
 

ISSN 2282-6483 

 

 

 

 
 

 

Choosing Roles under Supply 

Function Competition 
 

 

Flavio Delbono 

Luca Lambertini 

 
 

Quaderni - Working Paper DSE N°1069 

 
 

 

 



Choosing Roles under Supply

Function Competition

Flavio Delbono# and Luca Lambertinix

# Department of Economics, University of Bologna

Piazza Scaravilli 2, 40126 Bologna, Italy

�avio.delbono@unibo.it

§ Department of Economics, University of Bologna

Strada Maggiore 45, 40125 Bologna, Italy

luca.lambertini@unibo.it

June 7, 2016



Abstract

We investigate an extended game with observable delay under duopolistic

competition in a¢ ne supply functions. Firms use the intercepts of supply

functions as their strategic variables. Best replies are downward (upward)

sloping if the common slope of supply functions is su¢ ciently low (high).

Accordingly, simultaneous (sequential) play is selected at the subgame perfect

equilibrium when best replies are negatively (positively) sloped. There exists

a unique value of the slope at which best replies are orthogonal and the choice

between simultaneous and sequential play is immaterial.

JEL Codes: D43, L13

Keywords: supply function; strategic complements; strategic substi-

tutes; endogenous timing



1 Introduction

The main question addressed in this paper deals with the leader-follower

choice under (a¢ ne) supply function competition within an extended game

with observable delay à la Hamilton and Slutsky (1990). To this end, we

model supply functions as in Menezes and Quiggin (2012), where �rms choose

the intercepts of a¢ ne supply functions. Doing so, Menezes and Quiggin

(2012) prove the existence of a continuum of equilibria ranging from Cournot

(when the slope of supply functions is nil) to Bertrand (when the slope tends

to in�nity).

In a widely cited paper, Bulow et al. (1985) introduce an important crite-

rion to classify the strategic nature of di¤erent choice variables in oligopolistic

games. Borrowing a well established terminology from demand theory, they

identify a binary taxonomy opposing strategic complements to strategic sub-

stitutes.

We �rst show that the (intercept of) supply function may feature both

strategic substitutability or complementarity, depending on the steepness of

supply functions. More precisely, we identify a unique critical threshold of the

slope, below which competition takes place in strategic substitutes, whereas

the opposite applies above the threshold. The switch between strategic sub-

stitutability and complementarity does not arise in the initial modelization

of linear supply functions dating back to Klemperer and Meyer (1989) where

the intercept is zero. In such a setting �rms compete in the space of slopes,

and it turns out that slopes are strategic complements and the resulting Nash

equilibrium in supply functions - which is unique in absence of uncertainty -

lies between Cournot and Bertrand. The �rst author pointing out the emer-

gence of strategic complementarity among slopes is Laussel (1992), and the
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same property is stressed again in Akgün (2004).1

Solving the extended game with observable delay, we prove that when

supply functions are not too steep, �rms play simultaneously as soon as pos-

sible because competition takes place in strategic substitutes, while they play

sequentially (and therefore the mixed strategy equilibrium is also relevant)

when supply functions are su¢ ciently steep and the game is in strategic com-

plements. In correspondence of the critical threshold of the slope, best replies

are orthogonal and Stackelberg and Nash equilibria coincide.

The paper is organized as follows. In the next section we study the prop-

erties of a¢ ne supply functions when �rms choose intercepts in a well known

model of duopoly with product di¤erentiation. The extended game with

observable delay and its equilibrium analysis, including the mixed strategy

equilibrium, are illustrated in section 3. Section 4 concludes.

2 The model

We consider the model of di¤erentiated duopoly introduced by Spence (1976)

and Singh and Vives (1984). The utility function of the representative con-

sumer is

U = a (q1 + q2)�
1

2

�
q21 + q

2
2 + 2�q1q2

�
(1)

where qi is the quantity of the variety supplied by �rm i = 1; 2; a > 0 and

parameter � 2 (0; 1] measures the degree of product substitutability, i.e., �
is an inverse measure of product di¤erentiation. When � = 1; the product is

