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Abstract

We investigate the relationship between market concentration and

industry innovative effort within a familiar two-stage model of R&D

race in which firms compete à la Cournot in the product market.

With the help of numerical simulations, we show that such a setting

is rich enough to generate Arrovian, Schumpeterian and inverted-U

curves. We interpret these different patterns on the basis of the rela-

tive strength of the technological incentive and the strategic incentive.
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1 Introduction

In a seminal paper, Aghion et al. (2005) collect a robust empirical evidence

about the relationship between product market concentration and the in-

tensity of innovative activity. They show that such relationship follows an

inverted-U shape pattern with respect to market concentration as measured

by an appropriately defined Lerner index. They then go on to rationalize such

curve by means of a model in which technologically asymmetric firms strive

for improving their cost gap in R&D races under uncertainty. Innovation

occur step-by-step and the effect of market competition on R&D investment

results from the balance between what they call the “Schumpeterian”effect

and the “escaping competition”incentive.

Aghion et al. (2005) have then revitalized the old debate about the re-

lationship between market structure and innovation. Such debate (see Rein-

ganum, 1989, for an excellent survey) was mostly focussed on a binary menu

contrasting the arguments behind Schumpeter (1942) well-known alleged su-

periority of monopoly in driving innovative activity and the opposite con-

clusion by Arrow (1962). By showing that the relationship may exhibit an

inverted-U shape, they provide an important empirical contribution; more-

over, their model offers a theoretical frame accomodating such pattern.1

In this paper we show that another, arguably simpler model of product

market competition and innovation may predict an inverted-U shape curve.

1On the inverted-U shape relationship, see the empirical evidence collected by Mansfield

et al. (1968). To the best of our knowledge, the first scholars hinting at such shape within a

theoretical model are Kamien and Schwartz (1976). They “address the reported empirical

finding that the rate of innovative activity increases with the intensity of rivalry up to a

point, peaks, and declines thereafter with further increase in the competitiveness of the

industry” (Kamien and Schwartz, 1976, p. 247). However, they do not explicitly model

the R&D race as a game, and the prize to the winner is independent of the intensity of

rivalry.
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We borrow from the game-theoretic literature utilized in the ‘90s and follow

Lee andWilde (1980). However, we do not blackbox —as they do —the nature

of market competition, but we model it explicitly as a homogeneous oligopoly

à la Cournot. In such a static two-stage game of R&D, firms participate in an

uncertain race to get a non-drastic cost-reducing innovation which will allow

the winner to compete with a cost advantage in the market game. There is no

spillover and Cournot competition in the product market allows all (initially

identical) firms to be active also in the asymmetric post-innovation non-

cooperative equilibrium. For sake of tractability, we adopt a linear-quadratic

specification of the R&D technology and the market game of Lee and Wilde

(1980) as in Delbono and Denicolò (1991), where it is shown that, under

Cournot competition in the product market,2 aggregate R&D may respond

both ways to increases in market concentration. However, the large number

of parameters prevents us from deriving clear-cut analytical conclusions as

for the existence of an inverted-U shape relationship. Hence, we resort to

numerical simulations and show the emergence of such a shape. Moreover,

albeit simple, our model is rich enough to generate also an Arrovian as well

as a Schumpeterian behaviour in the relationship between aggregate R&D

effort and the numerosity of firms.

Specifically, it turns out that, for a given market size, if the innovation is

non-drastic:

1. A low productivity of the R&D technology (and/or a high level of

the discount rate) yields a Schumpeterian relationship, e.g. the equilibrium

aggregate R&D effort reaches its peak under monopoly and then monotoni-

cally decreases with the number of firms. This holds irrespective of the size

2The first attempt of modelling the market game as a Cournot one to investigate the

relationship between innovation and concentration is Horowitz (1963); see also Scherer

(1965, 1967). Stewart (1983) drops the “winner-takes-all” assumption in the Lee and

Wilde’s model, but he does not model explicitly the market game.
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of the innovation.

