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Abstract

We challenge the global optimality of one-shot punishments in in-

�nitely repeated games with discounting. Speci�cally, we show that

the stick-and-carrot punishment à la Abreu (1986) may not be glob-

ally optimal. We prove our result by investigating tacit collusion in

the in�nite repetition of a linear Cournot game. We illustrate the ex-

istence of the stick-and-carrot globally optimal punishment for large

cartels, and fully characterise it. Then, we show that for mall cartels,

global optimality may be reached only with two-period punishments.

Keywords: cartel stability, implicit collusion, repeated games
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1 Introduction

While it is still an empirical question of major importance to establish if

(and how) enterprises do collude, the theory of supergames has certainly

strengthened our understanding of how cartels may be shaped by oligopolistic

interaction. The term supergame was likely coined by Luce and Rai¤a (1957)

when examining repetitions of the prisoner�s dilemma. Actually , according

to Aumann (1981), �it has been known since the middle to late 1960s that

any individually rational payo¤ vector (i.e., not smaller than a payo¤ that

the player can guarantee himself) can be supported as a Nash equilibrium

outcome in an in�nitely repeated game where there is no discounting . . . ,

and it is this result that he dubs the Folk Theorem�(Friedman 1986, p. 103).

However, when switching to impatient players, the strategies forming a

subgame perfect equilibrium (SPE) in supergames without discounting do

not necessarily work. In a pioneering paper, Friedman (1971) proved that

every feasible payo¤ that Pareto dominates a Nash equilibrium of the stage

game is a SPE payo¤ of the in�nite repetition of the stage game, if players

are patient enough. Friedman�s punishment take the simple form of reversion

to the Nash equilibrium of the stage game forever (grim strategy).

This line of research has been furthered by Abreu (1986). He identi�es a

class of (pure) strategies that support the Folk Theorem in repeated games

with discounting. Such strategies allow one to �nd SPE where any individu-

ally rational outcome can be achieved. Moreover, Abreu (1986) has charac-

terized a two-phase punishment as an optimal symmetric punishment which

is more severe than Nash reversion; such a two-phase punishment consists of a

stick-and-carrot strategy. Fudenberg and Maskin (1986) have then extended

Abreu�s results also to games of incomplete information. In Shapiro�s (1989)

words: �Within the class of symmetric punishments, Abreu proves that the

optimal punishment has a simple, two-phase strategy: immediately following
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the defection, each �rm participates in a �price war�by producing a higher

output than previously; but immediately thereafter all �rms return to their

optimal, tacitly-collusive output levels. It is striking that, when optimally

punishing a defector, the industry returns after only a single period to the

most collusive sustainable con�guration. Abreu describes these types of pun-

ishments as o¤ering a stick and a carrot; apparently, the carrot (returning

to collusion) is necessary to make the stick (the one-period price war) both

credible and as menacing as possible�(Shapiro, 1989, p. 368, italics added).

Abreu (1986) also provides conditions under which the symmetric two-phase

punishment is globally optimal.

In this paper we challenge such conditions showing that stick-and-carrot

punishments may not be globally optimal and more than a single period is

then required to enforce a collusive path. As a workhorse we employ the

textbook version of a linear Cournot model as in Abreu�s (1986, p. 206)

example. We know that: (i) global optimality of punishments requires that

�in continuation equilibria �rms earn zero pro�ts�(Shapiro, 1989, p. 369);

(ii) condition (i) is granted by minmax strategies after deviation from the

cartel, and (iii) minmax strategies are nor subgame perfect in variable-sum

games as ours. Hence, the central issue we are going to tackle deals with the

existence of subgame perfect punishments capable of reproducing the same

critical threshold of the discount factor as under minmax strategies. We

prove that, for small cartels, stick-and-carrot is not a globally optimal strat-

egy and global optimality can be reached only via two-period punishments.

This result belies the validity of Abreu�s (1986) Theorems 18 and 19. For

large cartels, instead, a stick-and-carrot punishment is globally optimal as it

entails the same critical threshold of the discount factor as under minmax.

Irrespective of cartel size, his example is mistaken.

The paper is organized as follows. In Section 2 we present the setup

and establish the benchmark for the threshold of the discounted factor under
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grim or minmax strategies. In Sections 3 and 4 we get into Abreu�s analysis

and investigate the optimality of stick-and-carrot punishments. In Section

5 we show under which conditions, for small cartels, global optimality may

be obtained by means of a non stationary punishment lasting two periods.

