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Abstract

This paper tests the long run risk and valuation risk model using a robust estimation pro-

cedure. The persistent long run component of consumption growth process is proxied by a

news based index that is created using a random forest algorithm. This news index is shown

to predict aggregate long term consumption growth with an R-square of 57% and is robust to

inclusion of other commonly used predictors. I theoretically derive an estimatable bias term

in adjusted Euler equation of the model that arises due to measurement error in consumption

data and show that this bias term is non-zero. Using a three pass estimation procedure that

accounts for this bias, I show that the long run risk and valuation risk model fails to explain

cross section of equity returns. This contrasts to the results from regular two pass Fama-

MacBeth estimation procedure that implies that the same model explains the cross section of

asset returns with statistically significant risk premia estimates.
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1 Introduction

The inability of the asset pricing models to reconcile the empirical facts between the macroeco-

nomic and financial data has been an open issue for more than a couple of decades (Cochrane

2016 [9], Hansen and Singleton 1982 [17]). The US equity market demand a premium of 6.9% over

the risk free rate and the standard consumption based asset pricing models do not justify such a

large premium. As Mehra (2003)[24] pointed out, the US stock market, with Standard and Poor

average real annual yield as proxy, has delivered a return of 7.9% over the last 110 years which

is considerably higher than the average annual real T-bill rate of 1% during the same time span.

The crux of the equity premium puzzle lies in the inability to reconcile the stock return premium

with the standard representative agent macroeconomic model with CRRA (Constant Relative Risk

Aversion) preference. The obvious shortcoming of a CRRA framework is that the time preference

and risk preference are coupled together. One of the most influential models among an arsenal

of papers that aim to explain the cross section of asset returns is the Long Run Risk model by

Bansal and Yaron (2004) [3]. The framework used in the Long Run Risk model is different from

the other modes like Habit formation by Cambpell and Cochrane (1999)[8], or ICAPM (Inter-

temporal Capital Asset Pricing Model) by Merton (1973)[25] in the sense that a small but highly

persistent component in consumption and dividend growth rate takes central importance in model

development. Bansal and Yaron (2004) used the Epstein Zin utility and assumed (i) persistent

component in the consumption and dividend process, (ii) fluctuating consumption volatility. The

key assumption of the long run risk framework is that a better long run prospect of the economy

raises the equity prices, even though the consumption may remain unaffected. In the long run risk

model, the uncertainty is loaded to the supply side of the economy.

A recent contribution in this area is the Valuation Risk model by Albuquerque et al (2015)[1]

who use demand side shocks instead of the supply side shocks to model the asset prices. Since

most of the classical models including long run risk models load all shocks into the supply side of

economy, Albuquerque et al (2015)[1] take a different perspective and introduce time preference

shocks in the Epstein-Zin utility framework. This model not only fits the equity data well, but also

the term structure of bond returns better than the long run risk model. The underlying frame-

work and assumption in these two models is pretty much the same - (i) a representative agent

Epstein Zin utility, (ii) a small but highly persistent component in consumption growth process.

While the long run risk has persistent long run component entering the consumption and divi-

dend growth processes, the valuation risk model has a persistent time preference risk entering the

consumption growth process. Following Schorfheide et al (2016)[33], I combine the long run risk

and valuation risk model into an unifying framework such that the consumption growth process

contains both the long run component as well as the time preference component. The preliminary

evidence provided by Schorfheide et al (2016)[33] show a strong support for the model in terms

of its ability to explain the cross section of asset returns. Similar result is obtained by Liu and
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Matthies (2016)[23] who test only for the long run risk model. The long run component and time

preference component are essentially latent variables which means that they are not observed. The

approach taken by Schorfheide et al (2016)[33] to recover the latent components is a Bayesian

mixed frequency approach while Liu and Mattheis (2016)[23] use a news based textual approach.

The news based textual approach uses frequency count of number of news articles published each

month that contains the keywords such as ’consumption’ and ’gross domestic product’. However,

it is a noisy measure since there are many news articles that contain these keywords but are not

related to the state of the economy. While I adopt the news based methodology from Liu and

Mattheis (2016)[23], I use machine learning tools to clean the index in the sense that the news

based index is created using only the articles that are relevant to the state of economy with a

reasonable approximation.

As far as the empirics are concerned, in order to test the model, one has to use consumption data

to start with. The problem of measurement error in consumption is widely documented in prior lit-

erature. Some of the recent papers have used proxies such as electricity consumption (Da and Yun,

2010)[10], and data on garbage produced (Savov, 2011)[32]. The problem in using proxies is that

one cannot concretely establish a mapping from consumption data to these proxies. Hence I take

a different approach and theoretically solve for measurement error component in the estimation

equations. Vissing-Jorgensen (1998)[34], and Brav et al (2002)[6] use a multiplicative measure-

ment error model since this will retain the Euler equations obtained from solving the optimization

problem. But using multiplicative error model leads to conclusion that only discount factor gets

affected, and therefore is rather a restrictive assumption. I instead use an additive measurement

error model which allows us to modify the testable Euler equation. Recently De (2015)[11] used

an additive measurement error model in a CRRA framework and found that the measurement

error component helps to solve the equity premium puzzle to an extent. To my knowledge, such

additive measurement error model has not been implemented for Epstein-Zin utility in a Long run

risk framework. Implementing it would provide us two advantages: (i) we can obtain a modified

Euler equation which will take into account the measurement error problem, (ii) we can estimate

the bias to have a sense of seriousness of neglecting the measurement error in macroeconomic data.

The bias term that I derive is shown to be dependent on the utility parameters, risk free rate,

and return of assets. I use utility parameter estimates obtained in Schorfheide et al (2016)[33] and

show that the magnitude of bias is non-zero.

Since the modified Euler equation has a bias term, the canonical asset pricing equation 1 =

E[MR] does not hold anymore. I derive the cross sectional asset price testing equations in the pres-

ence of bias induced from measurement error and show that the bias term enters as asset specific

heterogeneity term in the Fama MacBeth cross sectional regression equations. Therefore, ignoring

the bias term and using OLS estimates to obtain the risk premia will lead to biased estimates. To

correctly obtain the risk premia estimates, I use the three pass estimation technique proposed by
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Giglio and Xiu (2017)[14] which not only takes into account the omitted bias variable, but also

other omitted variables which could possibly exist.

The key results of the paper are as follows. The news index explains the aggregate consumption

growth 7 years down the line with an adjusted R-squared of 57%. The index is robust to inclusion

of other variables such as price dividend growth, realized industrial production variance, and labor

income growth. The bias in the Euler equation of the model that arises due to measurement error

is non-zero. Using the three pass estimation to account for this bias leads to a conclusion that the

long run risk and valuation risk factors are spurious and do not explain the cross section of asset

returns. This is in stark contrast to the conclusion arrived using the standard two pass estimation

technique which implies that the long run risk and valuation risk factors are statistically significant

in explaining the cross section of asset returns. Therefore, there is a lack of support for the long

run risk and valuation risk model once we take measurement error into account and use robust

risk premia estimation method.

Section 2 introduces the model set up1. This is followed by section 3 that explains the Data

source. Section 4 presents the methodology and empirical results. Section 4.1 explains how the

latent long run component in consumption growth process is recovered. The recovery of state

variables are demonstrated in section 4.2. The estimates of bias in Euler equation is provided

in section 4.3. At this point, a need for robust estimation procedure that takes into account

measurement error becomes clear. Section 4.4 presents the robust estimation of risk premia using

three pass approach and compares it against the estimates from standard two pass approach.

Section 5 concludes the paper. The appendix A provides the mathematical derivation of the model

and supporting figures and tables.

2 Model

A representative agent model with endowment economy and preferences characterized by Epstein

and Zin (1989) is considered. The agent, holding recursive preferences, maximizes the lifetime

utility by solving

Ut = max
Ct

{
λtC

1− 1
ψ

t + δ(
[
U∗t+1

]
)1− 1

ψ
} 1

1− 1
ψ

subject to the budget constraint,

Wt+1 =
(
Wt − Ct

)
Rc,t+1

Ct is the consumption stream, ψ is the Inter-temporal elasticity of substitution (IES), and

δ refers to the agent’s time preference. Rc,t+1 is the return on consumption claim, U∗t+1 is the

1I present the model and key equations in this section. Detailed derivation of solution to the model is provided

in Appendix A
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certainty equivalent value of lifetime utility from t+ 1 such that

(U∗t+1)1−γ = Et(U
1−γ
t+1 )

Risk aversion parameter is given by γ. When γ = 1/ψ, the recursive preferences reduces to CRRA

preferences. The demand shock is captured by the changes in time discount rate of investors. The

variable Λt+1 = λt+1/λt is the time preference shock that captures how the investors trade off

current period utility versus future period utility. Let xΛ,t denote the log time preference shock,

which follows the law of motion

xΛ,t+1 = ρΛxΛ,t + σΛε
Λ
t+1

where εΛt+1 ∼ N(0, 1). The law of motion for consumption process is a modified version of Bansal

Yaron type since the innovation to the time preference shock also enters the consumption growth

process. The state process is given by

gt+1 = µc + xc,t + πc,λε
Λ
t+1 + σc,tηt+1

xc,t+1 = ρxt + ϕeσx,tet+1

xΛ,t+1 = ρΛxΛ,t + σΛε
Λ
t+1

σ2
k,t+1 = ν + σ2

k,t + φ0ζt + φ1ζt−1 + ωt+1, k ∈ {c, x}

ηt, et, εt, ζt ∼ i.i.d standard-normal random variable

where gt+1 is the consumption growth, πc,λεΛt+1 is the scaled innovation to the time preference

shock, xc,t is the long run variable that follows an autoregressive process, xΛ,t is the time prefer-

ence shock that follows an autoregressive process, σc,t, and σx,t is the time varying component in

the stochastic volatility of consumption growth gt+1, and long run variable xc,t+1 respectively. A

stochastic volatility is evidenced in the post war macroeconomic and financial data which makes

it a reasonable assumption. σ2
c,t+1 and σ2

x,t+1 follows an AR(I)MA process of order (0,1,2), or

in other words a simple exponential smoothing process2. The state variables in the model are

St =
[
xc,t xΛ

t σ2
x,t σ2

c,t

]
The stochastic discount factor given the Epstein Zin preferences with valuation risk embedded

can be derived as 3

mt+1 = θlnδ + θln
λt+1

λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1 (1)

where θ is given by θ = 1−γ
1− 1

ψ

with γ ≥ 0. The stochastic discount factor mt+1 ≡ lnMt+1

contains measurement error.