2. When the productivity of the R&D technology is high (and/or the

level of the discount factor is low), then two scenarios emerge, depending on

the magnitude of the cost reduction reached by the winning firm.

2a. If such a reduction is small w.r.t. the given market size, then we

detect an inverted-U shape curve between aggregate R&D and the number

of firms.

2b. If the cost reduction is large - making the innovation almost dras-

tic - then we observe an Arrovian pattern, e.g., the aggregate investment

monotonically grows with the number of firms.

The paper is organized as follows. In section 2 we set the background. In

section 3 we specialise the general model and summarize the findings from

a large number of numerical simulations by providing some intuition behind

different patterns. Section 4 concludes.

2 The background

Consider n identical firms investing in R&D to be first in getting a techno-

logical improvement. Firms act noncooperatively and choose an investment

expenditure x to maximise the discounted stream of expected profits. Tech-

nological uncertainty is of the exponential type, i.e., the discovery time is

described by an exponential (or Poisson, or ‘memoryless’) distribution func-

tion. Firm i = 1, 2, ...n then maximises the following payoff

Ωi =

∫ ∞
0

e−(r+H)t [h (xi)Vi +Hivi + πi − xi] dt (1)

where r > 0 is the common discount rate, h (xi) is i’s hazard rate (i.e., the

instantaneous probability of innovating conditional upon not having inno-

vated before), H =
∑n

i=1 h (xi) , Hi = H − h (xi) , πi are i’s current gross

profits, Vi (vi) is the discounted continuation value of the game if i wins
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(loses) the race. This is the formulation of Lee and Wilde (1980) which mod-

ifies Loury’s (1979) as for the specification of the R&D cost. Here, they are

non-contractual, that is, a fixed rate of spending xi until a firm succeeds.

As for the hazard function, it is assumed that it is strictly concave, h (0) =

0 = limxi→∞ h
′ (xi) and limxi→∞ h

′ (xi) = ∞. These are the so-called Inada
conditions ensuring the existence of an interior solution and the satisfaction

of the second order condition.

The specification of the nature of the R&D cost matters as for the com-

parative statics properties of the model. Indeed, while Loury (1979) proves

that, in the Nash equilibrium, the optimal individual R&D effort decreases

in the number of firms, Lee and Wilde (1980) prove the opposite.3

Slightly later, a parallel debate started on the relationship between market

power and the incentive to get an exogenous innovation, with Gilbert and

Newbery (1982, 1984) and Reinganum (1983), reaching opposite conclusions

about the persistence of monopoly. This discussion echoes the old dichotomy

between Schumpeter (1942) and Arrow (1962). The subsequent literature

focusses on the impact of industry structure or the intensity of competition

(e.g., Bertrand vs Cournot) for a given market structure on the aggregate

investment in R&D, and is accurately accounted for in Tirole (1988) and

Reinganum (1989), inter alia. On the basis of the original contraposition

between Schumpeterian and the Arrovian views, the main concern dealt with

3In Loury’s (1979) formulation, the firm’s maximand is:

Ωi =

∫ ∞
0

e−(r+H)t [h (xi)Vi +Hivi + πi] dt− xi

where xi is a lump-sum paid by firm i at the outset. “The intuition behind these con-

clusions is simple. In the Dasgupta and Stiglitz (1980) and Loury model, an increase in

the number of firms reduces the expected benefit to investment... leaving expected costs

unchanged. The firm responds by reducing investment. In the Lee and Wilde model, both

expected benefits and expected costs are reduced by the addition of another firm... and

the net effect is to enhance incentives to invest”(Reinganum, 1984, p. 62).
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the sign of the monotonicity of the aggregate innovative effort w.r.t. industry

structure. Aghion et al. (2005), instead, show the emergence of a concave and

single-peaked relationship from the data and rationalise it with a theoretical

model.