Section 6 concludes.

2 Setup

Consider a market for a homogeneous good, served by N = 2; :::n identical

single-product �rms, endowed with the same technology. Let the market exist

over discrete time t = 0; 1; 2; :::1: All �rms share the same intertemporal
preferences, measured by the time-invariant discount factor � 2 [0; 1]. In

each period, the inverse market demand function is

p = a�
nX
i=1

qi (1)

where parameter a > 0. The cost function of �rm i is Ci = cqi with c 2 [0; a).
Accordingly, the individual pro�ts are

�i =

 
a�

nX
i=1

qi � c
!
qi (2)

2.1 Grim trigger and minmax strategies

Consider �rst Friedman�s (1971) version of the grim trigger strategies, where

collusion is sustained by the threat of an in�nite reversion to the Cournot-

Nash equilibrium of the constituent game. We brie�y summarise this result

here. Assume perfect tacit collusion with cartel members setting the output

vector so as to maximise joint pro�ts � =
Pn

i=1 �i: The resulting individual

collusive output level is qC = (a� c) = (2n) ; granting an individual pro�t
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�C = (a� c)2 = (4n). The unilateral deviation against the n � 1 loyal cartel
members is

qD
�
qC
�
=
(a� c) (n+ 1)

4n
(3)

delivering deviation pro�ts

�D
�
qC
�
=
(a� c)2 (n+ 1)2

16n2
(4)

During the in�nite Nash reversion, the per-period Cournot-Nash pro�ts are

�N = (a� c)2 = (n+ 1)2 : Collusion is stable i¤

� � �D � �C
�D � �N � �F =

(n+ 1)2

n (n+ 6) + 1
(5)

where �F is concave and monotonically increasing in n; with �F = 9=17 for

n = 2 and limn!1 �F = 1. Treating n as a continuous variable,

@�F
@n

=
4 (n2 � 1)

[n (n+ 6) + 1]2
> 0 (6)

The intuitive message, which has been incorporated in the acquired view on

these matters, is that, in the collusive outcome �the per period and per �rm

pro�t is a decreasing function of n. A large number of �rms reduces the pro�t

per �rm and thus the cost of being punished for undercutting. In contrast, the

short run gain from undercutting the monopoly price slightly... increases with

n... In this sense market concentration facilitates tacit collusion� (Tirole,

1988, p. 248).

If instead the in�nite punishment consists in each player reverting to min-

max one another through qm = (a� c) =n, the per-period individual payo¤
during the punishment phase is nil and the threshold of the discount factor

ensuring the stability of tacit collusion becomes

� � �D � �C
�D

� �m =
(n� 1)2

(n+ 1)2
< �F 8n (7)
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where subscript m mnemonics for minmax, with �m = 1=9 for n = 2 and

limn!1 �m = 1. That is, minmax strategies appear to be more e¢ cient than

Nash ones in stabilising the cartel. However, since the constituent game is a

variable-sum one, it is well known that the use of minmax strategies does not

produce subgame perfection. Yet, the threshold of the discount factor �m de-

livered by minmax strategies identi�es the benchmark to be reproduced using

globally optimal punishments which must meet the additional requirement

of subgame perfection.

3 The supergame with optimal punishments

Abreu (1986) aims at �nding a one-shot punishment strategy possessing the

properties of being (i) subgame perfect, (ii) more e¢ cient than Friedman�s

(1971) Nash reversion, and (iii) globally optimal. Since the stick is harsher

than the Nash strategy, this requires a condition of its own for incentive

compatibility about the implementation of the punishment itself. Moreover,

since the severity of the punishment may drive the resulting punishment

pro�ts below zero, even if for a single period, one has to control for the non-

negativity of the discounted �ow of pro�ts over the continuation of the game

from the punishment period to doomsday. All of this requires the following

conditions to hold in a symmetric subgame perfect equilibrium:

�D
�
qC
�
� �C � �

�
�C � �P

�
(8)

�D
�
qP
�
� �P � �

�
�C � �P

�
(9)

�P + �C
1X
t=1

�t = �P +
��C

1� � � 0 (10)

considering, for the moment, �D
�
qP
�
> 0: For the moment, we shall suppose

it is. This amounts to saying that we start examining optimal (but not
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necessarily globally optimal) punishments, with conditions (8-10) referring

to the setup in Abreu (1986) up to his Lemma 17, p. 204.