1Ciarreta and Gutierrez-Hita (2006) model linear supply functions in a supergame

where the focus is on implicit collusion. Since they set intercepts to zero and �rms choose

slopes, their game is one in strategic complements. Vives (2011) follows the same approach

as in Klemperer and Meyer (1989) using the notion of residual demand curve under market

clearing and leaving aside the issue of the strategic nature of supply functions.
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homogeneous.2 The direct demand functions resulting from the constrained

maximisation problem are:

qi = max

�
0;

a

1 + �
� pi
1� �2 +

�pj
1� �2

�
; i = 1; 2: (2)

System (2) can be inverted to yield the direct demand system:

pi = a� qi � �qj; i = 1; 2: (3)

On the supply side, both single-product �rms operate with the linear cost

function Ci = cqi, with c 2 (0; a). The pro�t function of �rm i is

�i = (pi � c) qi (4)

Before delving into the analysis of supply function competition, it is worth

recalling two basic properties of Cournot and Bertrand competition. De�ne

the best reply of �rm i in the quantity and price spaces, respectively, as

q�i (qj) and p
�
i (pj). Their slopes are

@q�i (qj)

@qj
= ��

2
< 08� 2 (0; 1] (5)

and
@p�i (pj)

@pj
=
�

2
> 08� 2 (0; 1] (6)

as we know from Singh and Vives (1984). On the basis of (5-6), one es-

tablishes that, for any degree of product substitutability, best replies are

decreasing in the quantity space and increasing in the price space. In the

jargon of Bulow et al. (1985), this amounts to saying that quantities are

strategic substitutes and prices are strategic complements when goods are

substitutes in demand.
2If � = 0, the two varieties do not interact and �rms are independent monopolists. We

also disregard the range � 2 [�1; 0) ; where products are complements.
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To model competition in supply functions, we focus on linear supply

functions. More precisely, we adopt the formulation introduced by Menezes

and Quiggin (2012). The supply function of �rm i is de�ned as Si = �i �
c=2+�i (pi � c) ; and the ex ante market clearing condition is Si = qi, where
qi is de�ned as in (2). The presence of two varieties requires imposing two

market-clearing conditions. Taking the individual demand function in (2),

whenever qi > 0; market clearing requires imposing:

�i �
c

2
+ �i (pi � c) =

a

1 + �
� pi
1� �2 +

�pj
1� �2 (7)

Solving system (7) w.r.t. pi and pj; and substituting the resulting market-

clearing prices into the supply functions, we can write �rm i�s supply function

as

Si =
2
�
�i
�
1 + �j

�
+ �i

�
a
�
1 + (1� �) �j

�
� ��j

��
2
�
�i
�
1 + �j (1� �2)

�
+ 1 + �j

� � (8)

c
�
1 + �j + �i

�
2� � + 2�j (1� �)

��
2
�
�i
�
1 + �j (1� �2)

�
+ 1 + �j

�
and the pro�t function of �rm i therefore writes as

�i = (a� Si � �Sj � c)Si (9)

As in Menezes and Quiggin (2012), we assume that competition in supply

function takes place in the space of intercepts (�1; �2) ; with �1 = �2 =

� 2 [0;1). The advantage of using the approach of Menezes and Quiggin
(2012) lies in the fact that it generates a continuum of equilibria ranging

from Cournot (when � = 0) to Bertrand, which is reached in the limit as �

tends to in�nity.

Taking the �rst order condition (FOC) for the maximisation of (9) w.r.t.
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�i and solving, one obtains the best reply function of �rm i:3

��i (�j) =
2a [1 + (1� �) �]

�
1� �2 (1� �2)

�
� 2��j

�
1� �2 (1� �2)

�
4 (1 + �) [1 + � (1� �2)] +

(10)
c [1 + � (1� �)] [� + � (1 + �) (2� � + 2� (1� �))]

4 (1 + �) [1 + � (1� �2)]
To understand the strategic nature of competition in supply functions, it

su¢ ces to take the partial derivative of ��i (�j) w.r.t. �j:

@��i (�j)

@�j
= �

�
�
1� �2 (1� �2)

�
2 (1 + �) [1 + � (1� �2)] (11)

Inspecting (11), which is continuous and twice di¤erentiable in �, for all

� 2 [0;1), one proves the following:

Lemma 1 @��i (�j) =@�j Q 0 for all � Q b� � 1=
p
1� �2: Moreover, in

� = 0;
@��i (�j)

