Abstract — In this work, we present the characteristics of the 0.1 \(\mu m \) gate length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistors (MHEMTs). The MHEMTs with \(\Gamma \)-shaped off-set gates (70 \(\mu m \) width and 2 fingers) were fabricated using the double heterostructure epitaxial structure and characterized through the DC, Noise and RF measurements. Measured channel current density and transconductance (\(g_m \)) were 442 mA/mm and 409 mS/mm, respectively. Noise characteristics were measured in the frequency range from 50 GHz to 61 GHz, and show 1.8 dB at 50GHz. From RF measurements, 154 and 433 GHz were obtained for the cut-off frequency (\(f_T \)) and maximum frequency of oscillation (\(f_{\text{max}} \)), respectively. A superior \(f_{\text{max}} \) of 433 GHz achieved in the work is one of the first reports among the fabricated 0.1 \(\mu m \) gate length MHEMTs.

I. INTRODUCTION

It is well known that InP-based HEMTs have better device performances than GaAs-based PHEMTs [1~4]. Excellent device performances of the InP-based HEMTs operating in W-band are mostly based on InAlAs/InGaAs /InP material system. However, InP-based wafers are more expansive and brittle than GaAs-based ones. And further-more production yields of InP HEMTs are lower because etching rates of InP-based materials are slower. In order to overcome these demerits, GaAs-based metamorphic HEMTs (MHEMTs) have proposed because performance of GaAs-based MHEMTs is comparable with those of InP-based HEMTs.

In recent decades, active research efforts have been therefore made on GaAs-based metamorphic HEMTs (MHEMTs) to address the needs for both high microwave performance and low device cost. A use of metamorphic buffers on GaAs substrates is introduced to accommodate the lattice mismatch between the substrate and the active layers as well as to avoid InP substrates. By using the metamorphic buffers, unstrained InAlAs-InGaAs heterostructures can be grown in a wide window of indium content for InGaAs channels, thereby exhibits comparable device performances with those of InP-based HEMTs. For examples, excellent maximum frequency of oscillation (\(f_{\text{max}} \)) results of 200 ~ 400 GHz have been introduced in recent MHEMTs adopting 0.1 ~ 0.2 \(\mu m \) gate lengths [5~8]. Noise figures (NF) of 1.2 ~ 1.8 dB measured at 30 GHz have been also demonstrated in the MHEMTs by the recent works of Yoon [8] and Whelan [9].

In this paper, we present the high performance GaAs-based InGaAs/InAlAs MHEMTs which adopt a off-set \(\Gamma \)-shaped gate structure of 0.1 \(\mu m \) gate length and double - doped epitaxial heterostructures with the metamorphic buffer of graded indium composition (0 ~ 0.5) in In\(_{x}\)Al\(_{1-x}\).
The structural improvement of the off-set gate by reducing the distance between the source and the gate enhances the f_T and the maximum stable gain (MSG) by minimizing the gate-to-drain capacitance (C_{gd}) as well as the drain resistance (R_d) [11]. In our devices, the spacings between source and drain and source and gate foot were 3 and 1.3 μm, respectively.

The MHEMTs were fabricated in the following sequences. First, mesa etching was performed to provide isolated active areas by removing 200 nm thickness in an etchant of phosphoric acid/H$_2$O$_2$/H$_2$O (1:1:60) followed by the formation of ohmic contacts using the thermal evaporation of AuGe/Ni/Au (125/28/160 nm) layers and the rapid thermal annealing at 320 $^\circ$C for 30 sec. The measured specific contact resistance of the ohmic contacts was $\sim 1 \times 10^{-7} \Omega \cdot \text{cm}^2$. Gate recess was done by etching the cap layers in a phosphoric acid/H$_2$O$_2$/H$_2$O (1:1:1000) solution. 0.1 μm T-shaped gate was patterned by the lift-off with the PMMA/P(MMA-MAA)/PMMA (100/600/200 nm) using a 30 keV electron beam lithography system. Schottky contacts were formed by Ti/Au (50/400 nm) evaporation. Prior to the air-bridge interconnection, 78 nm Si$_3$N$_4$ passivation layers were deposited in a plasma enhanced chemical vapor deposition (PECVD) system. A perspective view of the fabricated MHEMT gate with the Si$_3$N$_4$ passivation layer is shown in Fig. 3.

