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1. INTRODUCTION

This paper deals with the problem of adoption of new technologies and explores
how rivalry affects the decision about adoption, and therefore the evolution of an
industry subject to technical change.

There are two aspects of techmical change. Technical change may be
"evolutionary": after you have chosen one technology, there are still improvements on
it. Technical change may also have a "revolutionary" nature: new technologies may
turn out to be more profitable because of new discoveries. In this context, firms have
to decide whether to go on with the old method or to switch to the new one, i.e.
whether to adopt immediately or to delay adoption. As Schumpeter states: "A new
type of machine is in general but a link in a chain of improvements and may presently
become obsolete". In a case like this, it would be convenient to wait, in order to see
"how the chain behaves".

The reason is in the following circumstance. Although potential benefits from
innovations largely take the form of what are called "first-mover advantages"!, there
may also be substantial first—-mover disadvantages as well as late-mover advantages.
If there are significant spillovers of knowledge between firms, then a late-mover could
gain the same knowledge at a lower cost while, at the same time, avoiding the major
mistakes that the first-mover made en route. In some circumstances the disadvantage
of an early start may be such that old capital embodying old methods hinders the
adoption of new methods and is worse than no capital at all. The question arising in
this context is whether ﬁrst-—movér advanlages may survive the offsetting
disadvantages so that they provide an incentive for the performance of basic research.

Most models of innovations abstract enormously from the richness of reality.
Models of the supply of innovations generally represent the process as a racing game

(see Lee and Wilde (1980), Loury (1979), Reinganum (1981a), (1985)). In this game



the potential suppliers invest in research whose outcome - either the time until
discovery or the size of the discovery —is random. The winner reaps all the benefits of
the research investment. Models of the demand for innovation generally represent the
problem as a one-time decision to adopt the new technology ( see Jensen (1982),
Reinganum (1981b), Kamien and Schwartz (1972)). The timing of the adoption of the
innovation may depend on strategic considerations or on market structure.

In a different way with respect to Reinganum (1981b) and Kamien and Schwartz
(1972), we consider a multistage model. It incorporates multiple sequential
technological innovations and the possibility of implementing technologies that have
already been discovered. Although many of the conclusions in this paper are
economically intuitive, they have not, to our knowledge, been systematically derived
from a multistage framework. Our analysis shows that there is a threshold such that
the firm will immnediately adopt the best technology if the advantage in terms of cost
with respect to the old technology exceeds this threshold; otherwise it temporarily
avoids the switching costs and postpones adoption of the new technology.
Furthermore, this threshold increases and postponement becomes more attractive if
the cost of adoption increases.

This result may be linked to Ames and Rosenberg (1963). They say that if the
cost of moving from a lower to a higher technology is an increasing function of the
level of technology already reached?, then, at each stage, the firm must contemplate a
larger "leap" than it made last time. Before it can afford another step, at some point,
it must wait for so long a time that technological progress would actually come to a
stop. Put it another way, if the cost of moving from a lower to a higher technology is
increasing, then the rate of development may slow down as the economy develops.

Our analysis also shows that postponement is more attractive if there is an
increase in the pace of technological progress: if the probability of making a discovery

increases, then the firm will try to avoid locking itself in. We study how the decisicn



problem of a firm is affected by the presence of a rival. We show that the presence of a
rival reiards the adoption of the current best technology. The last circumstance is in
keeping with the so<alled Schumpeterian hypothesis, according to which the
incentive to innovate is larger in a monopolistic market than in a competitive one.
Our result can shed light on the question about the role of entry in preventing or not
the market to lock-in to an inefficient technology.

Obviously, other salient factors should be introduced in the analysis to flesh out

the desired realism. A few of them are discussed in the final remarks.



2. THE BASIC MODEL

We consider a monopolist in a homogeneous-product market. The model 18 a

multistage one with a sequence of process innovations. For simplicity, we characterize
mnovations with the one-dimensional variable c, as specifying the constant marginal cost of
production, ¢ € R+< Time 15 divided 1nto an infinite sequence of discrete periods,
t=10,1,2... We assume that the discovery process of technological improvements is
exogenous and stochastic. In each period t, we denote by p the probability that a discovery
takes place, and by (1 — p) the probability that no discovery takes place. Hence, the
stochastic process is independent and 1dentically distributed through time. We denote by
(c) the one-period proﬁt3 agsociated with the cost of production c.