Inequality (8) must be satis�ed for the collusive path to be stable. In-

equality (9) must hold for �rms to implement the optimal punishment qP ;

delivering the punishment payo¤ �P ; �D
�
qP
�
being the pro�ts generated by

the optimal deviation q�
�
qP
�
from the punishment qP . Condition (10) is the

participation constraint whereby the discounted continuation payo¤ cannot

be negative. Sticking to the assumption of full collusion, the two unknowns

to be determined are the critical threshold of the discount factor and the

intensity of the punishment qP :

If all �rms adopt the punishment, the per-�rm punishment pro�ts are

�P =
�
a� nqP � c

�
qP (11)

while the unilateral deviation from qP is

q�
�
qP
�
=
a� c� (n� 1) qP

2
> 08 qP 2

�
0;
a� c
n� 1

�
(12)

where, for future reference, we may de�ne (a� c) = (n� 1) � qP . Whenever
the best reply in (12) is indeed positive, the pro�ts granted by optimally

deviating from the punishment are

�D
�
qP
�
=

�
a� (n� 1) qP � c

�2
4

(13)

Now, solving (8-9) w.r.t. � and qP , one obtains

� � (n+ 1)2

16n
� �A

qP � qPA �
(a� c) (3n� 1)
2n (n+ 1)

(14)

with @qPA=@n < 0; for the intensity of the punishment is diluted as the number

of cartel members increases. In correspondence of the lower bound of qP in
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(14), the optimal unilateral deviation from the punishment is

q�
�
qP
�
= max

�
0;
(a� c) [n (6� n)� 1]

4n (n+ 1)

�
(15)

with
(a� c) [n (6� n)� 1]

4n (n+ 1)
> 08n 2 [2; 5] (16)

In the same range of n,

p
�
q�
�
qP
�
; qP
�
= a� (a� c) [n (6� n)� 1]

4n (n+ 1)
� (n� 1) qPA > 0 (17)

Leaving aside for a moment the fact that n is an integer, observe that

n (6� n) � 1 = 0 in n = 3 + 2
p
2 ' 5:83. This implies that the system

of inequalities (8-10) is admissible only for n 2 [2; 5]. In this range, substi-
tuting �A; qC and

q�
�
qP
�
=
(a� c) [n (6� n)� 1]

4n (n+ 1)
(18)

into (10) reveals that the participation constraint does not bite.

Moreover, �A > �m for all n 2 [2; 5] ; revealing that

Lemma 1 For all n 2 [2; 5] ; the stick-and-carrot punishment with �D
�
qP
�
>

0 cannot be globally optimal.

Additionally, �A > �F for all n � 10 and �A > 1 for all n � 14. Hence, we
must abandon the idea that the optimal deviation from the punishment de-

livers positive pro�ts and �nd a way towards the characterization of globally

optimal punishments.

4 Looking for globally optimal punishment

The �nding in Lemma 1 takes us to Abreu (1986), where the value of the

discounted payo¤ �ow generated by the continuation of the repeated game
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after the initial deviation from the collusive path appearing in (10) is de�ned

as

�P +
��C

1� � � v (�) (19)

Abreu (1986, p. 205) says that �... there exists a lower bound � < 1

... such that for � � �; v (�) = 0: Since a �rm�s minmax payo¤ in the

component game is zero, global optimality is clearly implied ... an interesting

feature of the optimal two-phase punishment when v (�) = 0 is that all �rms

simultaneously minmax one another in the �rst phase�. Then, his Theorems

18 and 19 rely upon the following argument: �The only way v (�)can equal

zero and � (x1; x2) be a P.E. is �� (x1) = 0 ... Hence the total output produced

by (N � 1) �rms must be large enough that p (N � 1)x1 � c; which sets a

lower bound on x1 independent of �. Hence pro�ts in the �rst period must

be negative, but not so large that they cannot be recouped by a collusive

output level supportable by a zero punishment in the future.�

In our model, N = n, x1 = qP ; x2 = qC ; and �� (x1) = �D
�
qP
�
. More-

over, � (x1; x2) = �
�
qP ; qC

�
is a symmetric strategy pro�le for the supergame

based on the two-phase (stick-and-carrot) punishment. Finally, P.E. stands

for perfect equilibrium.

