordingly, we may claim:

Lemma 4 If the state of demand was b at t� 1 and becomes a+ " at t; the
reversion to the Cournot-Nash equilibrium implies a procyclical price pattern
for all

" > max

�
0;
b [2 + s (n� 1)]� 2a� c (n� 1) s

2

�
:

In the remainder of the parameter space, the price pattern is countercyclical.
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Now suppose �rms were colluding in state a in the last period of the
collusive path. In this case, pCN (") > pM (a) for all

" >
(a� c) (n� 1) s

2
(25)

such a threshold being positive everywhere. This implies:

Lemma 5 If the state of demand was a at t� 1 and becomes a+ " at t; the
reversion to the Cournot-Nash equilibrium implies a procyclical price pattern
for all

" >
(a� c) (n� 1) s

2

The opposite holds for all " 2 (0; (a� c) (n� 1) s=2) :

Now, after de�ning

"Cb �
b [2 + s (n� 1)]� 2a� c (n� 1) s

2

"Ca �
(a� c) (n� 1) s

2

(26)

it is easily checked that

"Ca � "Cb =
(a� b) [2 + s (n� 1)]

2
> 0

everywhere. The resulting picture is qualitatively equivalent to Figure 1.
Consequently, we may formulate the following:

Proposition 6 The condition " > "Ca su¢ ces to ensure that the reversion
to Cournot-Nash behaviour involves a procyclical price pattern irrespective of
the demand state realised in the last period of the cartel path.

The intuition here is analogous to the Bertrand case. We may now put
together the two pieces of analysis carried out so far in order to take a
general look at the cyclical pricing behaviour after the occurrence of a positive
demand shock interrupting the cartel path.
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5 A comprehensive look at price cyclicality

From expressions (16) and (26), there emerges that "Bb > "
C
b and "

B
a > "

C
a in

the whole space of parameters, while

sign
�
"Bb � "Ca

	
= sign

�
(a� b) [2 + s (n� 3)]� (a� c) (n� 1) s2

2 (1� s)

�
(27)

so that "Bb > "
C
a for all

b 2
�
b" �

a (1� s) [2 + s (n� 1)] + c (n� 1) s2
2 + s (n� 3) ; a

�
(28)

The foregoing argument produces:

Proposition 7 "Ba > "Bb > "Ca > "Cb for all b 2 (b"; a), while "Ba > "Ca >

"Bb > "
C
b for all b 2 (c; b").

Then, b" can be compared with bB and bC appearing, respectively, in (12)
and (24), to check that bC � bB and b" � bB for all s 2 [0; 1], while

b" � bC =
(a� c) (n� 1) s [(n� 1) s2 � (n� 5) s� 2]

[2 + s (n� 1)] [2 + s (n� 3)] (29)

which is positive for all

s 2
�
n� 5 +

p
n2 � 2n+ 17

2 (n� 1) ; 1

�
(30)

and negative in the remainder of the range of product substitutability. Hence,
we have proved

Proposition 8 b" 2 (bC ; a) for all

s 2
�
n� 5 +

p
n2 � 2n+ 17

2 (n� 1) ; 1

�
while b" 2 (c; bC ] for all

s 2
�
0;
n� 5 +

p
n2 � 2n+ 17

2 (n� 1)

�
:
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The critical expressions of the shock,
�
"Ba ; "

B
b ; "

C
a ; "

C
b

	
; can be drawn in

the space (b; ") ; as in Figure 2, in which b" > bC > bB since we have posed
s 2

��
n� 5 +

p
n2 � 2n+ 17

�
= [2 (n� 1)] ; 1

�
. The properties we are about

to spell out in the following theorem are independent of the range of s being
considered, as well as the exact sequence of fbB; bC ; b"g.

Figure 2 Critical shock levels in the space (b; ").
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Theorem 9 The cyclical properties of non-cooperative Nash pricing at the
Bertrand or Cournot equilibrium emerging after the abandonment of the col-
lusive path in period t are the following:

� In area I, procyclicality is observed for all b 2 (c; a) ; under both Bertrand
and Cournot behaviour.

� In area II, countercyclicality emerges under Bertrand behaviour if the
state of demand was a at t� 1; otherwise, pricing is procyclical.
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� In area III; pricing is procyclical (resp., countercyclical) under Cournot
(resp., Bertrand) behaviour, for any given state of demand at t.

� In area IV , pricing is procyclical (resp., countercyclical) under both
Cournot and Bertrand behaviour, if the state of demand at t was b
(resp., a).

� In area V , pricing is procyclical under Cournot behaviour if the state
of demand at t was b; otherwise, it is countercyclical.

� In area V I, countercyclicality is observed for all b 2 (bC ; a) ; under both
Bertrand and Cournot behaviour.