We consider the following decision problem for the monopolist. In each period, the
firm has to decide about adoption of new technologies. In any period t, the firm knows
whether a discovery took place or not, by the time 1t makes a decision for t. If the firm
adopts, it incurs a fixed cost of adoption K, K > U. Once a discovery takes place and the
firm adopts, the cost of production decreases by @, 0 < a < 1, that is, it becomes ¢(1 - a).
We assume that « is certain and constant through time® If the firm does not adopt, the
cost of production remains unchanged. However, the discovery is not lost and can be
adopted subsequently. Indeed we assume that an innovation embodies all the previous
discoveries that have not been adopted yet.

The firm maximizes the expected stream of discounted profits. Let 6, 0 < § < 1, be

the discount factor. We can write the problem formally as:
. o Gt -
(1) Max E[Z"n §'(M(c,) - Kx,) ]

subject to X1y Xy € {v, 1}

and the sequential constraints for all t



Xy = Xyt
co=xdey e (o) + (I=x) ce with probability p
de=xp + (I=xp)di-y (1—0)

Xy = Xqnt
cp = Xygp dyoy Crop + (1-Xae) ey with probability 1-p
de = x3e + (1-x32) de-y

where d, is a measure of accumulated innovation at time t, 0 <dy <1, for any t. Let us
explain the constraints above. With probability p a discovery takes place. For any t, if
the firm adopts (xy; = 1), then the cost decreases by a, and since an innovation embodies
all previous improvements not already adopted, we get c¢; by multiplying (1—a)c; by
di-1. The value of d¢ equals 1. If the firm does not adopt (xyt = 0), then the current cost
remains unchanged, but next period value for d is multiplied by (1—a). With probability
1-p a discovery does not take place. If the firm decides to adopt the previous innovation
(x3¢ = 1), then the cost decreases by d and next period value for d equals 1. If the firm
postpones adoption (xg: = 0), then the current cost remains unchanged and next period
value for d remains unchanged as well.

We make the following assumptions on the one-period profit function II(c):

Al For all ¢ > 0:
(i) I{.) is continuously differentiable on R+
(it) I(c) is nonnegative

(i) 0(.) is non-increasing and convex



A2 I0) <o

Assumption A.1. does not require special comments and 1s satisfied, for example, in the
case of a linear demand function. Assumption A.2. implies that II(c) is bounded for any
c20.

The value of the optimal program (1) depends, for given a, K, é and p, on the value

of initial (c,d). Define the value of the program for initial (c,d) as:

V(c,d) = max E[ Zt=0 64(H(ct) — Kxv)]

etc, as in (1). Associated with the function V(c,d), there is the functional equation:

(2) V(c,d) =

p mza.x0 [O(xscd(1—a)+(1=xs)c) — Kxy + & V(x1ed( 1=a)+(1=x;)¢, x1+(1=x;)d(1—a))] +
x 1 €10,

+ (1-p) max0 . [O(xged+(1—xg)c) — Kxg + 6 V(xged+(1—x3)c, x3+(1-x3)d)]
x 9 €40,

which can be written as:

3) V(c,d) = p max[[(cd(1-a)-K + § V(cd(1~a),1); O(c) + & V(c,d(1-a))] +

+ (1-p) max[II(cd)-K + § V(cd,1); O(c) + & V(c,d)].

The following Proposition holds:



Proposstion 1. For given c, the value of problem (1), Vi(c,d), is a continuous, non-

increasing, convex function of d that satisfies equation (3).

Proof The proof 18 by induction on the sequence of finite horizon problems with the same

constraints and objective function. Consider the sequence of functions:

Vo(c,d) =
Vi(e,d) = p max[I(cd(l-a))-K, [(c)] + (1-p) max[[(cd)-K, I(c)]

VT(c,d) = p max{TI(cd(1—a))~K + 6 VI L(cd(1-a),1), I(c) + 6 VI L(c,d(1—a))] +
+ (1=p) max[I(cd)=K + 6 VILcd 1), I(c) + 6§ VI~Y(c,d)]

Let ¢ be assigned. By assumption A.1l, Vl( ¢,d) i8 & non-increasing, convex function of d.

VT—l(c,d) satisfies all the claams. Then VT(c,d) 18 non-increasing as a

Assume that
function of d, because II and VT-'1 are. Moreover VT(c,d) 18 convex, because the
maximum of convex functions is convex and the sum of convex functions is convex.