Now, observe that the adoption of minmax strategies forever after the

deviation from the cartel path ensures v (�) = 0 and therefore �m cannot be

outperformed by any other form of punishment as this would require v (�)

becoming negative, consequently driving �rms out of the supergame. The

issue is then whether there exists a subgame perfect punishment capable of

reproducing �m.

For the moment, we con�ne our attention to n 2 [2; 5]. Abreu (1986,
p. 206) uses the same setting as ours to provide an example illustrating his

Theorems 18-19. For n 2 [2; 5], he claims that

� =
4n

(n+ 1)2
� �25 (20)
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A few remarks are in order:

� To begin with, compare �25 against �A to �nd that

�25 � �A =
[n (6� n)� 1] [n (n+ 10) + 1]

16n (n+ 1)2
> 0 (21)

meaning that, for small cartels, using v (�) > 0 is more e¢ cient than

imposing v (�) = 0.

� Secondly, and fairly surprising, in n = 2; �25 = 8=9 > �F = 9=17: The
same ranking between �25 and �F emerges for n = 3; 4.

� Thirdly, �25 is obviously decreasing in n. This would entail that enlarg-
ing the cartel makes it more stable, which goes against the acquired

wisdom intuitively sustaining the opposite.

These observations prompt for a reconstruction of the example, which

can be worked out as follows. Since the requirement is v (�) = 0, one can

solve (10) at the margin w.r.t. �, to �nd

� =
4nqP

�
nqP + c� a

�
(2nqP + c� a)2

(22)

Then, solving (9) at the margin w.r.t. the punishment, we obtain qP =

(a� c) = (n� 1) : In correspondence of this intensity of the punishment, qD
�
qP
�
=

0 = �D
�
qP
�
(i.e., in Abreu�s terminology, �� (x1) = 0). Moreover, simplify-

ing (22) yields �25. At this point, using these expressions for � and qP ; one

may check that (8) is satis�ed as an inequality for all n 2 [2; 5].
This proves that solving the sub-system (8-9) and then checking (10)

is not equivalent to solving sub-system (9-10) and then checking (8). The

reason is that, if the deviation pro�ts �D
�
qP
�
and the continuation payo¤

are both nil, then necessarily (9) and (10) coincide, as can be easily veri�ed

rewriting (9) as

��P � �
�
�C � �P

�
, ��C + (1� �)�P � 0 (23)
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which evidently coincides with (10) up to the positive constant 1= (1� �).
We are dealing with three inequalities in two unknowns, � and qP . Hence,

the reason why the two routes do not deliver the same conclusion is that,

when �D
�
qP
�
= 0, (9) and (10) are indeed the same and therefore �25 results

from using a single condition to �nd both unknowns.

For n � 6, Abreu�s example yields

� =
(n+ 1)2

4 (n� 1)2
� �6 (24)

This also deserves a few comments:

� Comparing �m with �6; we have

�m � �6 =
[n (n� 6) + 1] [n (3n� 2) + 3]

4 (n+ 1)2 (n� 1)2
> 0 (25)

This would imply that the presumed optimal punishment outperforms

minmax strategies, which is impossible.

� Moreover, �6 monotonically decreases in n, with

lim
n!1

�6 =
1

4
< �Ajn=2 =

9

32
(26)

which would suggest that an in�nitely large cartel is more easily sus-

tained than the smallest cartel, which again goes against intuition and

acquired wisdom.

On the basis of Abreu�s (1986) Theorems 18 and 19, globally optimality

of the punishment requires v (�) = 0 and �D
�
qP
�
= 0; which means that

the system (8-10) becomes:

�D
�
qC
�
� �C � �

�
�C � �P

�
(27)

��P � �
�
�C � �P

�
(28)
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�P + �C
1X
t=1

�t = �P +
��C

1� � � 0 (29)

As observed above, the last two inequalities are identical up to a positive

constant. Hence, solving (27) and (28) or (27) and (29) necessarily yields the

same pair:

� � �m �
(n� 1)2

(n+ 1)2

qP � qPm �
(a� c)

p
n (
p
n+ 1)

2

4n3

(30)

We have then shown that when (28) and (29) are equivalent, satisfying the

individual incentive to implement the optimal punishment at the margin

implies that the continuation value from that period onwards is exactly equal

to zero and replicates the e¢ ciency of the in�nite reversion to the minmax

strategy qm after the initial deviation from the cartel path. However, in order

for (30) to be acceptable, it must be true that �D
�
qP
�
= 0; which, in turn,

requires q�
�
qP
�
= 0; i.e., that the optimal deviation from the punishment be

nil. Looking at the best reply

q�
�
qP
�
=
a� (n� 1) qP � c

2
(31)

it appears that a�(n� 1) qP �c � 0 for all qP � qP :Moreover, the resulting
price p