Deriving Adjusted Euler Equation

I assume that observed consumption growth, C̃t+1 contains measurement error and C̃t+1 = Ct+1 +

ξt+1, where ξt+1 = C0
t+1εt+1. Similarly, C̃t = Ct + ξt, where ξt = C0

t εt. Also, εt+1, εt ∼
2I consider AR(I)MA process in general and choose the best model according to AIC,and BIC value. I use

auto.arima package in R that uses Hyndman-Khandakar algorithm for automatic ARIMA modeling
3see Appendix A for derivation
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i.i.dN(0, σ2
ε ). Ct+1 and Ct are true consumption series which are not observed. This forms an ad-

ditive consumption error model with heteroskedastic noise 4. In the absence of measurement error,

the Euler equation is given by 1 = Et[Mt+1Ri,t+1]. This pricing equation holds when the stochastic

discount factor Mt+1 is a function of true consumption data. When observed consumption data is

noisy, we do not know what the true consumption data is and hence we require a modified Euler

equation which is testable with the observed noisy consumption series. The Euler equation under

measurement error is given as Et[Mt+1Ri,t+1] = p. If p 6= 1, the measurement error affects the

Euler equation.

To derive the modified testable Euler equation, I perform the following steps:

• Take the noisy consumption growth series C̃t+1

C̃t
and expand it around the points E[C̃t+1] =

C◦t+1 and E[C̃t] = C◦t until the second order in Taylor Series expansion 5

• Substitute the linearized expression for noisy consumption growth in the corresponding Euler

equation Et[Mt+1Ri,t+1] = p.

• Similarly, take the true (unobserved) consumption growth series (Ct+1

Ct
) and expand it around

points E[Ct+1] = C◦t+1 and E[Ct] = C◦t
6.

• Substitute the linearized expression for true consumption growth in the corresponding Euler

equation Et[Mt+1Ri,t+1] = 1.

• Subtract the two Euler equations and obtain the bias term p as a function of utility parameters

and returns. Substituting this p in the Euler equation with measurement error, we get the

modified Euler equation 7

δθEt
[
(
λt+1

λt
)θRθ−1

i,t+1Ri,t+1(
C̃t+1

C̃t
)−

θ
ψ
]
≈ 1 + δθ(

θ

ψ
)2σ2

εEt

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
(2)

δθEt
[
(
λt+1

λt
)θRθ−1

i,t+1Ri,t+1(
C̃t+1

C̃t
)−

θ
ψ
]
≈ 1 + Π

[
Ω, Ri,t+1

]
(3)

The term Π

[
Ω, Ri,t+1

]
is the bias that is induced due to the measurement error 8 . The bias

is a function of utility parameters (risk aversion γ, inter-temporal elasticity of substitution ψ),

discount rate (δ), time preference shock λt+1

λt
, the aggregate wealth portfolio return (Ra,t+1), the

asset return (Ri,t+1), and the variance of measurement error (σ2
ε ).

4This assumption is reasonable since consumption data has a trend
5Given the highly non-linear nature of the Euler equation, I expand up to two terms. I assume that the higher

order terms have a negligible impact.
6I expand until the second order in Taylor Series expansion, again assuming that terms higher than second order

has negligible impact
7derivation given in Appendix A
8It is assumed that the measurement error in observed consumption growth C̃t is such that it is never zero in

order to prevent the Euler equation from blowing up. In order to avoid this, one can use a truncated distribution

but assuming the measurement errors are not so large that the consumption becomes exactly zero is a possibility

that I omit.
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Solving the model

To characterize the stochastic discount factor we need to solve for return on asset ra,t+1, which

is endogenous in the model. I make use of the log-linearized return formula as in Campbell and

Shiller (1988) and write the return of an asset in the form

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (4)

where zt is defined as the log price consumption ratio (zt+1 = Pc,t+1/Ct+1). The coefficients κ0

and κ1 are functions of unconditional expectations of price consumption ratio zt. I use method of

undetermined coefficients to solve for the return process. A conjecture for zt is

zt = A0 +A1xc,t+1 +A2x
Λ
t+1 +A2σ

2
c,t+1 +A4σ

2
x,t+1 (5)

Similarly, the return on market portfolio and price dividend ratio is given by

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1

where gd,t+1 is the dividend yield growth. The price dividend ratio for market takes the affine form

zm,t = Am,0 +Am,1xc,t+1 +Am,2x
Λ
t+1 +Am,3σ

2
c,t+1 +Am,4σ

2
x,t+1

I first plug in equation (5) in equation (4) to write the return on asset in linear relation to

underlying state variables. I then plug this resulting equation, as well as the SDF equation (1) in

the Euler Equation (3). This leads us to writing the SDF in linear relation to the underlying state

variables. The innovation to SDF is then given by,

mt − Et(mt+1) = θ
[
σΛε

Λ
t+1

]
− θ

ψ

[
πc,λε

Λ
t+1 + σtηt+1

]
+ (θ − 1)[ra,t+1 − Et(ra,t+1)] (6)

The risk free rate can be derived as 9

rf,t = −θlnδ +
θ

ψ
(µC + xc,t)− θρΛln

λt
λt+1

− (θ − 1)
{
k + 0 + k1A0 + k1A1ρxc,t + k1A2ρΛx

Λ
t

+ k1A3Et(σ
2
c,t+1) + k1A4Et(σ

2
x,t+1)−A0 −A1xc,t −A2x

Λ
t −A3σ

2
c,t −A4σ

2
x,t + xc,t + µc

}
− 0.5

{
θ2V arσ2

Λ + (
θ

ψ
)2(π2

c,λ + σ2
c,t + (θ − 1)2V ar(ra,t+1))

}
+ Π[Ω, Rf,t+1]

The risk free rate is also linear in the state variables St =
[
xc,t xΛ

t σ2
x,t σ2

c,t

]
. The derivation

is explained in detail in Appendix A. The important thing is that the stochastic discount factor,

and risk free rate can be represented linearly in terms of the risk factors. Given these expressions,

the variance of the stochastic discount factor can be written in terms of the variance of the other

risk factors in the model as

V ar(mt+1) = λ2
m,ηV ar(gt+1) + λ2

m,λV ar(x
Λ
t+1) + λ2

m,xV ar(xc,t+1) (7)

+ λ2
m,σcvV ar(σ

2
c,t+1) + λ2

m,σxV ar(σ
2
x,t+1)

9see Appendix A for derivation. rf,t depends linearly on State variables and Var(ra,t+1). But Var(ra,t+1) is

linear in state variables and therefore rf,t is linear in State variables.
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where the λ’s are given by,

λm,η = (θ − 1)− θ

ψ

λm,λ = θ + k1A2(θ − 1)

λm,x = k1A1(θ − 1)

λm,σc = A3(θ − 1)k1

λm,σx = A4(θ − 1)k1

Plugging these λ’s into the innovation in the stochastic discount factor (6), we get

mt − Et(mt+1) =
[
σΛλm,λ + πc,λλm,η

]
εΛt+1 + λm,ησc,tηt+1 + λm,xϕeσx,tet+1

+ λm,σcωc,t+1 + λm,σxωx,t+1

We notice that the proportion of εΛt+1 (noise in the time preference variable) that gets attributed

to innovation in stochastic discount factor is the weighted average of λm,η and λm,λ with weights

πc,λ, and σΛ respectively. This is because εΛt+1 enters both the time preference dynamics as well

as the consumption growth process. We can define λm,xΛ = [λm,λ +
πc,λ
σΛ

λm,η] and rewrite the

innovation to stochastic discount factor as

mt − Et(mt+1) = λm,xΛσΛε
Λ
t+1 + λm,ησc,tηt+1 + λm,xϕeσx,tet+1 + λm,σcωc,t+1 + λm,σxωx,t+1 (8)

ωc,t+1, and ωx,t+1 is nothing but the innovation to the stochastic volatility of consumption

growth and long run risk process. To be specific, ωc,t+1 = E[σ2
c,t+1] − σ2

c,t+1, and ωx,t+1 =

E[σ2
x,t+1]− σ2

x,t+1. The risk premia can be derived as

Et(ra,t+1 − rf ) = 0.5V ar(ra,t+1)− Cov
[
(mt+1 − Et(mt+1)), (ra,t+1 − Et(ra,t+1))

]
+ (9)

Π[Ω, Ra,t+1]−Π[Ω, Rf,t+1] (10)

Substituting the innovation to stochastic discount factor (equation (8)) in risk premia (equation

(9)), we get

Et(ra,t+1 − rf ) + 0.5V ar(ra,t+1) = −
{
λm,xΛCov(εΛt+1, r̃a,t+1) + λm,ηCov(σc,tηt+1, r̃a,t+1))

+ λm,xCov(ϕeσx,tet+1, r̃a,t+1) + λm,σcCov(ωc,t+1, r̃a,t+1)

+ λm,σxCov(ωx,t+1, r̃a,t+1)

}
+ Π[Ω, Ra,t+1]−Π[Ω, Rf,t+1]

(11)

where r̃a,t+1 = ra,t+1 − Et(ra,t+1) This forms the basic testing equation for cross sectional asset

returns. The first stage regression is then given by

ra,t+1 = consa + βa,Λε
Λ
t+1 + βa,ησtηt+1 + βa,xϕeσtet+1 + βa,ωcωc,t+1 + βa,ωxωx,t+1 (12)

where the β’s are the covariance of the corresponding factors with the innovation in asset returns.
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3 Data Source

The macroeconomic data come from Bureau of Economic Analysis. I take the National Income

and Product Accounts (NIPA) tables and construct the growth rate of consumption by taking

first difference of log series. The consumption series from NIPA tables are seasonally adjusted so

I do not make any further seasonality adjustments. Only the real consumer expenditures on non-

durables and real services are considered, consistent with past literature. The data for long run risk

measure comes from PROQUEST database. PROQUEST provides access to several newspaper

articles from as early as 1925. I access Wall Street Journal as the articles published in The Wall

Street Journal (WSJ) are most representative of the US economy. PROQUEST database allows

us to enter keywords and obtain all the articles between user-defined data range containing these

keywords. The portfolio data comes from Kenneth French’s website. I use a total of 45 portfolios

to test the model- 25 portfolios sorted by Size and Book-to-market ratio, 10 portfolios sorted by

industry, and 10 portfolios sorted by momentum. The standard 25 Size and Book-to-market ratio

sorted portfolios lie in low-dimensional excess return space. To improve the statistical power of

the Fama-Macbeth regression tests, a wider range of portfolios including industry and momentum

sorted portfolios are considered. The real labor income growth and realized industrial production

variance is calculated following Liu and Matthies (2016). Real labor income growth is calculated

as log differences of real labor income growth from Bureau of Economic Analysis database, and

realized industrial production variance is calculated as sum of squared prior 12 months industrial

production growth rates from Federal Reserve Economic Data (FRED) database.