In what follows we show that VT(c,d) 18 monotonic in T and uniformly bounded above for
every T and for given (c,d). Therefore VT(c,d) 18 convergent to the limit V(c,d) and the
properties of VT(c,d) are inherited by V(c,d).

Let us show that VT(c.d) 18 monotonic in T. Obviously Vl(c,d) 2 Vo(c,d). Assume that
vT-1 vI-2

(c,d) 2 (c,d) for every (c,d). Then

VT(c,d) 2 pmax[[l{cd(l~a))-K + § VT—Q(cd( I—a),1), O(c) + 6VT~2(c,d( 1-a))] +

+ (1=p) max{I(cd)—K + 6 VI 2(cd,1), Ti(c) + 6 VI—2(c,d)]



=vT(c.q).

Finally we show the property of umform boundedness of VT(c,d). By A.2.(1) and for
0< 6< 1, M(V)/(1 — &) 18 fimte. As II 18 non-increasing, it holds:

vied) € T(U) € T(0)/(1-8)
If we assume that V1 3(c,d) < 1(0)/(1—8) for any (c,d), then 1t follows:
VT(c,d) < pmax[lI(cd(l-a)j - K + 61%5_9%. T{c) + 617]40—)5]

+ (1-p) max[I(cd) - K + 6-%‘_2%, I(c) +6-Irlég%]

= Vi) + 610 ¢y + s 1O - 1O




3. PROPERTIES OF THE OPTIMAL POLICY

The function V(c, d) gives the value of the program that follows the optimal policies
xi(c,d), xa(c,d). Let us concentrate our attention to the case of a discovery, that 1s,
x = xj(c, d). By simple inspection on expression (3) we notice that the case of no

discovery, that 18, x = xa(c, d), has a similar behaviour. If the following inequality holds:
4) N(ed(1—a)) — K + & V(cd(1=0),1) > T(c) + 8 V(c,d(1~a))

then the optimal policy 18 to adopt immediately, ie xj(c,d)=1 Let a={(l-a)d,

0 <A<l Expression (4) can be written in the following way:

) M(ca) — O(c) — K > &V(c,a) — V(ca,1)).

The following properties hold:

Proposstion 2. For given ¢ and for swtable K, there exists A* such that the firm
adopts the best available technology iff & < A*; otherwise it defers

adoption.

Proof Let ¢ be assigned. Let F(8) = Il(ca)—II(c) — K — 6(V(c,a) — V(ca,1)).
Obwviously, F(1) = — K < 0. Consider:

(B)  F(0) = TI() = (c) = &V(c,0) = V(0,1)) = K

For K sufficiently small, expression (6) 18 positive, because I1(1)) > II(c) for any ¢ > 0 and

Vic,h) < V(0,1), as can be proved by induction Since II(c), V(c,a) and V(ca,1) are
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continuous functions, also F(4) 18 a continuous function. Therefore there exists a*,

0 < 8*< 1, such that F(a*) = 0. (See figure 1).

Remark. If K 18 sufficiently large, such that expression (6) 18 negative, then
F(a) < U for U < A< 1, anf therefore the firm will not adopt. In what follows we consider K

as required by Proposition 2.

Proposition 2 states that the firm will adopt the new technology if the size of

innovation 1s large enough; otherwise 1t will postpone adoption. We examine how the

critical value A* depends on the relevant parameters K, p and 4.

Proposstion 3. The critical value a* is non-increasing 1n K. That is, the firm will

postpone adoption, 1if the cost of adoption increases.
Proof In this proof the following simple Lemma will be used.

Lemma 1. Let a < b. Then, for any x:

x-b 1f a<x<b
max(a,x) —max(bx) =1 0 if a<b<x
a-b if x<a<b

Consider expression (7):
m I(ca) — N(c) — K = §V(c,a|K) - V(ca,1]K))

which is satisfied for & = a*(K). The function II(ca) — lI(c) — K in decreasing in K. In

order to investigate how the right-hand side of expression (7) behaves as K changes, let us
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prove the following inequality:

& Vic.a|K) = V(ca1|K) > V(c.a|K+€) - V(cal |K+¢)

which holds for any K and for small €, € > 0.

