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ABSTRACT.

Today several HEMT structures are competing for power application in millimetre wave range.
Some of them have been studied and realised in our laboratory. We will present the results and
discuss advantages and potentialities.

PRESENT STATUS.

All HEMT structures on GaAs or InP use an InGaAs channel. The reason is that this material
provides high electron mobility which increases with indium content. This parameter is therefore
adjusted in order to enhance the frequency capability of the device. Higher indium content in
InGaAs results in higher electron velocity but also lower breakdown field. That is why the
achievement of high frequency and high power capability simultaneously is a challenge.
In the HEMT structure, the barrier layer is associated to the channel. It must provide large band gap,
large conduction and valence band discontinuity with the channel and large Schottky barrier height.
In addition this material has a free or passivated surface on each side of the gate after processing.
Here low surface defect density must be achievable. Therefore low aluminium content material are
preferable.
At 60 or 94 GHz, for the same output power GaAs PHEMTs integrated circuits (ICs) present lower
gain and power added efficiency (PAE) as compared to InP based HEMT ICs [1,2,3,4] (Figure 1).
This is due to the higher indium content in the channel of InP based HEMTs.
Improvement in device performance is still possible by changing the device structure and
technology. In the past the indium composition was limited by the strain in the active layer induced
by the lattice parameter of the substrate. Today metamorphic growth has removed this limitation so
that a large range of indium composition can be used in HEMT structures varying from 0 to 100 %
[5]. Several structures are challenging : GaInP/InGaAs on GaAs, AlInAs/InGaAs on GaAs or InP.
Innovative semiconductors could be studied such as GaPSb, AlPSb or AlAsSb barrier layers [6,7].

Changing the barrier layer.

In PHEMT on GaAs, the AlGaAs barrier layer can be replaced by GaInP (Figure 2a). The growth of
the GaInP/InGaAs interface must be accurately controlled in order to obtain a 2D gas with good
electron density and mobility [8,9]. The device processing must also be changed. It benefits of the
selective etching of GaAs over GaInP by H2O2 based solutions. But the ohmic contacts have to be
redesigned because the presence of the GaInP barrier changes the diffusion process. Single recess
structures have shown at 60 GHz a maximum output power of 560 mW/mm, 4.6 dB power gain and
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22 % PAE (Figure 2b). However up to now we do not expect from this technology any
improvement in electron velocity as compared to conventional PHEMT on GaAs [10].
In AlInAs / GaInAs HEMTs on InP, high aluminium content barrier layers are known to improve
conduction and valence band discontinuities and Schottky barrier height. To our knowledge the best
power devices have been obtained in the US with Al rich AlInAs [11] (480 mW/mm power density,
4.4 dB power gain, 30 % PAE).

Changing the channel.

Several ways are possible to improve the channel for power applications such as grading the
channel or increasing the apparent band gap of the channel by reducing its thickness. In order to
improve the breakdown of InP based HEMTs, composite channel HEMTs have been invented in
Japan [12]. In this concept high energy electrons in the channel transfer into an InP subchannel
where they have lower probability to create electron hole pairs and where they can move at high
velocity. Several structures can be imagined depending on the location of the doping. Our
investigations have concerned doped or undoped InP and delta doping of the AlInAs layer located
under the channel (Figure 3). At 60 GHz we have demonstrated the best results with the structure of
Figure 3b with 420 mW/mm and 44 % drain efficiency (Figure 4a). At 2 dB compression we have
obtained 270 mW/mm power density, 3.3 dB power gain and 14 % PAE. We use pulsed
measurements in order to evaluate the importance of the surface effects on the power performance
[13]. They show that the excursion of the Id-Vds curve is correct on our devices except for a slight
increase of the channel resistance à low drain voltage (Figure 4b).

Changing the technology.

A lot of various technologies are available for HEMT performance improvement such that alternate
gate metal, new metal semiconductor interface treatment or surface passivation. Double recess has
demonstrated better breakdown voltage and less surface effects [13,14]. It is therefore more suitable
for power application. The cost is that the process is more complicated. We have studied different
source drain configurations on the structure of Figure 3 which looks like a double recess due to the
thin cap layer thickness. The gate was located at 0.5 µm from the source. Extending the source to
drain distance from 1.3 to 3 µm has shown that the impact ionisation in the channel was reduced
and that the on-state breakdown voltage was larger. Our best power results were obtained on the
devices with 3 µm source drain distance.

FURTHER IMPROVEMENTS.

In principle, device structures grown on InP can be grown on GaAs using a metamorphic buffer.
For instance composite channel HEMTs were recently demonstrated on GaAs [15]. Up to now we
have obtained our best power densities or gain on structures using material compositions suitable
for pseudomorphic growth either on GaAs or InP substrate. Moreover composite channel HEMTs
on InP look very attractive for power application in millimetre wave range due to their high on-state
breakdown voltage. Therefore most interesting device structures could be developed and studied on
InP before using metamorphic material. This would make research easier because metamorphic
buffers require a long growth time and careful optimisation of the surface roughness and lattice
parameter relaxation.
Besides all these possibilities significant improvement in future device will come from gate length
reduction. Gate length reduction will allow to increase frequency capability and pave the way
towards future telecommunication systems working at 80 or 160 Gbits /s where cut-off frequencies
as high as 300 or 600 GHz are required. For these technologies devices with 3 to 6 V breakdown



capability could be necessary for driving modulators. For that purpose simulation tools could help
designing of these structures where short channel effects and non equilibrium could be important
and electric fields very high.
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Figure 1 : Output power, gain and PAE of GaAs and InP based HEMT power amplifiers.
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Figure 2 : (a) Structure of a GaInP/InGaAs PHEMT on GaAs. (b) Output power, gain, power
added efficiency and drain efficiency of the device at 60 GHz. Lg = 0.1 µm. Gate width 2×50 µm.
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Figure 3 : Different composite channel structures investigated for power applications at 60
GHz.
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Figure 4 : (a) Output power, gain and PAE of a composite channel HEMT on InP (structure of
Figure 3b). Lg = 0.15 µm. Gate width 2×50 µm. (b) Comparison of DC (symbols alone) and pulsed

measurements (symbols + lines). Vds0 = 2 V, Vgs0 = -1.6 V.
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