�
qP
�
= a � nqP can be lower than marginal cost but cannot drop

below zero. The latter non-negativity condition requires c � a=n: The same
constraint holds for p

�
qPm
�
= a�nqPm; requiring c � a (

p
n� 1)2 = (

p
n+ 1)

2
;

with
a (
p
n� 1)2

(
p
n+ 1)

2 >
a

n
8n � 6 (32)

Now, comparing qPm with q
P ; we obtain

Lemma 2 qPm > q
P for all n � 6: Therefore, q�

�
qP
�
= �D

�
qP
�
= 0 for all

n � 6.
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This Lemma entails two relevant consequences. The �rst is that �6 < �m
is clearly a mistake.1 The second, more important implication of the above

Lemma is

Proposition 3 For all n � 6; the one-shot optimal punishment is qP � qPm,
delivering the same threshold �m of the discount factor for the stability of full

collusion as minmax strategies repeated forever.

We may then conclude that, for n 2 [2; 5] ; the globally optimal one-shot
punishment does not exists and, if �m can indeed be reached, it is the outcome

of a punishment lasting at least two periods, and possibly non-stationary (as

already illustrated in Abreu, 1988).

5 Two-period punishment

There are two alternative approaches to model a non-stationary punishment

lasting two periods. One consists in stipulating that, once again, the optimal

deviation from the punishment yields zero pro�ts. If so, the relevant system

is

�D(qC)� �C �
2X
t=1

�t
�
�C � �P (qPt )

�
(33)

��P (qP1 ) �
2X
t=1

�t
�
�C � �P (qPt )

�
(34)

�P (qP1 ) + ��
P (qP2 ) +

�2�C

1� � � 0 (35)

where qPt , with t = 1; 2 is the punishment in period t. Solving (33-35) w.r.t.�
qP1 ; q

P
2 ; �
	
yields

qP1 = q
P
m ; q

P
2 = q

C ; � = �m (36)

1We didn�t succeed in reconstructing the derivation of �6 in Abreu�s (1986, p. 205)

example. For sure, it cannot represent the minimal theshold of the discount factor, as it

is lower than �m.

13



which proves that imposing �D(qP1 ) = 0 replicates the above (unacceptable)

result whereby the individual output in the �rst period of the punishment is

qPm and then �rms revert to the cartel production in the second period of the

presumed punishment.

Hence, this approach cannot be pursued. The second approach consists

in considering

�D(qP1 ) =

�
a� (n� 1) qP1 � c

�2
4

> 0 (37)

together with a non-stationary punishment, as in Lambertini and Sasaki

(2002). The related system of inequalities is

�D(qC)� �C �
2X
t=1

�t
�
�C � �P (qPt )

�
(38)

�D(qP1 )� �P (qP1 ) �
2X
t=1

�t
�
�C � �P (qPt )

�
(39)

�P (qP1 ) + ��
P (qP2 ) +

�2�C

1� � � 0 (40)

Condition (38) reformulates the constraint concerning the stability of the

collusive path, while (39) ensures players�incentive compatibility about the

implementation of a biperiodal punishment. The third condition prevents

players quitting the supergame. In all of them,

�P (qPt ) =
�
a� 2qPt � c

�
qPt (41)

and, in (39-40),

�D(qPt ) =

�
a� c� (n� 1) qPt

�2
4

; t = 1; 2 (42)

The system (38-40) delivers four solutions w.r.t. the triple
�
qP1 ; q

P
2 ; �
	
;
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of which only one is acceptable:

qP1 � qPA �
(a� c) (3n� 1)
2n (n+ 1)

qP2 � bqP2 � (a� c) [2n (n� 1) + (1 + n (n� 6))
p
n]

4n2 (n� 1)

� � �m �
(n� 1)2

(n+ 1)2

(43)

On the basis of (43), one can easily establish

qP >
(a� c) (3n� 1)
2n (n+ 1)

>
(a� c) [2n (n� 1) + (1 + n (n� 6))

p
n]

4n2 (n� 1) (44)

for all n 2 [2; 5] ; i.e., the punishment is decreasing over time and the con-
straint about the the optimal deviation from the punishment is respected.