4 Methodology and Empirical Results

4.1 Recovering long run component

The consumption growth process in the model is governed by the below equation

gt+1 = µc + xc,t + πc,λε
Λ
t+1 + σc,tηt+1

where xc,t is the long run risk component that predicts consumption growth. The long run risk

component xc,t is a latent variable that should satisfy two things a) it should reflect the long run

news of investor’s expectations about the economy b) it should predict the consumption growth,

with prediction accuracy increasing over the time horizon. Media news coverage provides a good

deal of information about the investor concern regarding the state of economy. Hence we can

potentially build an investor concern index based on the news articles, which will proxy for the

long run risk component.

Following Liu and Mattheis (2016) [23], I use PROQUEST database that contains historical

newspaper article from various sources such as Wall Street Journal, New York Times, Washington
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Post, Chicago Tribune etc. I enter the key words "Consumption", and "Gross Domestic Product or

GDP" to collect all the daily Wall Street Journal news articles containing these keywords between

the years 1925 and 2016. I limit the choice of words to have a higher degree of freedom. Using

these keywords gives a total of 61,433 news articles. By glancing through the articles, most of

them seem to address the state of economy in the US. For example, one of the articles that shows

up in the search is

"U.S. Third Quarter GDP Revised Up to 3.5% Gain; But the stronger gains only help

bring the year’s growth rate back in line. Newly revised data shows consumer spending

increased at a 3% annual rate in the summer months, up from an earlier estimate of

2.8% growth, though still a slowdown from the second quarter’s robust 4.3% growth

rate for household outlays." -Dec 22, 2016."

This article clearly talks about the state of the economy and reflects the investor’s concern. How-

ever, there are also other articles that contains the keywords but has very little to do with the

investor concern. For example, the first few lines of one of the articles that shows up in the search is

"Taste – de gustibus: Election Madness! Cher in Pundit Role, Hollywood in Pain

Equally, politicians who run for office are inclined to kiss the celluloid wallet whenever

it is proffered – or to snatch at it when it is not. The money that the Clintons have

foraged from Hollywood fund-raisers is approaching the GDP of Jamaica. -Nov 3,

2000."

This has very little to do with the state of economy. The article shows up because it contains

the keyword "GDP" in its text. Inferring stock market movements using such polluted data is

a dubious practice, and hence cleaning the data is highly essential. Given that there are a large

number of daily news articles, it is time consuming to read each article manually and remove what

is not relevant. To circumvent this, I employ several commonly used machine learning models to

clean the index through the following steps-

• Take a small random sample of articles from the large database, and classify the articles in

the sample as relevant or not relevant manually based on prior knowledge.

• Fit several commonly used machine learning models to this sample

• Pick the best model based on the test error rate

• Use the selected best model to classify the remaining articles in the large database

The first step is to manually classify the articles in the sample as relevant or not relevant. Thus, the

dependent variable is a binary variable with 1 meaning relevant and 0 meaning not relevant. This
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method is called as a "rule-based" approach in machine learning literature where first a manual

intervention is employed to classify the data points based on experience or prior knowledge. It

is easy to classify articles as relevant or not relevant in this context by reading the article title

and first few lines. The classification will act as dependent variable, while the regressors are the

frequency count of words occurring in the article. The next step involves dividing the sample into

training observations and test observations. A 70%-30% split is commonly used. The training

observations are used to train the data, in the sense that several models are fit to this data. The

models are built in such a way that it associates frequency of words to the relevance of articles.

For example, if a particular word has higher frequency in the articles that are flagged as 1, then

this word is given a higher score such that the probability that an article containing this word is

relevant is large. On the other hand, if a particular word repeatedly occurs in the articles that are

flagged as 0, then this word is given a lower score such that probability of an article containing

this particular word being relevant is small. Once the models are fit in this fashion, we take the

fitted models and apply it to the test data and measure the performance of each of these models.

Although the test data also contains manual classification of flags (0 and 1), we pretend that this

assignment does not exist and we ask the fitted model to classify it for us based on the prediction

model that has been built. The classification that the model gives us is called as predicted clas-

sification. We then compare it to the true classification, where true classification is the manual

classification done in the first step. The total number of misclassifications is called as the test error

rate. The model that gives the lowest test error rate is chosen to be the best model for the sample

at hand. It is important to have a large sample for the training data otherwise the test data may

have several words with no score attached to it simply because these words did not occur in the

training data. This procedure is used in Lee and Lee (2008) [21] to predict the 8-K content from

corporate filings.

I take a random sample of 2,500 articles from 61,433 articles and read the title and abstract for

each of them. If they are relevant to the state of economy, I flag it as 1, and 0 otherwise. I clean

the text in the articles by removing the punctuation marks and numbers, removing the commoner

morphological and inflexional endings using Porter Stemming Algorithm, and converting all the

text to lower case. I then create a frequency matrix containing the words as columns, and the

articles as rows. The matrix size is 2,500 X 10,905. The cells take a value n ∈ N0 where n is the

number of times the particular word in column occurs in the corresponding article in the row. The

figure (7) in Appendix A shows the words that occur at least a 150 times in the articles considered

in the sample. Words like "market", "year", "price", etc., as expected occur quite frequently.

There are many words that occur in very few articles making the frequency matrix very sparse.

In fact, only 0.33% cells (90989/27171511) of the frequency matrix take non zero values. Hence,

I remove the sparse words by dropping from the frequency matrix the words which have at least

99.5% percentage of empty elements. The resulting matrix has size 2,500 X 1,344. A significant

reduction in the number of words from 10,905 to 1,344 has occurred. I take 70% of the sample

11



(1,667 articles) as training observations and the remaining 30% (833 articles) as test observations. I

adopt commonly used machine learning tools such as Logistic regression, Ridge regression, LASSO

regression, Classification tree, Support Vector Machines, Bagging, and Random Forests. I find

that Random forest provides the lowest test error rate of 19%10. I classify the remaining 58,933

(61,433 -2,500) articles as relevant or not relevant using the random forest algorithm. In this way,

we would have all the articles in the database classified. Finally, I remove the articles that have flag

0 from the database since they are deemed not relevant. Among the relevant articles, I count the

number of articles in each month to create the monthly news index. I detrend the news index and

normalize it to have a standard deviation of 1. The figure 1 shows the final news index measure.

The shaded regions indicate the NBER recession dates.

Figure 1: News Index

The index takes a high value in times of economic crisis with periods in the range 1930-1940

and 2008-2012 having peak investor concern. This is because media tends to pay more attention

to the economy in times of distress.

4.1.1 Predictability

The predictability of consumption growth is extremely important in the Macro-Finance literature.

Bansal-Yaron long run risk model starts from the assumption that there is a predictable com-

ponent in consumption growth. Other models such as Inter-temporal capital asset pricing model

(ICAPM- Merton, 1973)[25], and Habit (Campbell and Cochrane 1999 [8]) use a random walk

consumption growth as postulated by Hall (1988) [16]. The rare disaster risk model by Rietz

10The summary of performance results of various classification algorithm is provided in table (3) in Appendix A
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(1988) [31] and Barro (2006) [5] states that while there may be a predictable component in the

consumption process, it will be hard to estimate it empirically especially in finite sample. Bansal

et al (2014)[4] show that Industrial Production Variance, and Labor Income Growth can predict

the short term consumption growth, while Lettau and Ludvigson (2001) [19] demonstrate that

consumption wealth ratio (CAY) can predict the stock returns in future. Gourio (2012) [15] uses

a time varying jump probability in the consumption growth to estimate the predictability. Several

approaches have been used in the predictability literature in the past with several variables shown

as having predictability power. The econometrics literature on predictability show that the nature

of predictability regression induces a bias in the coefficients since these regressions involve several

overlapping samples. Newey and West (1987) [27] provide an error correction method to tackle

this issue. Hence, all return predictability regressions should incorporate the Newey West adjusted

standard errors.

The news index should predict the future consumption growth over the longer term since it

acts as a proxy for the long run risk. The consumption growth predictability equation is given by

K∑
i=1

gt+i = β0 + β1NewsIndext + εt+K , K = 1, 2, ..., 100

whereK indicates the months and gt+i represents the consumption growth between periods t+i and

t+i−1. Since the news measure is a long run risk measure, the predictability is expected to increase

over the time horizon. The results for the predictability regression confirm this hypothesis. The

figure (8) in Appendix A plots the adjusted R-squared for 100 separate regressions for 100 rolling

time horizons (months). For example, the first regression is between gt+1 and NewsIndext, second

regression is between (gt+1 +gt+2) and Indext and so on. The adjusted R square increases over the

time horizon taking a maximum value of 57% at 86th month. This means that the predictability

of consumption growth is strongest at 86 months, roughly around 7 years. The predictability

power declines after this period. The slope coefficient is higher for longer time periods than the

shorter time periods and is statistically significant at 1% level even after correcting standard errors

using Newey West error correction method. As Liu and Matthies (2016)[23] point out, the real

labor income growth, price dividend ratio, and realized industrial production variance can affect

the consumption growth process. Hence, I also perform multivariate regressions with these three

variables as control variables. The results from multivariate regression (see table (5) in Appendix

A) indicate that the coefficients of long run risk measure remain close to the coefficients from

simple regression, and is significant at 1% level. Therefore, the news index is robust to inclusion of

other variables when it comes to explaining the long run aggregate consumption growth. In other

words, the additional variables do not add much predictive power on top of the news index.
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4.2 Recovering other state variables