First let us show that inequality (8) holds with V1 replacing V. Indeed
Vi(calK) = Vi(ea, LK) = p By(K) + (1-p) B(K),

where By(K) = max[[l(ca(1-a)) = K, II(c)] - max[[l(ca(l-a)) = K, Tl(ca)] and  By(K) =
max(Il(ca) — K, H(c)] — max[I(ca) - K, (ca)]. Analogously

VicalK+e) - Vica 1|K+e) = p ByK+e) + (1-p) Ba(K-+e).

By applying Lemma 1 with a=Il(c), b= I(ca), x=1(ca(l~a)) — K, we get
Bi(K+¢€) < By(K), for small € > ). Moreover it 1s clear that Ba K+¢) < Ba(K). Thus
inequality (8) holds for V1 By the same argument we can prove by induction that 8)
holds with VT replacing V for any T, and hence (8) follows. Since the change in the nght-
hand side of (7) due to a change in K 18 smaller than the change in the left-hand side, 1t

follows that a*(K + €) < 4*(K) for any € > 0. a]

A corollary of Proposition 3 18 the following. If the cost of adoption 1s an increasing
function of the level of technology already achieved, then the firm will postpone adoption.
At a certain point, when the cost of adoption becomes sufficiently large, the firm will not
adopt any longer. A consequence 15 that the rate of development will slow down as

knowledge increases.

We consider now the implications of a change in p. The following Proposition
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holds:

Proposition 4. The critical value A* i1s non increasing 1n p. That 15, an ncrease in
the pace of technological progress renders postponement more

attractive.
Proof. (lonsider expression (9):
) ll(ca) - Tl(c) — K = §V(c,a|p) = V(ca,l|p))

which 18 satisfied for o = a*(p). The left-hand side of expression (¥) does not change with

p. Moreover, the following inequality holds:
(10) Vic,a]p) = V(cal|p) £ V(c,alp + €) = Vica,llp +€)
for any p and for small €, € > 0. Indeed:

Vl(c,AIp) - Vl(cA,l Ip) - (Vl(c,A|p +¢€)- Vl(cA,l |p + €) = —e[max(O(ca(l~a) — K,
M(c)) — max(Il(ca) — K, T(c)) + M(ca) — max(Il(ca(l-a)) — K, I(ca))] £ 0

It can be proved by induction that inequality (10) holds for VT replacing V for any T, and
hence (10) follows. Therefore a*(p + €) € a*(p) for any € > 0.

o
Finally, let us consider the implications of a change in 6. Following the same procedure of

the previous proof we can obtain this Proposition:

Proposstion . The critical value A* 18 non increasing in §. That 1s, an increase in the



discount factor renders postponement more attractive.

4. THE ROLE OF RIVALRY

In this section we study how the decision problem of a firm 18 affected by the
presence of a rival. It 18 often possible for a later entrant to start with an equipment base
which begins at a cost level that may be lower than that of an earlier entrant ®

We study whether the presence of a rival which is subject to technological
improvement may cause the established firm to accelerate the process of adoption or to
delay 1t. In this industry, indeed, a cnitical decision 1s to determine when i1t becomes
worthwhile to commit to an investment that will replace the existing technology and when
the best strategy 1s to continue to operate the present technology. The decision must take
into account whether or not the rival has adopted 1ts innovation.

Such a model should be formulated as a dynamic game, to take into account the
interaction between the competing firms. Here, however, we put forwardthe following
frmulation as a first step to solve such a problem. We consider the decision problem for
the established firm, given the choice of thel rival. Let firm 1 be the established firm and
firm 2 the rival. We make the simplifying assumption that firm 1's expectation about the
probability of adoption of firm 2 is known and constant through time. Let q be the nival's
probability of adoption that firm 1 expects, and 1—q the probabihity of no adoption. We
denote by H(cl,c:?) the one-period profit,6 for firm 1 if firm 1's cost of production 18 ¢! and

2, with cl, c2 2 0. The following assumptions on H(cl,c2') hold:

firm 2's cost is ¢
A3 (1) H(cl,c2) 18 continuously differentiable
() H(cl,cg) 18 non-negative

(m) H(cl,cg) 18 non-Increasing in c1 and non-decreasing in c2



sl 6 Al

(v) given c2, H(cl,c2) is convex in ¢!