In this paper, we aim at showing that the early approach using stochastic

race models along the lines of Loury (1979), Dasgupta and Stiglitz (1980), Lee

andWilde (1980) and Reinganum (1983) may indeed generate both monotone

patterns as well as the inverted-U shape one.

To do so, we make a further step by specifying the nature of prizes in

the race, following Delbono and Denicolò (1991) who consider firms striving

for a non drastic cost-reducing innovation and Cournot competition in the

market game. The expected stream of discounted profits for firm i becomes:

Ωi =
h (xi) π

∗
W/r +Hiπ

∗
L/r + πC − xi

r +Hi + h (xi)
(2)

where π∗W is the instantaneous profit accruing forever to the winner of the

R&D race, π∗L is the instantaneous profit accruing forever to each loser, and

πC is the instantaneous profit in the pre-innovation symmetric Cournot equi-

librium. In the symmetric equilibrium, the following condition must hold:

(π∗W − π∗L) (n− 1)h (xi)h
′ (xi)

r
+
(
π∗W − πC

)
h′ (xi)−r−nh (xi)+xh′ (xi) = 0

(3)

It can be shown (Beath et al., 1989; and Delbono and Denicolò, 1990)

that the equilibrium R&D effort is increasing in both π∗W −πC and π∗W −π∗L.
Let us label the former as technological incentive and the latter as strategic

incentive. Notice that π∗W − πC is the difference between the profit of the

winner and the current profit. Such a difference captures what has been called

the ‘profit incentive’by Beath et al. (1989), the ‘stand alone incentive’by

Katz and Shapiro (1987) and it is related to - but it doesn’t coincide with -

the ‘replacement effect’in Fudenberg and Tirole (1986) who follow Arrow’s

(1962) expression.
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On the other hand, π∗W − π∗L is the difference in profits between winning
and losing the race, and it captures what has been named as the ‘competitive

threat’ by Beath et al. (1989), the ‘incentive to pre-empt’ by Katz and

Shapiro (1987) and the ‘effi ciency effect’ by Fudenberg and Tirole (1986)

and Tirole (1988).

From the standpoint of the debate inaugurated by Aghion et al. (2005),4

we can single out an elementary property of the aggregate R&D effort which

was first underlined in Delbono and Denicolò (1991, p. 959). Writing the

individual symmetric equilibrium effort as x∗ (n) , we clearly have5

∂ (nx∗ (n))

∂n
= x∗ (n) + n · ∂x

∗ (n)

∂n
= x∗ (n)

[
1 +

n

x∗ (n)
· ∂x

∗ (n)

∂n

]
(4)

which, if ∂x∗ (n) /∂n < 0, may be nil for some n (possibly more than once, as

the expression in square brackets will not be linear w.r.t. n, in general). This

amounts to saying that ∂x∗ (n) /∂n < 0 is a necessary (but not suffi cient) con-

dition for the arising of inverted U’s. This fact could have triggered a deeper

investigation of the relationship between aggregate effort and market struc-

ture in the vein of the debate between Schumpeter (1942) and Arrow (1962),

possibly spotting a non-monotone behaviour as in Aghion et al. (2005). If

this idea had emerged at the time, one should have tried to sign the following

expression:
∂2 (nx∗ (n))

∂n2
= 2 · ∂x

∗ (n)

∂n
+ n · ∂

2x∗ (n)

∂n2
(5)

In (5), the sign of ∂x∗ (n) /∂n was established, on the basis of various speci-

fications of the model.6 Conversely, the sign of ∂2x∗ (n) /∂n2 has never been

discussed, as (5), in itself, was not considered.