The time preference shock is latent too and needs to be recovered. Recall the consumption growth

process,

gt+1 = µc + xc,t + πc,λε
Λ
t+1 + σc,tηt+1

A scaled up innovation to the time preference shock process (σΛε
Λ
t+1) enters the consumption growth

process. Although we don’t directly observe the time preference risk (innovation to time preference

shock), we can see that it is linear in risk free rate and price dividend ratio 11. Define a new variable

g̃t+1 = gt+1−xc,t. The time preference risk can then be recovered from regression of g̃t+1 on price

dividend ratio and risk free rate. Specifically, g̃t+1 = b′Yt+σtηt+1 where Yt =
[
1 zm,t rf,t

]
.The

time preference risk is then given by b′Yt However, g̃t+1 is highly non-stationary which implies

OLS estimation would result in a spurious regression. This calls for the need for a more efficient way

of extracting the innovation to time preference variable. I make use of the Hodrick Prescott Band

pass filter which delineates the trend component from the cyclical component of g̃t+1. Hodrick-

Prescott band pass filter is documented to have a superior performance among the other commonly

used band pass filters such as Christiano-Fitzgerland, and Baxter-King filter (Nilsson and Gyomai,

2011) [28]. Since the time preference variable relates to the long run expectations of investors, a

smoothed representation which is more sensitive to the long run changes rather than short term

fluctuations is relevant. The Hodrick Prescott filter optimizes

m
τ
in

( T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2
)

where yt is the time series data comprising of the trend τ and cyclical component c. The

firs term (yt − τt) refers to the sum of squares of cyclical component, and the second term

λ
∑T−1
t=2 [(τt+1 − τt) − (τt − τt−1)]2 refers to the sum of squared of second differenced trend com-

ponent multiplied by a penalty factor λ. HP filter is applicable only when the data is second

difference stationary. Since g̃t+1 (consumption growth minus long run component) is second dif-

ference stationary, HP filter can be applied. I choose λ = 129600 for monthly data as suggested

by Ravn and Uhlig (2002) [30]. Note that a higher value of λ increases the penalty factor and

hence variation in growth rate of trend component is heavily penalized. The time preference risk is

displayed in figure (2). As expected, the risk is the highest around the period 2007-2009 during the

times of financial crisis. The investors like to smooth their time preference shock over time. Hence,

a higher innovation to the time preference shock is disliked by the investors. This innovation to

the time preference shock is what I call as time preference risk. In the perspective of risk premia

estimation equations, what matters is the time preference risk and not the time preference shock

per se because what enters the consumption growth process is the innovation to the time prefer-

ence shock. While the trend component from applying the filter corresponds to the time preference

shock, the residual component corresponds to the noise in consumption process. This consumption

11This is because price dividend ratio follows the process zm,t+1 = A0,m + A1,mxc,t+1 + A2,mxΛ
t+1 + A3σ2

c,t +

A4σ2
x,t
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noise is nothing but the short run risk. I plot the innovation to the time preference shock (time

preference risk) in figure (2). Figure (3) provides the consumption growth, and innovation to the

consumption growth process or in other words short run risk. I also superimpose the consumption

growth against the recovered persistent components in figure (9) in Appendix A. We can see that

the state variables track the consumption growth process closely.

The next step is to extract the long run risk, which is nothing but the noise in the dynamic

equation of long run component. Recall that the long run persistent component follows

xc,t+1 = ρxt + ϕeσtet+1

We could fit an AR(1) process and then recover the noise from the AR(1) process. An alternative

would be to use a band pass filter since they are known to be efficient in extracting noise from

the signal in time series data. In particular, the band pass filers provide a smoothed estimate of

the state variables. The innovation in the news measure extracted using Hodrick-Prescott filter

is shown in figure (2). The innovation is higher during the periods of economic distress which is

intuitive because shocks to the long run risk component occur when economic prospects are bleak.

Figure 2: State variables

Lastly, the innovation to volatility is recovered by fitting an ARIMA(0,1,2) process to the

extracted volatility variable. Several configuration of ARIMA models are fit to the volatiltiy state

and the best model is selected based on AIC and BIC. ARIMA(0,1,2) implies that the volatility

follows an exponentially weighted moving average process. It turns out that the time varying

component in consumption growth volatility (σc,t) and the time varying component in long run

volatility (σx,t) has a correlation of around 97%. In the original Bansal-Yaron (2004) model these

two components are the same. That is, the same time varying component enters the stochastic

volatility of consumption growth as well as long run component. Hence, to retain parsimony in the

model, I assume σc,t = σx,t, which is not unreasonable given the high correlation post estimation.
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Figure 3: Consumption process

The implication of this is that the number of state variables reduces to three (St =
[
xc,t xΛ

t σ2
c,t

]
)

from four (St =
[
xc,t xΛ

t σ2
x,t σ2

c,t

]
). Also, the volatility risk term σ2

x,t disappears from the

asset price testing equations.

Figure 4: Volatility State

4.3 Measurement Error

Before moving on to the estimation of risk premia, I study the magnitude of the bias term that ap-

pears in the Euler equation. If the bias is non-zero, then the estimation of risk premia should be such

that the bias is taken into consideration. The bias term is given by the expression Π

[
Ω, Ri,t+1

]
,

which is a function of utility parameters (risk aversion γ, inter-temporal elasticity of substitution

ψ), discount rate (δ), time preference shock λt+1

λt
, the aggregate wealth portfolio return (Ra,t+1),

the asset return (Ri,t+1), and the variance of measurement error (σ2
ε ). To provide an estimate for
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the bias, I take range of plausible values for the utility parameters such that the range includes

the estimated values from past literature. For example, the estimated values for risk aversion,

inter-temporal elasticity of substitution and discount factor are 8.6, 1.93, and 0.999 respectively in

Schorfheide et al (2016) [33]. Hence, I take a range of values for these parameters such that the

interval includes these estimates. I assume two different measurement error variance (σε)- 0.005%,

and 0.05%. These are fairly low numbers which will give us a conservative estimate of the bias. I

use the term "measurement error" here to refer to the measurement error in Euler equation induced

by the measurement error in consumption data. I simulate the time preference shock (λt+1

λt
) using

the estimates from Schorfheide et al (2016) [33]. The value weighted return of all CRSP (The

Centre for Research in Security prices) firms incorporated in the US and listed on the NYSE (New

York Stock Exchange), AMEX (American Stock Exchange), or NASDAQ (National Association of

Securities Dealers Automated Quotations) is used as proxy for return on aggregate wealth port-

folio. The bias is computed for return on market portfolio (Ri,t+1 in the bias term becomes Rm,t+1).

A summary of the measurement error is provided in Table (1). Even with a measurement

error variance of 0.005% which is considerably small (Panel A), the measurement error in Euler

equation is non-zero ranging from 2.2% to 8.1%. The error increases along with risk aversion and

decreases along with IES. For a measurement error variance of 0.05%, which is still small, the bias

shoots up ranging from 22% to 75%. This demonstrates the importance of measurement error

in consumption data since the bias in the Euler equation seems to be large even for moderate

values of measurement error variance. The Euler equation is the same as the pricing equation and

hence this bias can be seen as pricing errors. It is hard to rely on a pricing model with such high

pricing errors. Evidently, the problem of measurement error cannot be ignored. Figures (10) and

(11) in Appendix A provide a visualisation of the measurement error for various values of utility

parameters and error variance.

4.4 Risk premia estimation

I use the model from Giglio and Xiu (2017) [14] since a three pass regression procedure would

achieve robust risk premia estimation in the presence of measurement error or unobserved hetero-

geneity. Consider the vector of observable macro factors

gt =

[
time preference risk, long run risk, short run risk, volatility risk

]
Due to the measurement error, the second stage Fama MacBeth regression contains omitted factors.

Consider the pricing model

rt = ιnγ0 + α+ βγ + βνt + ut ft = µ+ νt E(νt) = E(ut) = 0 Cov(ut, vt) = 0 (13)

where νt is a p× 1 vector of innovations of ft, ut is a n× 1 vector of pricing errors, β is an n× p

factor loading matrix, and γ0 and γ are zero-beta rate and p× 1 risk premia vector. There are p

factors in the model among which g factors are observed. The observable factor returns are given
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Risk Aversion

Panel A 7.6 8 8.5 9

1.81 3.6% 4.2% 5.1% 6.1%

1.85 3.2% 3.7% 4.5% 5.4%

1.9 2.8% 3.3% 3.9% 4.7%

1.95 2.5% 2.9% 3.4% 4.1%

IES

2 2.2% 2.6% 3.1% 3.6%

Risk Aversion

Panel B 7.6 8 8.5 9

1.81 36% 42% 51% 61%

1.85 32% 37% 45% 54%

1.9 28% 33% 39% 47%

1.95 25% 29% 34% 41%

IES

2 22% 26% 31% 36%

Risk Aversion

Panel C 7.6 8 8.5 9

1.81 3.8% 4.4% 5.4% 6.6%

1.85 3.4% 4.0% 4.8% 5.8%

1.9 3.0% 3.5% 4.2% 5.0%

1.95 2.6% 3.1% 3.7% 4.4%

IES

2 2.2% 2.6% 3.1% 3.6%

Risk Aversion

Panel D 7.6 8 8.5 9

1.81 38% 44% 54% 66%

1.85 34% 40% 48% 58%

1.9 30% 35% 42% 50%

1.95 26% 31% 37% 44%

IES

2 23% 27% 32% 39%

Table 1: Measurement Error Summary. Panel A: Measurement error variance 0.005%, discount

factor 0.999. Panel B: Measurement error variance 0.05%, discount factor 0.999. Panel C: Measure-

ment error variance 0.005%, discount factor 0.995. Panel D: Measurement error variance 0.05%,

discount factor 0.995.

by

gt = ξ + ηνt + zt E(zt) = 0, Cov(zt, νt) = 0

where n × p matrix η is the loading of the factor g on ν, and zt is the measurement error. Note

that once we remove measurement error, the observable factor gt is a linear transformation of

fundamental factors ηνt. Thus, the true asset pricing model comprises gt which corresponds to the

first d factors, and remaining p-d factors correspond to linear combination of unobservable factors.

Our goal is to obtain the robust risk premia estimate of each of factor in the vector gt. This risk

premia is given by ηγ and as long as the space spanned by the rotated factors is same as that of

true factors, this premia is invariant to whatever factors that we choose in model (13). This leads

to the three pass estimation procedure.