(v) (?2[1(«':1, 4:2)/(7c1('k2 < 0, for all cl, <:2

A4 given cQ, o, CQ) <o

Similar comments to those for A.l and A.2. can be applied to A.3. and A4 Assumption
A 4 (v) 18 satisfied, for example, in the case of a Cournot duopoly, with linear demand

function. The analysis which follows constitutes an extension of what we showed in the

previous sections Now the problem can be written formally as:
o

(11) Max E [2 B(II(c!, cg)—xxt]
t=U

subject to x;,, Xo, € {0,1}

and the sequential constraints for all t

T

cé = xltd;.—l ca_l(l—a)+( l—xh')c",'_1 with probability p
d"; = x1t+(l-x1t)d;‘_1( l—a)

T

c:' =5 xmd{_lcé_l+( 1-—)(2,(.)c:’_1 with probability 1—p

dy = Xgu (1 —xg, )di |

= d?_ C?_ (1"0)
t—1"t—1 ] with probability pq

15
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2 — 2
€= 4=

) ‘ with probability p(1—q)
dt‘. = d:_l(l-a) }

e?=d? .¢?

: =1 } with probability (1-p)q
cl = ¢l

L7 -1 } with probability (1-p)(1—q)
di=df

where d' and d? are a measure of accumulated innovation for firm 1 and firm 2
reapectively. The value of the optimal program (11) depends, for given a, K, p and q, on

the initial value of (c!, d', ¢, d%. From (11) we can obtain the following functional

equation:
(12) victdlic?dh =
p max {q[ll(d'c!(1~a), d%%(1-0)) = K + 6 V(d!c!(1-a), 1, d2cX(1=a), 1)] +
+(1-q)I(d'c! (1~0), &) = K + s V(d'c!(1-a), 1; ¢, d4(1-a))],
alli(c!, d%c4(1-a)) + 6 V(c!, d'(1-a); d%cd(1-a), 1)] +
+(1=a)(I(ct, &) + 8V(c!, dl(1-a); ¢ d¥(1-a))]} +
+(1-p) max {q[I(dlc!, a%c%) K + sv(alc!, 1, a%2 1)) +

+1-)(dlc!, & — K + svialed 1, 2 4%

0



1 )
e, a%2) + s vl ab; a2 ) + (g, &) + s Vit al 2 aPy

As 1 the previous section we concentrate our attention to the case of a discovery. Let

& = (l—a.')d1 and A, = (l-a)d2, with 0SS 1, 0€4,8 1. If the following inequality
holds

2A2 1 2.2

a3 amictal, 2?) - e, a?) + G-ginela, ¢) nek ) -K >

b{q[V(cl,AI; c2A2,l) - V(clAl,l; CQAQ,l)] + (l—q)[V(cl,Al; CQ,AQ) - V(clAl,l; cQ,AQ)]}

then the optimal policy for firm 118 to adopt immediately.

With the same argument as in Proposition 21t 18 easy to prove the following:

Proposstion 6 For gven c!, c?, a? and for suitable K, there exists Al* such that
firm | adopts the best available technology 1ff a'< &l otherwise 1t

defers adoption.

If g = 0, for all t and for any p, then cg = c:_l, that 18, ¢? does not change through time.
Since firm 2 affects firm 1's behaviour through c? only, the presence of a rival does not play
any role on firm 1's choice if g = 0. In order to study how the presence of a rival affects
the decision about adoption of the established firm, let us compare the threshold value A

when q = U and when q > 0. The following Proposition holds:

Proposition 7 For giwven c!, 2, a?, the critical value a'*is decreasing in ¢ In
particular, a'*(q = 0) > A'™(q > 0). That 1s, the presence of a rival

renders postponement more attractive.



Proof. It follows from & comparison between expressions (14) and (15), for given c!, c3, &%

al: c?

11 2. AQ)]

(14) H(clAl, cQ) - H(cl, cQ) -K= 6[V(c1, ; AQ) —Vica, ;¢

which 15 satisfied for a! = A'*(q = 0), and

(15) q{H(clAI, cQAQ) - H(cl, cQAQ)] + (1- q)[ﬂ(clAl, c2) - mcl, CQ)] ~-K=

ﬂq(V(cl,Al; CQAQ‘ 1) - V(clAl, 1 CQAQ,I)] +(1- q)[V(cl, Al,' cQ, AQ) - V(clnl‘ 1; cQ,AQ)]

which is satisfied for A' = al*(q > 0).
By A.3. we get that the denivative of the left-hand side of expression (15) with respect to q

1s negative, and in particular:

1.1 2 12

(e a”, ¢) ~ H(cl, cQ) > q[H(clAl, cQAQ) - H(cl, CQAQJ] + (1—g)[ H(clA L) — H(cl,cz)]

Moreover we can show by induction that the right-hand side of expression (15) 1s non

decreasing in q, and n particular that:
V(cl,Al,cz,AQ) - V(clAl,l,CQAQ) < q[V(cl,Al,czAQ,l) - V(clAI,l,CQAQ,l)]

+ (l—q)[V(cl,Al,cg,AQ) - V(clAl,l,CQ,AQ)]

Therefore, A'* is decreasing in q and in particular A'*(q = 0) > al*(q > 0).