4See Aghion et al. (2015) for an updated account of such a debate.
5Wherever useful, we follow this literature by treating n as a continuous variable.
6If the winner takes all, under contractual R&D costs as in Loury (1979) and Dasgupta

and Stiglitz (1980), the sign is negative. Therefore, in their setting, one might have

envisaged a peak in industry effort w.r.t. concentration, because (4) may vanish for some

values of n. Under non-contractual costs, as in Lee and Wilde (1980), it is positive; under
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What we are setting out to do in the remainder of the paper is to specify

all of the components of (2) as in Delbono and Denicolò (1991) to show the

arising of both Schumpeterian and Arrovian patterns of aggregate R&D as

well as an inverted-U shaped curve as in Aghion et al. (2005).

3 The specialised model

We consider the homogeneous Cournot model with a linear demand p = a−Q
and a constant marginal production cost initially equal to c ∈ (0, a). If one

defines the initial market size as s ≡ a−c and the cost reduction as d ≡ c−c∗,
where c∗ is the new marginal cost patented by the winner of the R&D race

(s > d because we focus on non-drastic innovation), then the relevant profits

to be substituted into (2) are

π∗W =
(s+ nd)2

(n+ 1)2
; π∗L =

(s− d)2

(n+ 1)2
; πC =

s2

(n+ 1)2
(6)

As for the hazard function, we stipulate that h (xi) = 2µ
√
xi, where µ is a

positive parameter measuring the effi ciency of R&D expenditure. In what

follows, we consistently use θ ≡ µ/r to save on notation.

Given the triple of profits in (6) and the above specification of the haz-

ard function, the first order condition (FOC) taken on (2) w.r.t. xi, under

symmetry, is

−θ (2n− 1)x+
[
2θ2 (n− 1) (π∗W − π∗L)− 1

]√
x+ θ

(
π∗W − πC

)
[2nθ
√
x+ 1]

2√
x

= 0 (7)

which yields:

x± =
Φ + 2θ2 [π∗W + 2 (n− 1) π∗L −Ψ]± Ξ

√
Φ + 4θ2 [Ψ + nπ∗W + (n− 1) π∗L]

2θ2 (2n− 1)2

(8)

non-contractual R&D costs and Cournot competition, as in Delbono and Denicolò (1991),

the sign may change.
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where Ψ ≡ (2n− 1) πC , Φ ≡ 1 + 4θ4 (n− 1)2 (π∗W − π∗L)2 and Ξ ≡ 1 −
2θ2 (n− 1) (π∗W − π∗L). Notice that

sign (x+ − x−) = sign (Ξ) (9)

and Ξ = 0 at

θ± = ±
√

n+ 1

2d (n− 1) [2s+ d (n− 1)]
(10)

which, considering that θ > 0, implies

Ξ > 0 ∀ θ ∈
(

0, θ+ ≡
√

n+ 1

2d (n− 1) [2s+ d (n− 1)]

)
Ξ < 0 ∀ θ > θ+

(11)

Before proceeding, it is worth noting that limn→1 θ+ = ∞, limn→∞ θ+ = 0,

∂θ+/∂n < 0 and ∂2θ+/∂n2 > 0. That is, (i) θ+ is decreasing and convex in

n; (ii) in monopoly, Ξ > 0 surely; and finally (iii) under perfect competition,

Ξ < 0 surely.

Since the numerator of the expression on the l.h.s. in (7) is concave in x,

the foregoing analysis proves

Proposition 1 x∗ = max {x−, x+} is the equilibrium individual R&D effort,
with

max {x−, x+} = x+ ∀ θ ∈ (0, θ+)

max {x−, x+} = x− ∀ θ > θ+

This Proposition, in combination with the limit properties of θ+, entails

that when n = 1, the relevant R&D effort is x∗M = x+|n=1 ; if instead n

becomes infinitely large, the equilibrium R&D effort is limn→∞ x−.

We are now in a position to assess the impact of industry structure on

the aggregate R&D effort.
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3.1 Schumpeter, Arrow, and inverted-U’s

Define the aggregate equilibrium investment as X∗ = nx∗. Despite the use

of an extremely simplified specification of the model, X∗ remains highly non

linear in n, which prevents the analytical treatment of the problem under

scrutiny and calls for numerical simulations.7 We distinguish two cases, de-

pending on the size of θ = µ/r.8 Hence, what follows lends itself to a twofold

interpretation, which can focus either on the productivity of R&D for a given

level of impatience, or the opposite. In both scenarios, we set parameter val-

ues so that (2) be positive.