@�j
= ��

2
=
@q�i (qj)

@qj

and

lim
�!1

@��i (�j)

@�j
=
�

2
=
@p�i (qj)

@pj
:

The Lemma shows that the individual �rm�s best reply derived under

supply function competition delivers strategic substitutability (complemen-

tarity) as under Cournot (Bertrand) behaviour in the inf (sup) of the sup-

port of parameter �. Additionally, strategic substitutability holds for all

� 2
�
0; 1=

p
1� �2

�
while strategic complementarity emerges for all � 2�

1=
p
1� �2;1

�
. In correspondence of � = 1=

p
1� �2 best replies are or-

thogonal in the space (�1; �2). The intuition is fairly clear: as product

di¤erentiation tends to vanish (i.e., � approaches one), we enter a domain in

3The second order condition, which is omitted for brevity, is satis�ed in correspondence

of �i = ��i (�j).
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which �rms�best replies are upward sloping, and therefore they operate un-

der strategic complementarity mimicking price competition which is reached

in the limit as � goes to in�nity.

The symmetric Nash equilibrium is attained at

�N =
2a
�
1� (1� �2) �2

�
+ c [(1 + �) (2� + �)� � (1 + 2�)�2]

2 (1 + �) (2 + �)� 2��2 (12)

delivering pro�ts

�N =
(a� c)2 (1 + �) [1 + (1� �2) �]
[2 + � + (2� �) (1 + �) �]2

(13)

The analysis of simultaneous play, which Menezes and Quiggin (2012) carry

out under product homogeneity, shows that if supply functions are �at, the

supply function Nash equilibrium collapses onto the Cournot-Nash equilib-

rium, while if supply functions are in�nitely steep, the equilibrium degen-

erates into the Bertrand-Nash one. The same applies here under product

di¤erentiation. This can be veri�ed on the basis of (13):

lim
�!0

�N =
(a� c)2

(2 + �)2
(14)

which is the individual Cournot-Nash pro�t, and

lim
�!1

�N =
(a� c)2 (1� �)
(1 + �) (2� �)2

(15)

which is the individual Bertrand-Nash pro�t as in Singh and Vives (1984).

This property allows Menezes and Quiggin (2012) to claim that supply

function competition yields a continuum of equilibria generated by �, with

the classical Bertrand and Cournot equilibria as limit cases. What we are

about to prove the existence of multiple equilibria relying on Lemma 1, as

the multiplicity is the consequence of the link between the slope of the supply

function and that of the best reply in the � space.
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3 The extended game with observable delay

The choice between simultaneous and sequential play in a noncooperative

variable sum game goes back at least to d�Aspremont and Gérard-Varet

(1980). Then, from the mid-1980s, this issue has entered oligopoly the-

ory, thanks to Gal-Or (1985), Dowrick (1986), Boyer and Moreaux (1987)

and Robson (1990), inter alia. A milestone of this literature is the concept

of extended game with observable delay, introduced by Hamilton and Slut-

sky (1990). Their framework can be summarised as follows. The market

subgame is preceded by a pre-play stage in discrete strategies where �rms

(under complete, symmetric and imperfect information) noncooperatively

select the timing of their respective moves which will be relevant in the ensu-

ing continuous strategy stage. If simultaneous play is announced in the �rst

stage, �rms play the Nash equilibrium at the market stage. If instead se-

quential play is announced, multiple Stackelberg equilibria in pure strategies

will exists at the market stage, together with the mixed strategy one. No

time discounting is involved between stages, as time is a logical rather than

chronological dimension. The extended game with observable delay allows to

determine whether a game is Stackelberg solvable in the sense of d�Aspremont

and Gérard-Varet (1980). Indeed, from both d�Aspremont and Gérard-Varet

(1980) and Hamilton and Slutsky (1990), there emerges that sequential play

is selected if and only if the Stackelberg outcome Pareto dominates the Nash

one.