Three pass estimator

• Step 1 (PCA). Extract the principal components of returns by conducting principal compo-

nent of covariance matrix of returns. The covariance matrix is scaled by T−1n−1 since it

is shown to accelerate the matrix decomposition algorithm when T > n. The estimator for

factor scores and factor loadings are then given by

β̂ = T 1/2(ε1|ε2|.......|εp)

where (ε1|ε2|.......|εp̂) is the eigenvectors corresponding to largest p̂ eigenvalues of covariance

18



matrix of returns. The factor scores are given by

V̂ = T−1R̄V̂ T

where R̄ is the demeaned time series of asset returns.

• Step 2 (CSR): Obtain the risk premia of estimated factor scores by running a cross sectional

regression of average asset returns onto estimated factor loadings β̂. The risk premia of the

estimated factor returns is given by

Γ̃ := (γ̃0, γ̃
T )T =

(
(ιn : β̂)T (ιn : β)

)−1

(ιn : β̂)T r̄

• Step 3 (TSR): Obtain the exposure of each observed factor to estimated factor scores. This is

obtained by running a time series regression of observed factors against the estimated factor

scores.

η̂ = ḠV̂ T (V̂ V̂ T )−1, and Ĝ = ηV̂

The risk premia is given by

Γ̂ :=

γ̂0

γ̂

 :=

1 0

0 η̂

 =

γ̃0

η̂γ̃


The optimal number of eigenvectors p̂ in the first step can be chosen from the magnitude of

eigenvalues. Figure (5) plots the first 10 eigenvectors of the covariance matrix of returns. In large

panels of asset returns, the first eigenvalue typically tends to be much larger than the others.

Hence, I plot the eigenvalues excluding the first one on the right panel of Figure 8. After 4 and 7

factors, there is a noticeable decrease in the eigenvalues. The three pass approach is consistent as

long as p̂ is at least as large as the true panel dimension. Hence, I choose p̂ = 7.

Figure 5: Scree plot
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Three pass estimation results

• I extract the first two principal components from the covariance matrix of returns scaled

by T−1n−1 and plot it along with the eigenvectors in Figure (6) . It can be seen that the

first principal component explains about 87% variation in the asset returns and the second

principal component explains about 6% variation. The latent factors that drive the asset

returns seem to be strongly correlated to almost all of the stocks with a possible exception

of utility stocks.

Figure 6: Principal Component Analysis

• The cross sectional regression of asset returns on the estimated factor scores provides an

adjusted R-squared of 75%. Such high R-squared is not surprising since the factor scores

are obtained from the statistical decomposition of the asset returns in the first place. The

regression result is given in Table (6) in Appendix A.

• The time series regression of the individual factors on the estimated factor scores provide a

very low fit (less than 5%). This is in line with Giglio and Xue (2017) [14] who find that

the macroeconomic variables have a weak relation to the latent factors recovered from the

principal component analysis. This essentially implies that the macro factors are not related

to the underlying statistical latent factor that is recovered using PCA. Combining step 2 and

steps 3, the risk premia estimates are obtained and summarized in table (2). Comparison to

risk premia estimates from regular two pass Fama MacBeth procedure is also given in table

(2).

The close to zero risk premia estimates and very low R-squared in the third stage provide a

strong evidence against the long run risk and time preference risk model. This is in contrast to

strong evidence in favour of the long run risk and time preference risk model using the usual Fama

MacBeth two pass estimation. This difference can be attributed to the problem of omitted factors,
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Table 2: Risk premia estimates

Risk Premia estimates 3 pass method Fama MacBeth

Preference risk 0.0052 0.561109**

Long run risk 0.0029 0.285747**

Short run risk -0.0009 0.273237*

Volatility risk 0.00037 0.007335***

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10

which stems from the measurement error in consumption data in this case.

Cochrane (2016) [9] points out that long run risk models have a deep connection to the early

resolution of uncertainty. Recursive utility requires that consumers prefer to resolve the uncertainty

earlier. What long run risk model states is that the investors like to know about the uncertainty

in future even though they cannot provide a response to it in the present. It is hard to believe

that people would like to receive news about the future and when they do they will not act upon

it now. Cochrane (2016) [9] makes an interesting analogy to the Huntington’s disease for which

there is no cure. A test for this genetic disease reveals whether people have the disease or not but

unfortunately a cure doesn’t exist. As results from Oster et al (2013) [29] indicate, people with

family history of Huntington’s disease rarely get the test. This is a news which they can acquire

and possibly even provide a response to it in terms of altering the financing choices and personal

lifestyle choices. Yet, very few people take this test which questions the very hypothesis of early

resolution of uncertainty.

5 Conclusion

I have used news articles from The Wall Street Journal to create the long run risk measure em-

ploying machine learning techniques. This news index predicts long run aggregate consumption

growth 7 years down the line with an adjusted R-squared of 57% and is robust to inclusion of

other commonly used variables in predictability literature. Measurement error in consumption

data is modelled using an additive error model and an adjusted Euler equation is derived to take

into account the measurement error. The bias induced from this measurement error in the pricing

equation is non-zero, even if we assume a very low measurement error variance. The modified

risk-premia estimation equations indicate that the bias enters the second stage regression equation

as an additional unobservable component. The results from the three pass estimation technique

proposed by Giglio and Xiu (2017) [14] indicate that the robust risk premia estimates of the long

run risk factor and time preference factor are close to zero, and these factors are spurious. This is in

contrast to the result from regular two-pass estimation technique which indicate that these factors

have non-zero risk premia and explain the cross section of asset returns. The model therefore does
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not gain support when using robust estimation technique.

This paper contributes to the recent literature of long run risk models by using text based infor-

mation from the media to infer long run investor expectations. Media content is usually noisy but

given the increasing success of machine learning tools in prediction problems, one can proxy the

latent components such as unobserved risk measures with a good approximation. This opens up

an avenue to research in estimating unobservables in economic models using textual information.

The second contribution comes from theoretically deriving an estimatable bias in adjusted Euler

equation of the model. Lastly, while the prior literature to test long run risk models have used

standard Fama MacBeth two pass approach or GMM, this paper is the first to use a three pass

estimation technique to obtain robust risk premia estimates.

Few extensions could be made to this paper. The news index is created using a "rule-based"

approach where manual intervention is needed to classify the sample articles as relevant or not

relevant. This could be replaced by a purely statistical approach where the model can be built

in such a way that the frequency of words predict whether the news article is related to the

consumption growth or not. Also, the news index takes peak values in great depression and global

financial crisis but not during periods of war or political shocks. Muir (2016)[26] points out that

during periods of war, the fluctuation in consumption is high but movement in asset prices are low.

On the other hand, during periods of financial crisis, the fluctuation in consumption is low but

movement in asset prices are high. While the news index captures the sentiment during financial

crisis, one could build an index that also captures sentiment during periods of war and political

shocks in order to better explain stock price movements.
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A Appendix A

A.1 Model

A representative agent model with endowment economy and preferences characterized by Epstein

and Zin (1989) is considered. The agent, holding recursive preferences, maximises the lifetime

utility by solving the following Hamilton Jacobi Bellman equation

Ut = max
Ct

{
λtC

1− 1
ψ

t + δ(
[
U∗t+1

]
)1− 1

ψ
} 1

1− 1
ψ (14)

subject to the budget constraint,

Wt+1 =
(
Wt − Ct

)
Rc,t+1 (15)

Ct is the consumption stream, ψ is the IES, θ = 1−γ
1− 1

ψ

, and δ refers to the agent’s time preference.

Rc,t+1 is the return on consumption claim, U∗t+1 is the certainty equivalent value of lifetime utility

from t+ 1 such that

(U∗t+1)1−γ = Et(U(Wt+1)1−γ)

The risk aversion parameter is given by γ. When γ = 1/ψ, the recursive preferences reduces

to CRRA preferences. The demand shocks is captured by the changes in time discount rate of

investors. The variable Λt+1 = λt+1/λt captures how the investors trade off current utility versus

future period utility. Let xΛ,t denote the time preference shock, which follows the law of motion

xΛ,t+1 = ρΛxΛ,t + σΛε
Λ
t+1

where εΛt+1 ∼ N(0, 1). The law of motion for consumption process is a modified version of

Bansal-Yaron type since the innovation to the time preference shock enters the consumption growth

process. The state process is given by

gt+1 = µc + xc,t + πc,λε
Λ
t+1 + σc,tηt+1

xc,t+1 = ρxt + ϕeσx,tet+1

ln
λt+1

λt
= ρΛln

λt
λt−1

+ σΛε
Λ
t+1

σ2
k,t+1 = ν + σ2

k,t + φ1ζt − φ2ζt−1 − φ3ζt−2, k ∈ {c, x}

ηt, et, εt, ζt ∼ i.i.d standard-normal random variable

Using the log-linearization of the return formula as in Campbell and Shiller (1988), we have

the return of an asset in the form

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1

where zt is defined as the log price consumption ratio. A conjecture for zt is

zt = A0 +A1xc,t+1 +A2x
Λ
t+1 +A2σ

2
c,t+1 +A4σ

2
x,t+1
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Similarly, the return on market portfolio and price dividend ratio is given by

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1

where gd,t+1 is the dividend yield growth. The price dividend ratio for market takes the affine form

zm,t = Am,0 +Am,1xc,t+1 +Am,2x
Λ
t+1 +Am,3σ

2
c,t+1 +Am,4σ

2
x,t+1

A.2 Solving for stochastic discount factor

The first order condition from the Bellman equation is given by

FOC Ct| λtC
− 1
ψ

t = δ(U∗t+1)−
1
ψ

[
Et
(
U(Wt+1)1−γ)] 1

1−γ−1

Et

(
U(Wt+1)−γU ′(Wt+1)Rc,t+1

)
(16)

Envelope condition is given by

U ′(Wt) = U(Wt)
− 1
ψ δ(U∗t+1)−

1
ψ

[
Et
(
U(Wt+1)1−γ)] 1

1−γ−1

Et

(
U(Wt+1)−γU ′(Wt+1)Rc,t+1

)
(17)