This result 18 1n keeping with the literature supporting the socalled Schumpeterian



hypothesis, according to which the incentive to innovate 1s larger in a monopolistic market.
With an opposite conclusion with respect to Arrow (1Y62), thia Literature argues that it is

not always true that competitiveness in industries leads to a higher level of technological

advancement than when industries are less competitive. Qur result 13 that competition

inhibits technological advancement. When interpreted in terms of potential rivalry, such
result can be of some help 1n the discussion about the role of entry in preventing or not the

market to lock-in to an inefficient technology. Potential rivalry would retard the adoption

of the best available technology.
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5. FINAL REMARKS

This paper examines the decision of adoption of new technologies in a multistage
framework and explores how such decision is affected by the relevant parameters, that
is, the cost of adoption, the probability of discovery and the probability of adoption of
the rival. Even if the framework is a simplified one, our result that rivalry inhibits
technological advancement can be of some help in the discussion about the role of
entry and of policy interventions in such industries. Our result implies that the
common attitude in policy interventions, and especially in anti-trust policies, may be
questionable in the presence of technological progress.

A few extensions for possible further research can be identified. In this paper
innovations are fully characterized by the onedimensional abstraction of cost
reduction. We consider process innovations. More generally, one can model
innovations by considering an index number that identifies the product produced or
the production technique employed. That is, such index may be interpreted as an
index of product quality, or as the inverse of the minimum average cost associated
with the technique in operation.

The timing of decisions is largely influenced by expectations about the time path
of future technological changes. An interesting extension of this paper is to model
expectations as well. Rosenberg (1976) illustrates that the main determinant of
adoption or not is the expectation concerning the future course of technological
innovations. One of his conclusions seems to be inescapable in our framework: " A
firm may be unwilling to introduce the new technology if it seems highly probable
that further technological improvements will shortly be forthcoming". To flesh out

the desired realism one should introduce other salient factors such as uncertainty
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about the profitability of new discoveries; temporizing measures such as minor
adjustments, alterations and additions to existing equipment; compatibility of the

various innovations.



NOTES

IThey include a variety of learning experiences. Firms that move down such learning
curves first — whether these curves pertain to cost reductions or performance
improvements — may be able subsequently to exploit the advantages conferred as a
barrier to entry of new firms. To the extent that the findings of basic research can be
translated into patentable assets , first-movers may be able to consolidate their
market position through patent protection. Furthermore, buyers switching costs
may be significant and may constitute a significant form of protection against
competitors for firms that are first to enter the new product line.

*This depends on the degree of sunkness, i.e. it is true in the industries where adopting
the newest technology requires a huge financial commitment in physical and
intangible assets, and where "retrofitting" is not very important.

30bviously, H(cz = maxq2o (qf(q) - cq), where q is the output level and i‘(q%l is the
inverse demand function. In this paper we specify assumptions on II(c), which is our
primitive function, instead of specifying assumptions on {(q)

4The analysis can be extended easily to the case where a is uncertain, with known
distribution function.

5This seems to have been the distinctive characteristic of the American chemical
processing scene (Rosenberg,1990). The presence of specialized engeneering firms
(SEFs) to which most of the design and engineer functions were subcontracted,
played a critical role with respect to competition among chemical manufacturers.
Latecomers to aparticular chemical technology could benefit from their relations
with the SEFs, which were able to provide them with the process know-how that
they had accumulated through their previuos relations with earlier entrants. The
availability of such technologies from the SEFs also encouraged many new entrants
into the industry from related sectors. A result was intensified competition,
including periods of overbuilding and excess capacity.

8We omit the superscript 1 to H(cl, c2), indicating firm 1’s profit, because it does not
cause ambiguity. Indeed, we do not have to specify firm 2’s profit.in this formulation

firm 2 affects firm 1's profit through c2.
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