Using our notation, the formal structure of the extended game with ob-

servable delay can be summarised as follows. De�ne as � = (N;X;�) the

two-stage extended game with observable delay. The set of players (or �rms)

is N = fi; jg, and �i(�i; �j) and �j(�i; �j) are the compact and convex
intervals of R representing the actions available to agents i and j in the
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downstream market stage, conditional upon the choices made in the up-

stream stage. � is the payo¤ function vector, such that individual pay-

o¤s are de�ned as �i(�i; �j) : �i(�i; �j) � �j(�i; �j) ! R and �j(�i; �j) :

�j(�i; �j) � �i(�i; �j) ! R. The set of times at which �rms can choose to
move is T = ft1; t2g, i.e., early or late. The set of strategies for player i is
xi = T � �i, where �i maps T � �j(�i; �j) into �i(�i; �j).
It is worth stressing that the notion of time underpinning the extended

game with observable delay is purely logical and involves no discounting.

The resulting two-stage game is fully noncooperative, and the outcome of the

�rst stage (i.e., the choice of timing) is observable to all �rms alike before

the second stage takes place. If in the market subgame both �rms choose

to move at the same time (ti = tj), they obtain the pro�ts associated with

the simultaneous Nash equilibrium, otherwise they get the pro�ts associated

with the Stackelberg equilibrium, with i moving �rst and j moving second,

or vice versa.

To characterise the Stackelberg equilibrium in supply functions, we denote

the leader and the follower by L and F , respectively. Firm L maximises

pro�ts under the constraint posed by the follower�s best reply function (10).

The resulting equilibrium strategy for the leader is

�L =
2a [2� � + (2� � (1� �)) �]

�
1� (1� �2) �2

�
+ c	

2 [2 + (2� �2) �] [2� �2 + 2 (1� �2) �] (16)

where

	 � 2 (1� �)� +
�
4 + �

�
2� �

�
6� �2

���
�+ (17)

2
�
1� �2

�
[4� � (1 + �)] �2 + 2

�
1� �2

�
(1 + �) (2 + �) �2 > 0

and

�L � �F =
(a� c)�2 [1 + (1� �) �]

�
1� (1� �2) �2

�
2 [2 + (2� �2) �] [2� �2 + 2 (1� �2) �] (18)
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which is positive for all � 2
�
0; 1=

p
1� �2

�
; while the opposite applies in the

remainder of the admissible range of �. That is, �L > �F when �rms�choices

are strategic substitutes, whereas �L < �F under strategic complementarity.

In the special case in which � = 1=
p
1� �2; since best replies are orthogo-

nal, Nash and Stackelberg equilibria coincide, in such a way that the tangency

point between �rm i�s highest isopro�t curve and �rm j�s best reply function

occurs in correspondence of the intersection of best replies themselves (see

Figure 1).

Figure 1

6

-
0,0

�2

�1

��

��

The pro�ts generated by the Stackelberg equilibrium values of ��s are the
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following:

�L =
(a� c)2 [2� � + (2� � (1� �)) �]2

4 [2 + (2� �2) �] [2� �2 + 2 (1� �2) �] (19)

�F =
(a� c)2 (1 + �) [1 + (1� �2) �] [4 (1 + �)� � (2 + � (3� �)) � � � (2 + �)]

4 [2 + (2� �2) �] [2� �2 + 2 (1� �2) �]
(20)

We are now in a position to describe the pre-play stage for the choice of

timing. The resulting reduced form describing the �rst stage is in Matrix 1.

j

t1 t2

i t1 �N ; �N �L; �F

t2 �F ; �L �N ; �N

Matrix 1

Using expressions (13) and (19-20), we can rank the pro�ts appearing in

Matrix 1:

�N � �F = � (�; �) (a� c)2
�
1�

�
1� �2

�
�2
�

(21)

�L � �N = � (�; �) (a� c)2
�
1�

�
1� �2

�
�2
�2

(22)

�L � �F = 
(�; �) (a� c)2
�
1�

�
1� �2

�
�2
�

(23)

where � (�) ; � (�) and 
 (�) are positive polynomials. While �L � �N al-

ways, being nil at � = 1=
p
1� �2; (21) and (23) are positive for all � 2�

0; 1=
p
1� �2

�
and negative for all � > 1=

p
1� �2: This, joint with Lemma

1, proves:

Proposition 2 For all � 2
�
0; 1=

p
1� �2

�
; (t1; t1) is the unique Nash equi-

librium at the �rst stage of the extended game with observable delay, generated
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by strictly dominant strategies. For all � > 1=
p
1� �2; the �rst stage pro-

duces two pure-strategy Nash equilibria involving sequential play along the

secondary diagonal.