Dividing equations (16) and (17), we get

λtC
− 1
ψ

t

U ′(Wt)
=

1

U(W
1
ψ

t )
=⇒ U ′(Wt) = λtC

− 1
ψ

t U(Wt)
1
ψU ′(Wt+1) = λt+1C

− 1
ψ

t+1U(Wt+1)
1
ψ (18)

Put equation (18) in equation (16) to get

λtC
1
ψ

t = δ(U∗t+1)−
1
ψ

[
Et
(
U(Wt+1)1−γ)] 1

1−γ−1

Et

(
U(Wt+1)−γλt+1C

− 1
ψ

t+1U(Wt+1)−
1
ψRc,t+1

)
λtC

1
ψ

t = δ(U∗t+1)−
1
ψ

U∗t+1

(U∗t+1)1−γEt

(
U(Wt+1)−γλt+1C

− 1
ψ

t+1U(Wt+1)−
1
ψRc,t+1

)
λtC

1
ψ

t = δ(U∗t+1)γ−
1
ψEt

(
U(Wt+1)−γλt+1C

− 1
ψ

t+1U(Wt+1)−
1
ψRc,t+1

)
1 = Et

(
δ
λt+1

λt
(
Ct+1

Ct
)−

1
ψ

(U(Wt+1))
1
ψ−γ

(U∗t+1)
1
ψ−γ

)
Comparing this with the pricing equation 1 = Et(Mt+1Rc,t+1), we get

Mt+1 = δ
(λt+1

λt

)(Ct+1

Ct

)− 1
ψ
U(Wt+1)−

1
ψ−γ

(U∗t+1)−
1
ψ−γ

(19)

Guess and verify the policy function

U(Wt) = atWt (20)

Ct = btWt (21)

Substitute equations (20) in equation (18),

at = λC
− 1
ψ

t (atWt)
− 1
ψ

a
1− 1

ψ

t = λt(btWt)
− 1
ψW

1
ψ

t

a
1− 1

ψ

t = λtb
− 1
ψ

t (22)
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Substituting equation (20) in equation (14), we get

atWt =

[
λt
(
btWt

)1− 1
ψ + δ

([
Et(at+1Wt+1)1−γ] 1

1−γ

)1− 1
ψ
] 1

1−ψ

at =

[
λt
(
btWt

)1− 1
ψ + δ

([
Et(at+1

Wt+1

Wt
)1−γ] 1

1−γ

)1− 1
ψ
] 1

1−ψ

From the budget constraint, we have

Wt+1

Wt
= (1− bt)Ra,t+1

Substituting this, we get

at =

[
λt
(
btWt

)1− 1
ψ + δ

([
Et(at+1(1− bt)Ra,t+1)1−γ] 1

1−γ

)1− 1
ψ
] 1

1−ψ

(23)

Combining equations (22) and (23), we get

λtb
− 1
ψ

t (1− bt) = δ

([
Et(at+1(1− bt)Ra,t+1)1−γ] 1

1−γ

)1− 1
ψ
] 1

1−ψ

(24)

Plug equations (24) and (22) in equation (19) to get

Mt+1 =

(
δ
λt+1

λt

) 1−γ
1− 1

ψ

(
bt+1

bt
(1− bt)

)−( 1
ψ

−γ)

ψ(1− 1
ψ

)

)(
Ct+1

Ct

)− 1
ψ

(Ra,t+1)
1
ψ−γ

Substituting θ = 1−γ
1− 1

ψ

and

Ct+1

Ct

1

Rc,t+1
=
bt+1Rc,t+1(Wt − Ct)

btWtRc,t+1
=
bt+1(1− bt)

bt

we get the final expression for the stochastic discount factor

Mt+1 =

(
δ
λt+1

λt

)θ(
Ct+1

Ct

)− θ
ψ

Rθ−1
c,t+1 (25)

Taking log on both sides of equation (25), we get

mt+1 = θlnδ + θln
λt+1

λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1

Etmt+1 = θlnδ + θEtln
λt+1

λt
− θ

ψ
Etgt+1 + (θ − 1)ra,t+1

mt − Et(mt+1) = θ
[
ln
λt+1

λt
− Et

lnλt+1

λt

]
− θ

ψ

[
gt+1 − Etgt+1

]
+ (θ − 1)(ra,t+1 − Etra,t+1)

mt − Et(mt+1) = θ
[
σΛε

Λ
t+1

]
− θ

ψ

[
πc,λε

Λ
t+1 + σtηt+1

]
+ (θ − 1)[ra,t+1 − Et(ra,t+1)] (26)

A.2.1 Measurement Error

Consider the observed consumption growth

g̃t+1 = (
C̃t+1

C̃t
)−

θ
ψ (27)
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Consider the true consumption growth

gt+1 = (
Ct+1

Ct
)−

θ
ψ (28)

where C̃t+1 = Ct+1+ξt+1, ξt+1 = C◦t+1εt+1, and C̃t = Ct+ξt, ξt = C◦t εt, with εt, εt+1 ∼ i.i.dN(0, 1).

The Euler Equation is given by

δθEt

[(λt+1

λt

)θ
Rθ−1
a,t+1Ri,t+1

(Ct+1

Ct

)− θ
ψ

]
= 1 (29)

The Euler Equation when consumption growth has measurement error is given by

δθEt

[(λt+1

λt

)θ
Rθ−1
a,t+1Ri,t+1

( C̃t+1

C̃t

)− θ
ψ

]
= p (30)

where p > 1. If there is no measurement error, then the Euler equation is given for p = 1, which

coincides with equation (29).

Expand the observed consumption growth ( C̃t+1

C̃t
)−

θ
ψ around the point C◦t+1 = Et[C̃t+1] and

C◦t = Et−1[C̃t]

C̃t+1

C̃t

−θ/ψ

≈
C◦t+1

C◦t
+

1

C̃
− θ
ψ

t

(− θ
ψ

)

∣∣∣∣∣
(C◦
t+1,C

◦
t )

(C̃t+1 − C̃◦t+1) + C̃
− θ
ψ

t+1 (
θ

ψ
)C̃t

θ
ψ−1

∣∣∣∣∣
(C◦
t+1,C

◦
t )

(C̃t − C̃◦t )

+
1

2

1

C
− θ
ψ

t

(
θ

ψ
)(
θ

ψ
+ 1)C̃

− θ
ψ−2

t+1

∣∣∣∣∣
(C◦
t+1,C

◦
t )

(C̃t+1 − C̃◦t+1)2

+
1

2
C̃
− θ
ψ

t+1 (
θ

ψ
)(
θ

ψ
− 1)C̃

− θ
ψ−2

t+1

∣∣∣∣∣
(C◦
t+1,C

◦
t )

(C̃t − C̃◦t )2

+ (
θ

ψ
)C̃
− θ
ψ−1

t (− θ
ψ

)C̃
− θ
ψ−1

t+1

∣∣∣∣∣
(C◦
t+1,C

◦
t )

(C̃t+1 − C̃◦t+1)(C̃t − C̃◦t )

C̃t+1

C̃t

−θ/ψ

≈
C◦t+1

C◦t
− (

θ

ψ
)
C
◦−θ
ψ −1

t+1

C
◦−θ
ψ

t

(C̃t+1 − C̃◦t+1) + (
θ

ψ
)
C
◦−θ
ψ

t+1

C◦t
(C̃t+1 − C̃

◦−θ
ψ +1

t+1 )(C̃t − C̃◦t )

+
1

2
(
θ

ψ
)(
θ

ψ
+ 1)

C
◦−θ
ψ −2

t+1

C
◦−θ
ψ

t

(C̃t+1 − C̃◦t+1)2 +
1

2
(
θ

ψ
)(
θ

ψ
− 1)

C
◦−θ
ψ

t+1

C
◦−θ
ψ +2

t

(C̃t − C̃◦t )2

− (
θ

ψ
)2C

◦−θ
ψ −1

t+1

C
◦−θ
ψ +1

t

(C̃t+1 − C̃◦t+1)(C̃t − C̃◦t ) (31)

Similarly, expand the actual consumption growth gt+1 = (Ct+1

Ct
)−

θ
ψ around the point C◦t+1 =

Et[Ct+1] and C◦t = Et−1[Ct]

Ct+1

Ct

−θ/ψ
≈
C◦t+1

C◦t
− (

θ

ψ
)
C
◦−θ
ψ −1

t+1

C
◦−θ
ψ

t

(Ct+1 − C◦t+1) + (
θ

ψ
)
C
◦−θ
ψ

t+1

C◦t
(Ct+1 − C

◦−θ
ψ +1

t+1 )(Ct − C̃◦t )

+
1

2
(
θ

ψ
)(
θ

ψ
+ 1)

C
◦−θ
ψ −2

t+1

C
◦−θ
ψ

t

(Ct+1 − C◦t+1)2 +
1

2
(
θ

ψ
)(
θ

ψ
− 1)

C
◦−θ
ψ

t+1

C
◦−θ
ψ +2

t

(Ct − C◦t )2

− (
θ

ψ
)2C

◦−θ
ψ −1

t+1

C
◦−θ
ψ +1

t

(Ct+1 − C◦t+1)(Ct − C◦t ) (32)
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Plug equation (31) in the Euler Equation with measurement error (30).

p ≈ δθEt
[(λt+1

λt

)θ{C◦t+1

C◦t
− (

θ

ψ
)
C
◦−θ
ψ −1

t+1

C
◦−θ
ψ

t

(C̃t+1 − C̃◦t+1) + (
θ

ψ
)
C
◦−θ
ψ

t+1

C◦t
(C̃t+1 − C̃

◦−θ
ψ +1

t+1 )(C̃t − C̃◦t )

+
1

2
(
θ

ψ
)(
θ

ψ
+ 1)

C
◦−θ
ψ −2

t+1

C
◦−θ
ψ

t

(C̃t+1 − C̃◦t+1)2 +
1

2
(
θ

ψ
)(
θ

ψ
− 1)

C
◦−θ
ψ

t+1

C
◦−θ
ψ +2

t

(C̃t − C̃◦t )2

− (
θ

ψ
)2C

◦−θ
ψ −1

t+1

C
◦−θ
ψ +1

t

(C̃t+1 − C̃◦t+1)(C̃t − C̃◦t )

}
Rθ−1
a,t+1Ri,t+1

]
(33)