III. DC AND MILLIMETER-WAVE CHARACTERISTICS

The fabricated 70x2 μm MHEMTs with a 0.1 μm gate length were characterized by measuring the DC, noise and RF performances. DC characteristics, such as I-V and g_m, were measured in a HP4156A DC parameter analyzer, and the measurement results of the MHEMTs with a 3 μm source-drain spacing are shown in Fig. 4 and Fig. 5, respectively.

As shown in Fig. 4, typical saturation drain-source current (I_{ds}) and pinch-off voltage (V_p) of the fabricated devices were 62 mA (442 mA/mm) and -1.7 V, respectively. The breakdown voltage (V_{br}) of the device (source-drain spacing of 3 μm) was about 3 V.

The measured maximum extrinsic transconductance (g_{mmax}) was 409 mS/mm at a drain voltage (V_d) of 1.5 V and a gate voltage (V_g) of -1.2 V as shown in Fig. 5.

The RF measurements were performed in a frequency range of 0.5 ~ 50 GHz using a HP 8510C network analyzer.
As shown in Fig. 6, a high S_{21} gain (7.92 dB) was obtained at a millimeter-wave frequency of 50 GHz. Shown in Fig. 7 are the measured h_{21} gain, S_{21} gain and the maximum stable gain (MSG) versus the frequency obtained from the MHEMTs. And in Fig. 7, The devices exhibit a f_t of 154 GHz and a f_{max} of 433 GHz, respectively, from the extrapolation of h_{21} and MSG for a device biased at a peak transconductance.

The measured f_{max} of 433 GHz is one of the best data reported in 0.1 μm MHEMTs thus far [5,6], which are responsible for the optimized structures including the epitaxial layers and off-set gate geometry as well as our process maturity. Noise characteristics of the fabricated MHEMTs were also measured using a HP 8970B noise figure meter in a frequency range of 50 ~ 63 GHz, and a very low noise figure less than 3 dB was obtained as shown in Fig. 8.

IV. CONCLUSION

0.1 μm gate length MHEMTs with a off-set Γ-gate structure were fabricated using a InGaAs/InAlAs metamorphic epitaxial structures grown on GaAs substrates, and were characterized through the DC, RF and noise measurements. Measured channel current density and g_m were 442 mA/mm and 409 mS/mm, respectively. From the RF measurements, 154 and 433 GHz were obtained for f_t and f_{max}, respectively. The f_{max} measured from our devices is one of the best performances reported among the 0.1 μm gate length MHEMTs operating in millimeter wave frequency range. A very low noise figure less than 3 dB in a frequency range of 50 ~ 63 GHz was also obtained from the fabricated MHEMTs.

ACKNOWLEDGEMENT

This work was supported by KOSEF (Korea Science and Engineering Foundation) under the ERC (Engineering Research Center) program through the MINT (Millimeter-wave Innovation Technology) research center at Dongguk University.

REFERENCES

[5] D. C. Dumka, W. E. Hoke, P. J. Lemoins, G.Cueva, and I.Adiesa,“MetamorphicIn0.52Al0.48As/In0.53Ga0.47As HEMT on GaAs substrate with fT over200GHz”, IEEE IEDM, 783, 1999

[8] H. S. Yoon, J. H. Lee, J. Y. Shim, S. J. Kim, D. M. Kang, J. Y. Hong, W. J Chang, K. H. Lee, “Low noise characteristics of double-doped In$_{0.52}$Al$_{0.48}$As/In$_{0.53}$Ga$_{0.47}$As power metamorphic HEMT on GaAs substrate with wide head T-shaped gate,” *Indium Phosphide and Related Materials*, 201, 2002

[9] C. S. Whelan, W. F. Hoke, R. A. McTaggart, M. Lardizabal, P. S. Lyman, P. F. Marsh, T.E. Kazior, “Low noise In$_{0.32}$(AlGa)$_{0.68}$As/In$_{0.43}$Ga$_{0.57}$As metamorphic HEMT on GaAs substrate with 850 mW output power density,” *IEEE Electron Device Letters*, 21, 5, 2000