Since for low values of � best replies are decreasing, or, equivalently,

�rms are competing in strategic substitutes, there exists a strict incentive

to choose t1 in order to avoid the follower�s role. As a result, �rms play

simultaneously because the game replicates a basic feature of the Cournot

model. Conversely, if � is large enough, competition takes place in strategic

complements and the model closely resembles the Bertrand game. Hence, the

�rst stage is Stackelberg-solvable in the sense of d�Aspremont and Gérard-

Varet (1980) and generates two asymmetric equilibria in pure strategies and

consequently the mixed strategy equilibrium also becomes relevant.

The above Proposition has an obvious implication:

Corollary 3 If � = 1=
p
1� �2; the issue of choosing roles is immaterial.

This happens because reaction functions are orthogonal and therefore

�F = �N = �L and the Nash and Stackelberg outcomes coincide.

To compute the equilibrium in mixed strategies at the pre-play stage,

de�ne by pi the probability that player i attaches to t1; so that the probability

attached to t2 is 1�pi. Player i must set pi so as to make player j indi¤erent
between the two pure strategies. That is, payo¤s

�j (t1; pi) = pi�
N + (1� pi)�L

�j (t2; pi) = pi�
F + (1� pi)�N

(24)

must coincide. This happens at

bpi = �L � �N
�L + �F � 2�N (25)
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with

�j (t1; pi) R �j (t2; pi) 8 pi R bpi (26)

Moreover, lim�!1=
p
1��2 bpi = 0;

bpi � 08 � 2 �0; 1p
1� �2

�
bpi > 08 � > 1p

1� �2
(27)

and

lims!1 bpi = (3 + 2�) (5 + 2�)

[5 + 2� (5 + 2�)]2

lim�!1
�
lims!1 bpi� = 0: (28)

As a result, bpi 2 (0; 1) for all � 2 �1=p1� �2;1� : For any � 2 �1=p1� �2;1� ;
the map of best replies p�i (pj) in the space of probabilities (pi; pj) looks like

in Figure 2. This illustrates that:

� if i chooses any pi 2 (0; 1) ; the best reply of j is bpj;
� if pi = 0; the best reply of j is any pj 2

�
0;bpj� ;

� if pi = 1; the best reply of j is any pj 2
�bpj; 1� :
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Figure 2

6

-

0,0 1

1

p2

p1

p�2(p1)

p�1(p2)

bp1

bp2

If instead � 2
�
0; 1=

p
1� �2

�
; then bpi 2 [�2=5; 0] and the map of best

replies is as in Figure 3. That is, as soon as � is low enough as to make

best replies orthogonal or downward sloping, �rms select to play as early as

possible and the Nash equilibrium results.
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Figure 3

-

6

0,0

1

1

bp1

bp2

p2

p1

We can then claim the following:

Proposition 4 For all � 2
�
0; 1=

p
1� �2

�
; the mixed strategy Nash equi-

librium collapses into the dominant strategy one, with p�i = p
�
j = 1. For all

� 2
�
1=
p
1� �2;1

�
; the mixed strategy equilibrium is

�bpi;bpj�.
Note that, in the limit, as product di¤erentiation vanishes, lim�!1

�
1=
p
1� �2

�
=

1 and therefore �rms are forced to select (t1; t1) ; playing the dominant strat-

egy equilibrium under strategic substitutability.

4 Concluding remarks

We have illustrated the endogenous timing of moves in a di¤erentiated duopoly

where �rms compete in a¢ ne supply functions by choosing their intercepts
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as in Menezes and Quiggin (2012). To do so, we have relied upon the concept

of extended game with observable delay (Hamilton and Slutsky, 1990). Since

best replies are downward (upward) sloping if the common slope of supply

functions is su¢ ciently low (high), simultaneous (sequential) play is part of

the subgame perfect equilibrium strategy pro�le when best replies are neg-

atively (positively) sloped. Hence, while Menezes and Quiggin (2012) use

a¢ ne supply functions to reproduce Cournot and Bertrand Nash equilibria

as limit cases, here we have shown that a¢ ne supply functions can also be

used to reconstruct the same endogenous timing arising under quantity and

price competition, as in Hamilton and Slutsky (1990).
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