The above Theorem summarizes our main results. We may provide a solid
intuition by looking more closely at Figure 2. For any given state of demand
in the collusive stage, as the size of the shock breaking down the cartel
path increases (that is, we move along an imaginary vertical line starting
at any point on the horizontal axis) the likelihood of observing procyclical
pricing behaviour increases. This is crystal clear if, for instance, we draw the
imaginary vertical line close to a, along the upper limit of the demand space:
in such a case, as " increases, we move from complete countercyclicality (area
V I) to countercyclicality only under price competition (area III) and then
to complete procyclicality (area I).5 The same pattern can be observed if
we start from any point on the segment (0; a). In other words, as the size of
the positive demand shock disrupting collusion increases, the probability of
observing procyclicality increases, as the tendency towards price reduction
brought about by non-cooperative behaviour is increasingly o¤set by the
higher post-shock state of demand �rms face.
By the same token, if we draw an imaginary horizontal line starting from

any point on the vertical axis lower than "Ba (that is, we increase the pre-
shock state of demand for any given shock size), we observe a strenghtening

5The fact that in area III countercyclicality is preserved only under Bertrand behav-
iour is easily understood, as price competition is intrinsically more intense than quantity
competition, all else equal.
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of the countercyclical pattern. Also in this case the intuition is solid: as the
pre-shock low state of demand collapses towards the high one, we loose one
of the departures from traditional Rotemberg and Saloner framework (i.e.
the alternative demand states before the shock) and therefore we are back to
their standard countercyclical result.

6 The price trend

The foregoing discussion has focussed on the impact of the demand shock on
the noncooperative price prevailing in the single period following the end of
the cartel path, as compared to the collusive (monopoly) price characterising
the last period of such path. Here we propose an analysis of the noncooper-
ative price trend over [t;1) against the cartel price over [0; t� 1]. To this
aim, we rely on probabilities m and 1�m, associated with states a (as well
as a+ ") and b, respectively, to construct the following expressions:

pC� = mp
M (a) + (1�m) pM (b) (31)

pKN� = mpKN (") + (1�m) pKN (b) (32)

which measure the trend prices under collusion and fully noncooperative
behaviour, respectively. In (32), pKN (") coincides, alternatively, with (8) or
(20) and K = B;C depending on the market variable being used by �rms.
Moreover,

pBN (b) =
b (1� s) + c [1 + s (n� 2)]

2 + s (n� 3) (33)

pCN (b) =
b+ c [1 + s (n� 1)]
2 + s (n� 1) (34)

Our exercise is based on the comparison between the average prices pKN�
and pC� under price- and quantity-setting behaviour:

pBN� � pC� =
2m (1� s) "� s (n� 1) [ma+ (1�m) b� c]

2 [2 + s (n� 3)] � �B (35)

pCN� � pC� =
2m"� s (n� 1) [ma+ (1�m) b� c]

2 [2 + s (n� 1)] � �C (36)
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with

�B > 0, " >
s (n� 1) [ma+ (1�m) b� c]

2m (1� s) � "�B (37)

�C > 0, " >
s (n� 1) [ma+ (1�m) b� c]

2m
� "�C (38)

and obviously "�B > "�C for all s 2 (0; 1]. It is also easily ascertained
that "�B and "�C are both increasing in b, and same holds for their dif-
ference "�B � "�C . These two thresholds can be inserted in the graph ap-
pearing in Figure 2, to generate Figure 3, which has been drawn assuming
s 2

��
n� 5 +

p
n2 � 2n+ 17

�
= [2 (n� 1)] ; 1

�
, as before. In the region above

"�C (resp., above "�B), the price trend after �rms revert to Nash pricing
is procyclical under quantity-setting (resp., price-setting) behaviour. Since
"�B > "�C for all s 2 (0; 1], we may formulate our �nal result:

Proposition 10 For all degrees of product substitutability, the region of the
space (b; ") wherein the average Nash price after the shock is procyclical under
Bertrand behaviour is a subset of the region where it is procyclical under
Cournot behaviour.

That is, the necessary and su¢ cient condition for the procyclicality of
Bertrand-Nash pricing is su¢ cient to ensure the arising of procyclicality un-
der Cournot-Nash pricing (but not vice versa).
Proposition 10 has an additional relevant implication: if the trend of the

Nash equilibrium pricing pattern is procyclical, then there will exist in�nitely
many degrees of partial collusion in prices or quantities which will generate
procyclical collusive price trends even if full collusion along the frontier of
industry pro�ts cannot be sustained. This consideration alone, without a
formal proof, reveals:

Corollary 11 If the Nash equilibrium price trand is procyclical, then any
� 2 (0; E�� (")) allows �rms to achive a degree of partial collusion whose
price trend which is procyclical as well, as it lies everywhere above the Nash
equilibrium trend itself.
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Figure 3 Impact e¤ect and price trend in the space (b; ").
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7 Concluding remarks

We have taken a new look at the pricing behaviour of oligopolistic �rms
when a positive demand shock occurs, breaking a form implicitly collusive
agreement. We have shown that when the traditional Rotemberg and Saloner
(1986) setting is extended so as to take explicitly into account the e¤ect of the
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shock itself on the post-shock noncooperative equilibrium price, the standard
countercyclical price result does not necessarily hold in general. The size
of the cyclical �uctuation and the pre-shock demand state (along with the
degree of product di¤erentiation and the size of the market) play a key role in
shaping the prices�response to the cycle. If the demand shock is large enough,
or if the shock hits a relatively low state of demand, a procyclical pattern is
likely to emerge. As our analysis look at the Nash competition (both under
Cournot and Bertrand settings) after the shock, our procyclical results are
valid for any degree of partial collusion �rms might be able to sustain on the
basis of their time preferences, up to the new monopoly frontier.
A more comprehensive analysis of pricing cyclical properties can have

relevant implications for other dimensions of economic analysis. Procyclical
prices - with marginal cost being constant or not more procyclical than prices
- imply procylical mark-ups, with crucial consequences on the size of the
government spending multipliers, as shown by Hall (2009), Christiano et al
(2011) and Woodford (2011). For this reason, further research on the topic
is required.
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