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Abstract - A powerful and efficient method based on the

leaky mode propagation method and recently applied by the

authors to model defect-free optical periodic structures, is

used to characterize photonic bandgap structures

incorporating multiple defects, having arbitrary shape and

dimensions. The importance of the defect-mode

characterization in photonic bandgap materials materials is

due to the intensive use of defects for light localization to

design very promising optical devices. In order to prove the

usefulness of the method, design of an optical filters for dense

wavelength division multipexing applications, has been

carried out by the developed model.

I. INTRODUCTION

Waveguiding Photonic Band-Gap (WPBG) structures, i.e.
regular periodic structures in which a transversal resonant
condition is created for the light, and Fully etched WPBG
(FWPBG, in which the slots are etched down to the
substrate) are very promising for their applications in
optoelectronics, particularly for ultracompact photonic
microcircuits, low threshold, high efficiency light emitting
devices 1  and high performance optical resonators and
filters for Dense Wavelength Division Multiplexing
(DWDM) communication systems 2 . In fact, it is well
known the capability of PBG-based devices to control the
light 3 , providing either the inhibition or localization of
the radiation.  Optimal design of such devices requires the
use of appropriate numerical models. The Leaky Mode
Propagation method (LMP) has been recently used by the
authors to develop a very powerful model of both
infinitely long and finite-size, defect-free, PBG structures
4-5 .

II. MODEL DESCRIPTION

The LMP method is faster than other numerical methods,
does not require any analytical approximations and
provides a good numerical stability. It allows to take into
account all the physical phenomena occurring when a
wave propagates inside a periodic structure as PBG one
having deep grooves, high refractive index contrast, and
finite length. Losses due to either a stopband (Bragg
interaction) or power leakage caused by out of plane
optical scattering or radiation are also taken into account.
The model has been demonstrated also to be capable to
characterize the out-of-plane losses of a 2-D FWPBG
structure by referring to a 1-D FWPBG model 5-6 .
Results of intensive and accurate comparisons has

accomplished by the authors among the most used
numerical methods and the LMP one, can be found in Ref.
4,5. The model has been implemented in a very fast code
in FORTRAN 77 language, running on a personal
computer and able to provide all the parameter values in a
few seconds: mode propagation constants, harmonics and
total field distribution, transmission and reflection
coefficients, Poynting vector, forward and backward
power flow, guided power and total losses.
Our model enables the designer to have a complete view
over the physical and geometrical device features, and to
draw very easily optimal design rule of PBG-based
devices.
Anyway the principle of operation of PBG-based devices
generally implies the localization of light by introducing a
defect in the structure, i.e. a region in which the
periodicity of the refractive index is interrupted.
Therefore, a useful and complete model must be able to
characterize also defect modes. Modeling the presence of
an arbitrary number of defects, plugged in the regular
periodic region, having any arbitrary shape and
dimensions, is the aim of this paper.
To this aim, we have modeled a periodic structure with
defects as an array of devices without defects, linked each
other by pieces of slab waveguides, as sketched in Fig.1.
In this way, we develop a model that is general, able to
characterize any complex PBG structure, composed of an
arbitrary number M of partially or fully etched gratings
separated by M-1 defects. The defects can be different
each other in terms of extension and thickness.
Referring to Fig.1 we denote the generic grating of the
array, posed in the h position (h = 1, M), as h-grating,
which length is Lh. Between the h-1 grating and the h-
grating is plugged the h-defect, which length is dh and
propagation constant h. For each regular periodic grating
we assume: a)both sinusoidal and generally trapezoidal
profile, having period h; particular cases of the
trapezoidal shape of the etched region are the triangular,
rectangular and saw-tooth profiles; b) isotropic and
homogeneous unperturbed layers (cover, substrate); c) a
finite length along the z propagation direction and infinite
length along the y direction.
At first, each grating is singularly considered and
characterized assuming it out of the array and infinitely
long. Transverse field solution FPBG (Ey for TE and Hy for
TM polarization) of the scalar wave equation in the
perturbed region is the following:

gzn
n

nPBG tx0   )zjkexp()x(f)z,x(F

11th GAAS Symposium - Munich 2003 113

mailto:perri@poliba.it


where fn(x) is the amplitude function of the n-th Bloch
harmonic. It is a function of the depth x and is evaluable
as detailed in author’s Ref. 4. Due to the Bloch-Floquet
phase relationship the following condition applies:
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where the leakage factor  (> 0) takes into account Bragg
reflection and power radiation.
The detailed characterization procedure and the complete
theory and model expressions can be found in author’s
Ref.4. Then, we account for the finite-length of each
grating by calculating the reflection and transmission
coefficients, Rp and Tp, respectively, by using a solution,
F, of the transverse field, which is a linear combination of
two linearly independent solutions F(a) and F(b) of the
infinitely long one, obtained in the first step.
We have: F = a F(a) + b F(b)    where F(a) is the “forward”
solution, obtained by solving the infinitely-long grating
seen in the +z direction, and F(b) is the backward one,
obtained by solving the infinitely-long grating seen in the
–z direction.
Obviously, if the profile of the etched slots is symmetric
with respect to the x-axis the amplitude functions fn