Scenario I: θ ≤ θ+ In this case, µ and r are set so as to identify values of

θ ∈ (0, θ+] . Hence, by Proposition 1, aggregate effort is X∗+ = nx+.

First of all, we evaluate the behaviour ofX∗+ w.r.t. n in n = 1.Were the

aggregate effort be increasing in n under monopoly, this would exclude

a Schumpeterian pattern. To see that this is not the case, note that

the following derivative:

∂X∗+
∂n

∣∣∣∣
n=1

= −
6 (1 + Λ) + dθ2

[
4d2sθ2 + d

(
8s2θ2 + 3

)
+ 2s (8 + 5Λ)

]
4θ2Λ

(12)

where Λ ≡
√

1 + d (d+ 2s) θ2, is clearly negative. Moreover, the limit

values of X∗+ are:

X∗+
∣∣
n=1

=
d (d+ 2s) θ2 + 2 (1 + Λ)

4θ2
> 0

limn→∞X
∗
+ = 0

(13)

7We have performed simulations using the ManipulatePlot device in Wolfram’s Math-

ematica 10.1.
8In Delbono and Denicolò (1991), only one solution is considered because attention

is focussed on low values of θ, in particular so low that the second-order effects of R&D

effi ciency (or impatience, as measured by r) can be neglected.
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These properties, of course, do not exclude a non-monotone behaviour

of industry investment in some range of n greater than one but not

arbitrarily large. For this reason we switch to numerical simulations,

fixing once and for all s = 1. We have performed simulations using the

following parameter constellations:

n ∈ [1, 100] ; d ∈ [1/100, 10] ; θ ∈ [1/100, 1] (14)

focussing on cases where s > d, x∗+ > 0 and Ωi

(
x∗+
)
≥ 0. The quali-

tative properties of the pattern emerging from this simulation are de-

picted in Figure 1, displaying a Schumpeterian behaviour of aggregate

investment w.r.t. industry structure, as X∗+ consistently looks decreas-

ing and convex in n.9

9If θ = θ+, the aggregate industry effort is nx∗+ = nx∗− and its expression is

X∗ =
dn2 (2s+ nd)

(n+ 1)
2

(2n− 1)

which is decreasing and convex in n for all s > d.
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Figure 1 The Schumpeterian case

6

-

X∗

n(1, 0)

The curve appearing in Figure 1 has been obtained by setting d = 1/50

and θ = 3/2. These values describe a situation in which the cost

reduction is very small and the effi ciency of R&D (time discounting)

is very low (high). This amounts to saying that the winner gains a

very small profit increase and the remaining n− 1 firms lose very little

as compared to the ex ante symmetric equilibrium. This drives the

Schumpeterian outcome.

Some intuition behind the Schumpeterian pattern may rely upon the

technological incentive vis à vis the strategic one. A necessary condi-

tion for the aggregate effort to be decreasing in n is that x∗M > x∗+, and

this inequality certainly holds if both incentives are greater for the mo-

nopolist than for the generic oligopolist. Straightforward calculations

show that the strategic incentive is always greater for the monopolist,
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whereas the technological incentive is greater for the monopolist when

the cost reduction is small.

Scenario II: θ > θ+ In this case, µ and r are set so as to identify values of

θ > θ+. Hence, by Proposition 1, aggregate effort is now X∗− = nx− for

n ≥ 2, while x∗M = x+|n=1.