Moreover, plugging the triple
�
qP1 = q

P
A ; q

P
2 = bqP2 ; � = �m	 into (40), one

�nds that the constraint ensuring the �rms�participation to the continuation

of the supergame is indeed satis�ed at the margin, i.e., (40) holds as an

equality. Moreover, controlling for the price in the two punishment periods,

it turns out that it is strictly positive for n = 2; 3; while for n = 4; 5; a

su¢ cient condition for its non-negativity is a 2 (c; 7c] : To see this, observe
that the price levels in the two punishment periods are

p
�
qP1
�
=
c (3n� 1)� a (n� 3)

2 (n+ 1)

p
�
qP2
�
=
c
�
1� 2

p
n� 6n+ 2n3=2 + n2

�
� a

�
1 + 2

p
n� 6n� 2n3=2 + n2

�
4
p
n (n� 1)

(45)

Whereas p
�
qP2
�
> 0 for all n 2 [2; 5] ; p

�
qP1
�
may become negative at n = 4; 5

because its partial derivative w.r.t. a is negative for n = 4; 5.

The foregoing discussion can be summarised in the following:

Proposition 4 For n 2 [2; 5] ; the globally optimal punishment requires two
periods and its intensity is decreasing over time. It is admissible for all
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a 2 (c; 7c] : The resulting critical threshold of the discount factor for the

stability of full collusion is the same as under in�nite reversion to the minmax

strategies, �m; at which v (�) = 0.

On the basis of Propositions 3-4, we can formulate

Theorem 5 Assume a 2 (c; 7c]. In the linear Cournot supergame, there ex-
ists a globally optimal punishment path minimising the value of the stability

threshold of the discount factor for all n � 2. For any cartel size, the dis-

counted payo¤ �ow generated by the continuation game following the initial

deviation from the cartel path is nil. However, the structure of the globally

optimal punishment depends on cartel size:

� the punishment is one-shot (stick-and-carrot) only for n � 6, in which
case it requires the optimal deviation payo¤ from the punishment to be

nil, without any restriction on market size;

� for smaller cartels, a 2 (c; 7c] is required and the optimal deviation

payo¤ from the punishment must not be nil. The punishment must be

distributed over two periods along which its severity is decreasing.

Now recall Abreu�s (1986, p. 205) claim �Consider two-phase punish-

ments. The only way v (�) can equal zero and � (x1; x2) be a P.E. is if

�� (x1) = 0...�as reported above. Our Theorem proves that the attainment

of the lowest threshold of the discount factor �m does require v (�) = 0, but

not, in general, �� (x1) = 0: Indeed, for small cartels, this is not the case

because the stick-and-carrot punishment scheme does not work, global opti-

mality requiring a two-period punishment. The intuitive explanation relies

upon the fact that the slice from cartel participation decreases with cartel

size. Hence, the punishment required to stabilise a small cartel has to be

more severe than for large cartels. This, when global optimality is looked

for, entails an extension of the punishment span.
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6 Concluding remarks

In this paper, we have proved that global optimality in the in�nite repetition

of a linear Cournot game may not be granted by one-shot stick-and-carrot

strategy. Our conclusions contrast strikingly with those of Abreu (1986).

We show that globally optimal subgame perfect strategies depend on the

number of �rms. For �large�cartels, the globally optimal one-shot punishment

exists and reproduces the same critical threshold of the discount factor as

under minmax strategies. For �small� cartels, global optimality cannot be

implemented via one-shot punishments, but only by means of a two-period

punishment.

Whatever is the number of �rms, the example in Abreu (1986) delivers

thresholds of the discount factor which cannot be globally optimal as they do

not coincide with that delivered by the reversion to the minmax strategy. The

source of this problem is that the requirement that the payo¤�ow generated

by the continuation of the supergame be nil makes two of the three incentive

compatibility constraints coincide.

Our �ndings, which we have derived from the simplest possible frame-

work, might prelude to a revisitation of the large literature investigating the

impact of product di¤erentiation on cartel stability2 using Friedman�s (1971)

folk theorem and the representative consumer with a preference for variety

as in Singh and Vives (1984).

2See Deneckere (1983), Majerus (1988), Ross (1992), Rothschild (1992), Lambertini

(1997) and Albæk and Lambertini (1998), inter alia.
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