Similarly, we have

1 ≈ δθEt
[(λt+1

λt

)θ{C◦t+1

C◦t
− (

θ

ψ
)
C
◦−θ
ψ −1

t+1

C
◦−θ
ψ

t

(Ct+1 − C◦t+1) + (
θ

ψ
)
C
◦−θ
ψ

t+1

C◦t
(Ct+1 − C

◦−θ
ψ +1

t+1 )(Ct − C̃◦t )

+
1

2
(
θ

ψ
)(
θ

ψ
+ 1)

C
◦−θ
ψ −2

t+1

C
◦−θ
ψ

t

(Ct+1 − C◦t+1)2 +
1

2
(
θ

ψ
)(
θ

ψ
− 1)

C
◦−θ
ψ

t+1

C
◦−θ
ψ +2

t

(Ct − C◦t )2

− (
θ

ψ
)2C

◦−θ
ψ −1

t+1

C
◦−θ
ψ +1

t

(Ct+1 − C◦t+1)(Ct − C◦t )

}
Rθ−1
a,t+1Ri,t+1

]
(34)

Subtracting the Euler equations with and without measurement error (33-34) gives us,

p− 1 ≈ δθEt
[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

{
θ

ψ

C
◦− θ

ψ−1

t+1

C
◦− θ

ψ

t

[Ct+1 − C◦t+1 − C̃t+1 + C◦t+1]

+ (
θ

ψ
)
C
◦− θ

ψ

t+1

C
◦− θ

ψ+1

t

[C̃t+1 − C◦t − Ct + C◦t ]

+
1

2

θ

ψ
(
θ

ψ
+ 1)

C
◦− θ

ψ−2

t+1

C
◦− θ

ψ

t

[(C̃t+1 − C◦t+1)− (Ct+1 − C◦t+1)2]

+
1

2

θ

ψ
(
θ

ψ
− 1)

1

2

θ

ψ
(
θ

ψ
+ 1)

C
◦− θ

ψ

t+1

C
◦− θ

ψ+2

t

[(C̃t − C◦t )− (Ct − C◦t )2]

− (
θ

ψ
)2 C

◦− θ
ψ

t+1

C
◦− θ

ψ+1

t

[(C̃t − C◦t )(C̃t+1 − C◦t+1)− (Ct − C◦t )(Ct+1 − C◦t+1)]

}]
(35)

Substituting the expressions C̃t+1 = Ct+1 + ξt+1, C̃t = Ct + ξt in the above expression (35), we get

p− 1 ≈ δθ 1

2

θ

ψ
(
θ

ψ
+ 1)

C
◦− θ

ψ−2

t+1

C
◦− θ

ψ

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
Et

[
2ξt+1(Ct+1 − C◦t+1) + C◦2t+1ε

2
t+1

]

+ δθ
1

2

θ

ψ
(
θ

ψ
− 1)

C
◦− θ

ψ

t+1

C
◦− θ

ψ+2

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
Et

[
2ξt(Ct − C◦t ) + C◦2t ε

2
t

]

− δθ( θ
ψ

)2 C
◦− θ

ψ

t+1

C
◦− θ

ψ+1

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
Et

[
ξt+1(Ct − C◦t ) + ξt(Ct+1 − C◦t+1) + ξtεt+1

]

p− 1 ≈ δθ 1

2

θ

ψ
(
θ

ψ
+ 1)

C
◦− θ

ψ−2

t+1

C
◦− θ

ψ

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
σ2
εC
◦2
t+1

+
θ

ψ
(
θ

ψ
− 1)

C
◦− θ

ψ

t+1

C
◦− θ

ψ+2

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
σ2
εC
◦2
t
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≈ δθ 1

2
(
θ

ψ
)
C
◦− θ

ψ

t+1

C
◦− θ

ψ

t

Et

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
σ2
ε

( θ
ψ

+ 1 +
θ

ψ
− 1
)

p− 1 ≈ δθ( θ
ψ

)2σ2
εEt

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
(36)

Therefore, from the expression (36), we get the term p as

p ≈ 1 + δθ(
θ

ψ
)2σ2

εEt

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
≈ 1 + Π

[
Ω, Ri,t+1

]
(37)

where Ω is a function of the utility parameters Λt, θ, and the aggregate wealth portfolio return

Ra,t+1. Thus the modified Euler equation is given as

δθEt
[ (λt+1

λt
)θRθ−1

i,t+1Ri,t+1(
C̃t+1

C̃t
)−

θ
ψ
]
≈ 1 + δθ(

θ

ψ
)2σ2

εEt

[
(
λt+1

λt
)θRθ−1

a,t+1Ri,t+1

]
(38)

δθEt
[ (λt+1

λt
)θRθ−1

i,t+1Ri,t+1(
C̃t+1

C̃t
)−

θ
ψ
]
≈ 1 + Π

[
Ω, Ri,t+1

]
(39)

A.2.2 Representation of Risk free rate

Et[M̃t+1Rt+1,f ] = 1 + Π[Ω, Rf,t+1]

where M̃t+1 contains the measurement error.

1 + Π[Ω, Rf,t+1] = Et

[
exp{θlnδ + θln

Λt+1

Λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1 + rf,t+1}

]
1 + Π[Ω, Rf,t+1] = exp{Et[θlnδ + θln

Λt+1

Λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1 + rf,t+1]

+
1

2
V ar[θln

λt+1

λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1]}

Taking log on both sides and using the approximation ln(1 + Π(Ω, Rf,t+1)) ≈ Π[Ω, Rf,t+1], we get

Π[Ω, Rf,t+1] ≈ θlnδ − θ

ψ
Et(gt+1) + θEtln

λt+1

λt
+ (θ − 1)Et(ra,t+1) + rf,t +

1

2
Var(mt+1) (40)

Et(ra, t+ 1) = k0 + k1A0 +K1A1Et(xc,t+1) + k1A2Et(x
Λ
t+1) + k1A3Et(σ

2
c,t+1) + k1A4Et(σ

2
x,t+1)

−A0 −A1xx,t −A2x
Λ
t −A3σ

2
c,t −A4σ

2
x,t + Et(gt+1)

Et(ra, t+ 1) = k0 + k1A0 +K1A1ρxc,t + k1A2ρΛx
Λ
t + k1A3Et(σ

2
c,t+1) + k1A4Et(σ

2
x,t+1)

−A0 −A1xx,t −A2x
Λ
t −A3σ

2
c,t −A4σ

2
x,t + xc,t + µc (41)

V ar(mt+1) = V ar[θlnδ + θln
λt+1

λt
− θ

ψ
gt+1 + (θ − 1)ra,t+1]

= θ2V arxΛ
t+1 + (

θ

ψ
)2V ar(gt+1) + (θ − 1)2V ar(ra,t+1) (42)

Put equation (41) and equation (42) in equation (40)
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rf,t = −θlnδ +
θ

ψ
(µC + xc,t)− θρΛln

λt
λt+1

− (θ − 1)
{
k + 0 + k1A0 + k1A1ρxc,t + k1A2ρΛx

Λ
t

+ k1A3Et(σ
2
c,t+1) + k1A4Et(σ

2
x,t+1)−A0 −A1xc,t −A2x

Λ
t −A3σ

2
c,t −A4σ

2
x,t + xc,t + µc

}
− 0.5

{
θ2V arσ2

Λ + (
θ

ψ
)2(π2

c,λ + σ2
c,t + (θ − 1)2V ar(ra,t+1))

}
−Π[Ω, Rf,t+1] (43)

The risk free rate is thus linear in the state variables St =
[
xc,t xΛ

t σ2
x,t σ2

c,t

]
.

The variance of the stochastic discount factor can be decomposed into variances of the state

variables.

V ar(mt+1) = V ar
[
θxΛ

t+1 −
θ

ψ
gt+1 + (θ − 1)(k0 + k1zt+1 − zt + gt+1)

]
= V ar

[
θxΛ

t+1 −
θ

ψ
gt+1 + (θ − 1)zt+1 + (θ − 1)gt+1

]
= V ar

[
θxΛ

t+1 +
(
(θ − 1)− θ

ψ

)
gt+1 + k1(θ − 1)(A0 +A1xc,t+1 +A2x

Λ
t+1 +A3σ

2
c,t+1)

+A4σ
2
x,t+1

]
= V ar

[
θxΛ

t+1 +
(
(θ − 1)− θ

ψ

)
gt+1 + k1(θ − 1)A1xc,t+1 + k1(θ − 1)A2x

Λ
t+1

+ k1(θ − 1)A3σ
2
c,t+1 + k1(θ − 1)A4σ

2
x,t+1

]

= [θ + k1A2(θ − 1)]2V ar(xΛ
t+1) +

[
(θ − 1)− θ

ψ

]2
V ar(gt+1) + [k1A1(θ − 1)]2V ar(xc,t+1)+

[k1A3(θ − 1)]2V ar(σ2
c,t+1) + [k1A4(θ − 1)]2V ar(σ2

x,t+1)

This can be written as,

V ar(mt+1) = λ2
m,ηV ar(gt+1) + λ2

m,λV ar(x
Λ
t+1) + λ2

m,xV ar(xc,t+1)

+ λ2
m,σcV ar(σ

2
c,t+1) + λ2

m,σxV ar(σ
2
x,t+1) (44)

where we define the λ’s as,

λm,η = (θ − 1)− θ

ψ

λm,λ = θ + k1A2(θ − 1)

λm,x = k1A1(θ − 1)

λm,σc = A3(θ − 1)k1

λm,σx = A4(θ − 1)k1
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A.2.3 Deriving Risk Premia

Et[Mt+1Rf,t+1] = 1 + Π[Ω, Rf,t+1]

Rf,t+1 =
1 + Π[Ω, Rf,t+1]

Et[Mt+1]

lnRf,t+1 = ln[1 + Π[Ω, Rf,t+1]]− lnEtMt+1

rf,t+1 = Π[Ω, Rf,t+1]− lnEtelnMt+1

rf,t+1 = Π[Ω, Rf,t+1]− lneEt[mt+1]+ 1
2V ar(mt+1)

rf,t+1 = Π[Ω, Rf,t+1]− Et(mt+1)− 1

2
V ar(mt+1) (45)

Et[Mt+1Ra,t+1] = 1 + Π[Ω, Rf,t+1]

eEt(mt+1)+Etra,t+1+ 1
2V ar(mt+1+ra,t+1) = 1 + Π[Ω, Rf,t+1]