To begin with, observe that

sign
∂X∗−
∂n

∣∣∣∣
n=1

= signΥ (15)

where

Υ ≡ 6 + dθ2
[
3d+ 16s+ 4ds (d+ 2s) θ2

]
− (16)

2

√
1 + dθ2 (d+ 2s)

(
3 + 5dsθ2

)
> 0

This clearly rules out a Schumpeterian pattern, while leaving open both

possibilities for an Arrovian behaviour or an inverted-U shape curve.

Making ourselves sure again that s > d, x∗− > 0 and Ωi

(
x∗−
)
≥ 0, our

numerical simulations illustrate that an Arrovian pattern emerges when

the cost reduction is large vis à vis market size, whereby the model is

close to a ‘winner-takes-all’setup, while a concave and single-peaked

pattern may obtain if the innovation is small.

The fact that X∗− is monotonically increasing in n when θ is large and

the innovation is almost drastic is intuitively due to the fact that, in

such a case, the prize to the winner is very close to the pure monopoly

profits associated with the new technology. Notice that a suffi cient

condition to obtain an Arrovian pattern is that both the technological

and the strategic incentives are greater for the oligopolist than for the

monopolist. Suppose the innovation is drastic (d = s) ; then, the tech-

nological incentive is greater for the oligopolist, whereas the strategic
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incentive is identical across firms. By continuity, if d is lower than s but

close to it, also the strategic incentive is greater for the oligopolist.10

For instance, keeping s at 1 and taking as a reference set of intervals

the following:

n ∈ [1, 100] ; d ∈ [1/100, 10] ; θ ∈ [1/100, 100] , (17)

one has to take into account the constraint θ > θ+, which depends on

{d, n}. A pair which surely satisfies this constraint is {d = 1/2, θ = 50}
and this generates the Arrovian graph appearing in Figure 2, where

the curve starts at n = 2 and the optimal monopoly effort x+|n=1 is
identified by the flat line.

Figure 2 The Arrovian case

6

-

X∗

n(1, 0)

x∗M

10Incidentally, this is precisely the setting considered by Reinganum (1983) in her reply

to Gilbert and Newbery (1982).
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The remaining pattern, which is in Figure 3, reflects the inverted-U

shape we know from Aghion et al. (2005). In our setting, such a curve

emerges when the cost reduction is very small as compared to market

size. Taking as a general reference (17), then fixing {d = 1/100, θ = 50} ,
and accounting for the integer constraint on n, the peak of X∗− is in

correspondence of n = 3, with X∗− ' 0.122, while xM ' 0.007.

Figure 3 The inverted-U case

6

-

X∗

n(1, 0)

x∗M

The intuition behind this curve may rely upon the contrast between the

small technological gain and the price effect driven by the numerosity

of rivals. In a highly concentrated oligopoly, the gain from the R&D

investment (which is highly productive) prevails and the curve looks like

the Arrovian one. As market competition intensifies and erodes profits,

the opposite applies and the curve slopes downwards as in Schumpeter.

15



4 Concluding remarks

The long-standing debate about the impact of industry structure on aggre-

gate innovative activity has been revitalised by Aghion et al. (2005) putting

in evidence a concave non-monotone behaviour in sharp contrast with Schum-

peter (1942) and Arrow (1962). This has triggered a new stream of research

aimed at modelling this inverted-U shape relationship emerging from empir-

ical evidence.

We have participated in this research by revisiting the model in Delbono

and Denicolò (1991), where a hint in this direction was already suggested.

Although the complexity of the model requires resorting to numerical sim-

ulation, it is nonetheless true that the conclusions we reach are robust to

the specification of parameters and, more importantly, lend themselves to

an interpretation in line with the intuition inherited from a well established

tradition.

In summary, our findings can be spelled out as follows. If innovations

are non-drastic, for a given market size: (i) a Schumpeterian pattern is gen-

erated by a low productivity of the R&D technology, or, equivalently, high

discounting, regardless of the innovation size; (ii) the Arrovian and non-

monotone patterns arise when R&D effi ciency is high, or discounting is low.

The former is driven by large innovations, while the latter by small ones.
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