+(x)
and fn

-(x) are identical. a and b are arbitrary coefficients to
be determined.
Imposing the reflected and transmitted field continuity
conditions at the input/output sections of the single grating
a linear system is provided in four unknowns: a, b,  and

detailed in Ref. 4, 5.  and are the field reflection and
trasmission coefficients, respectively. The system can be
analytically solved, allowing the power reflectivity RP =
| |2 and the power transmittivity  TP = | |2 and then the out
of plane losses LP =  1 - RP - TP to be determined.
At this stage, we are able to model also PBG devices with
defects.
We refer the model expressions relevant to the most
general situation in which the etching profile of each
grating is asymmetrical and the defects have different
thickness.
An inspection about the waves traveling inside the
structure shows that at the input end of the generic h-
grating of the array, impinges the field transmitted from
the (h-1)-grating and the field traveling into the (h-1)-
defect, which length is d(h-1). This field is due to the
multiple reflections occurring between the output end of
the (h-1)-grating and the input end of the h-grating. The
field propagating into the (h-1)-defect suffers from the
phase shift due to the defect length d(h-1). Moreover, at the
output section of the h-grating impinges the field reflected
by the input section of the (h+1)-grating and the field
traveling into the h-defect, which suffers from the phase
shift due to the distance dh.
We define as:
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the coefficients accounting for the field reflected and

transmitted by the h-grating, respectively (see Fig.1).
Then, the amplitudes of the beams impinging and
reflected at the input section of the h-grating, (h)

inc and
(h)

rif, can be written as follows:
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Then, the amplitudes of the fields incident and transmitted

at the output section of the h-grating, (h)
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can be written as follows:
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being (h)
inc  the field amplitude reflected by h+1 grating

and incident at the output section of the h grating; having

defined:
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inc s u uF =F (x)exp(j d )  the fields impinging at the input

section of the h-grating and of the first grating of the
array, and, then, propagating in the h-slab and in the input
slab, respectively. The propagation constant u is the same
for the input/output slabs; h is the propagation constant of
the h-defect (slab). )x(F )h(

s
 and Fs(x) are the amplitude

functions of the fields previously defined.
By imposing the appropriate field continuity conditions at
the input and output section of each grating of the array,
we obtain M systems, each having four unknowns: ah, bh,

h , h  being h = 1, 2, …M.

We have:
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where ah e bh are the a and b constants4,5 relevant to the h-
grating,  = -  +j 0.
Moreover:
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where p is the highest order backward harmonic (see Ref.
5) and Kh =2 / h.
The solution for the whole structure starts from the last
grating of the array  (h = M and M+1 = 0) and goes back
twards the (M-1)-grating and so on, to the first one.
Finally, the field reflection and transmission coefficients
of the whole defective PBG, d and d, respectively, and,
then, the power reflectance and transmittance, Rp and Tp,
and the out-of-plane losses Lp can be determined.
Infact, we have:

d = 1     and 
M M-1

d i i i
i=1 i=1

= *exp(j d ) ;

then:
RP = | 1|

2   ;   TP = | d|
2      and    LP =  1 - RP - TP.

III. RESULTS

By the developed model, two DWDM filters have been
designed, whose performances advance the state of the art
of commercial DWDM optical filters. The aim is to show
the usefulness and capabilities of the model to design
optimization.
The technologies chosen are GaAs/AlxOy and Si/SiO2, due
to their reliability and usefulness to optoelectronic
monolithic integration. The chosen operating wavelength
is  = 1.55 m.
Filter # 1 - The device structure is as in Fig.1. The design
procedure starts from the determination of the parameters
relevant to the defect-free device.
As a second step we plug in a /4 long defect at the
center of the structure, which breaks off the regular
periodicity and splits the grating into two equals half-
length gratings, as in Fig.1. The length of the defect has

been appropriately chosen to have a constructive
interaction between the counterpropagating beams in the
defective region, in correspondence of the operating
wavelength  = 1.55 m.

Fig.1.  Model of 1-D WPBG device with defect.

This gives rise to a field concentration in the defect region
whilst the field vanishes in the periodic part of the device
because the operating wavelength is in the bandgap of the
grating where the propagation is prohibited. It results a
filtering effect in a very narrow band around  = 1.55 m,
as we will see later. The filter is modeled as a couple of
gratings each having length Ls = 40  connected by a
single defect, i.e. a piece of slab having d1 = 0.1364 mµ .

The value of d1 has been chosen to have a peak in the
transmittivity spectrum in correspondence of  = 1.55 m.
Fig. 2 shows the transmittivity spectrum relevant to the
filter; the presence of an allowed state in the bandgap, i.e.
of a transmission peak at  = 1.55 m, confirms the
validity of our calculations.

 

Fig. 2.  Dispersion curve of transmittivity Tp relevant to the
filter # 1 having a /4 defect.

The designed filter has a total length of 21.96 m and a
bandwidth, calculated at –3 dB, equal to 0.16 nm (20
GHz).
In Fig.3 the very good confinement of the field Ey for TE
modes in the defective region (or cavity) is shown.
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The high value of the quality factor Q is related to the
field confinement.
By perfoming a lot of simulation we have found also that
a reduction in the grating length makes the transmittivity
peak Tmax higher and the out-of-plane losses lower, but the
channell-width  also enlarges.

Fig. 3. Total field propagation in the filter #1 at resonance.

This last parameter depends also by the field confinement
into the cavity. Both Tmax and  can be improved by

lowering the refratcive index of the substrate and by a
deeper etching of the periodic region. The first solution
allows a better field confinement thus reducing the
evaneshent field in the substrate; the second one allows to
obtain a better reflectivity by reducing the out-of-plane
losses. Then, we can optimize the transmittivity
maintaining the length as small as possible.
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