Taking log on both sides and using the approximation ln(1 + Π[Ω, Rf,t+1]) ≈ Π[Ω, Rf,t+1], we get

Π[Ω, Rf,t+1] = Et(mt+1) + Et(ra,t+1) +
1

2
V ar(mt+1 + ra,t+1)

Et(mt+1) = −Et(ra,t+1)− 1

2

[
V ar(mt+1) + V ar(ra,t+1) + 2Cov(mt+1, ra,t+1)

]
+ Π[Ω, Rf,t+1]

Et(mt+1) +
1

2
V ar(rm,t+1) = −Et(ra,t+1)− 1

2

[
V ar(ra,t+1) + 2Cov(mt+1, ra,t+1)

]
(46)

From equation (45), we get

Et(ra,t+1 − rf )) = Π[Ω, Rf,t+1]− 1

2

[
V ar(ra,t+1) + 2Cov(mt+1, ra,t+1)

]
Et(ra,t+1 − rf )) + 0.5V ar(ra,t+1) = Π[Ω, Rf,t+1] + Cov[(mt+1 − Et(mt+1)), (ra,t+1 − Et(ra,t+1))]

(47)

Asset returns follows the process,

ra,t+1 = k0 + k1zt+1 − zt + gt+1

= k0 + k1[A0 +A1xc,t+1 +A2x
Λ
t+1 +A3σ

2
c,t+1 +A4σ

2
x,t+1]

−A0 −A1xc,t −A2x
Λ
t −A3σ

2
c,t −A4σ

2
x,t + gt+1 (48)

Et(ra, t+ 1) = k0 + k1A0 +K1A1Et(xc,t+1) + k1A2Et(x
Λ
t+1) + k1A3Et(σ

2
c,t+1) + k1A4Et(σ

2
x,t+1)

−A0 −A1xx,t −A2x
Λ
t −A3σ

2
c,t −A4σ

2
x,t + Et(gt+1) (49)

ra,t+1 − Et(ra,t+1) = k1A1[xc,t+1 − Et(xc,t+1)] + k1A2[xΛ
t+1 − Et(xΛ

t+1)] + k1A3[σ2
c,t+1 − Et(σ2

c,t+1)]

+ k1A4[σ2
x,t+1 − Et(σ2

x,t+1)] + gt+1 − Et(gt+1)

= k1A1ϕeσx,tet+1 + k1A− 2σΛε
Λ
t+1 + k1A3ωc,t+1 + k1A4ωx,t+1 + σc,tηt+1 + πc,λε

Λ
t+1

= k1A1ϕeσx,tet+1 + (k1A2σΛ + πc,λ)εΛt+1 + k1A3ωc,t+1 + k1A4ωx,t+1 + σc,tηt+1

(50)
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note that ωc,t+1 = σ2
c,t+1 − Et(σ2

c,t+1)

Recall equation (26)

mt − Et(mt+1) = θ
[
σΛε

Λ
t+1

]
− θ

ψ

[
πc,λε

Λ
t+1 + σtηt+1

]
+ (θ − 1)[ra,t+1 − Et(ra,t+1)]

Substitute equation (50) in equation (26),

mt − Et(mt+1) = θσΛε
Λ
t+1 −

θ

ψ
[πc,λε

Λ
t+1 + σc,tηt+1] + (θ − 1)

[
k1A1ϕeσx,tet+1 + (k1A2σΛ + πc,λ)εΛt+1

k1A3ωc,t+1 + k1A4ωx,t+1 + σc,tηt+1

]
=
[
θσΛ −

θ

ψ
πc,λ + (θ − 1)(k1A2σΛ + πc,λ)

]
εΛt+1 +

[
(θ − 1)− θ

ψ
σc,tηt+1

+ k1A1ϕ− e(θ − 1)σx,tet+1 + k1A3(θ − 1)ωc,t+1 + k1A4(θ − 1)ωx,t+1

]
=

[
σΛ(θ + (θ − 1)k1A2) + πc,λ[(θ − 1)

θ

ψ
]

]
εΛt+1 +

[
(θ − 1)− θ

ψ

]
σc,tηt+1

+ k1A1(θ − 1)ϕeσx,tet+1 + k1A3(θ − 1)ωc,t+1 + k1A4(θ − 1)ωx,t+1

Comparing with the λ’s from equation (44), we can write the innovation to the stochastic discount

factor in the above equation as as,

mt − Et(mt+1) =
[
σΛλm,λ + πc,λλm,η

]
εΛt+1 + λm,ησc,tηt+1 + λm,xϕeσx,tet+1

+ λm,σcωc,t+1 + λm,σxωx,t+1

We notice that the proportion of εΛt+1 (noise in the time preference variable) that gets attributed

to innovation in stochastic discount factor is the weighted average of λm,η and λm,λ with weights

πc,λ, and σΛ respectively. This is because εΛt+1 enters both the time preference dynamics as well

as the consumption growth process. We can define λm,xΛ = [λm,λ +
πc,λ
σΛ

λm,η] and rewrite the

innovation to stochastic discount factor as

mt − Et(mt+1) = λm,xΛσΛε
Λ
t+1 + λm,ησc,tηt+1 + λm,xϕeσx,tet+1 + λm,σcωc,t+1 + λm,σxωx,t (51)

Recall equation (47)

Et(ra,t+1 − rf )) + 0.5V ar(ra,t+1) = Π[Ω, Rf,t+1] + Cov[(mt+1 − Et(mt+1), ra,t+1 − Et(ra,t+1)]

Et(ra,t+1 − rf ) + 0.5V ar(ra,t+1) = −Cov
{(
λm,xΛσΛε

Λ
t+1 + λm,ησc,tηηt+1

+ λm,xϕxσx,tet+1 + λm,σeωc,t+1

+ λm,σxωx,t+1

)
, ra,t+1 − Et(ra,t+1)

}
+ Π[Ω, Ra,t+1]−Π[Ω, Rf,t+1]

(52)
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Let r̃a,t+1 = ra,t+1 − Et(ra,t+1)

Et(ra,t+1 − rf ) + 0.5V ar(ra,t+1) = −
{
λm,xΛCov(σΛε

Λ
t+1, r̃a,t+1) + λm,ηCov(σc,tηt+1, r̃a,t+1))

+ λm,xCov(ϕeσx,tet+1, r̃a,t+1) + λm,σcCov(ωc,t+1, r̃a,t+1)

+ λm,σxCov(ωx,t+1, r̃a,t+1)

}
+ Π[Ω, Ra,t+1]−Π[Ω, Rf,t+1]

(53)

This forms the basic testing equation for cross sectional asset returns in the case of omitted factors.

Note that the bias induced from the measurement error enters this testing equation, which may bias

the risk premia estimates if not accounted for. The corresponding first stage estimation equation

is the given by

ra,t+1 = consa + βa,Λε
Λ
t+1 + βa,ησtηt+1 + βa,xϕeσtet+1 + βa,ωcωc,t+1 + βa,ωxωx,t+1 (54)

where the β’s are the covariance of the corresponding factors with the innovation in asset returns.
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A.3 Empirics

A.3.1 News Index

Figure 7: Word Cloud: Words the occur at least 150 times in all articles combined. Bigger size

implies higher frequency.

Figure 8: Consumption growth predictability
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A.3.2 Machine Learning model performance

Table 3: Model Performance comparison

Test Sucess Rate Training Sucess Rate

Ridge 77% -

Lasso 78% -

Classification Tree 72% 75%

Bagging 77% 79%

Random Forest 81% 82%

Support Vector Machines 70% 71%
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A.3.3 Predictability Results

The predictability regression equation is given by

K∑
i=1

gt+i = β0 + β1NewsIndext + εt+K , K = 1, 2, ..., 100

where K indicates the months and gt+i represents the consumption growth between periods t+ i

and t+ i− 1.

Table 4: Simple Regression

Time Horizon 1 20 40 60 80 100

Slope: Index -0.0005*** -0.011*** -0.02*** -0.03*** -0.04*** -0.06***

Adj R2 3% 30% 42% 52% 57% 56%

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10

The multivariate regression includes the price dividend ratio, real labor income growth, and

realized industrial production variance as controls. The equation is given by

K∑
i=1

gt+i = β0 + β1NewsIndext + Controlst + εt+K , K = 1, 2, ..., 100

Table 5: Multiple Regression

Time Horizon 1 20 40 60 80

Slope: Index -0.0007*** -0.013*** -0.02*** -0.03*** -0.04***

Slope: Dividend Price Ratio 0.001*** 0.0097*** 0.011*** 0.013*** 0.009*

Slope: Labor Income 0.08*** 0.18* 0.20 0.15 0.23

Slope: Industrial Production Variance -0.03 -0.09 0.87 4.85 7.3

Adj R2 7% 32% 43% 53% 58%

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
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A.3.4 Fitting consumption growth

Figure 9: Consumption growth against persistent components
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A.3.5 Measurement Error

Figure 10: Measurement error with variance of 0.005%. Risk aversion is increasing from top to

bottom, IES is increasing from right to left.
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Figure 11: Measurement error with variance of 0.05%. Risk aversion is increasing from top to

bottom, IES is increasing from right to left.
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A.3.6 Three pass Estimation: Second stage Results

Model 1

(Intercept) 1.53∗∗∗

(0.29)

PC1 0.13

(0.07)

PC2 −0.03∗∗

(0.01)

PC3 0.01∗

(0.01)

PC4 −0.04∗∗∗

(0.01)

PC5 −0.02∗∗

(0.00)

PC6 0.02∗∗

(0.01)

PC7 −0.01

(0.01)

R2 0.79

Adj. R2 0.75

Num. obs. 45

RMSE 0.12
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Stage 2 results

Step 2 (CSR): Obtain the risk premia of estimated factor scores by running a cross sectional

regression of average asset returns onto estimated factor loadings β̂. The risk premia of the

estimated factor returns is given by

Γ̃ := (γ̃0, γ̃
T )T =

(
(ιn : β̂)T (ιn : β)

)−1

(ιn : β̂)T r̄

The cross sectional regression of asset returns on the estimated factor scores provide an R-squared

of 75%. Such high R-squared is not surprising since the factor scores are obtained from the

statistical decomposition of the asset returns in the first place.
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