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Abstract

We investigate the role played by the credit supply shock across the business cycle

in the U.S. over the period 1973 - 2018. We estimate a nonlinear VAR including

nominal, real, monetary, and �nancial variables. According to our results, a credit

supply shock triggers asymmetric and negative e�ects on macroeconomic variables.

We �nd that the state-dependent forecast error variance decomposition of industrial

production, employment, and in�ation due to the shock is from six to eight times

larger in recessions than in normal times.
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Non - Technical Summary

Financial shocks have been recognized as important drivers for explaining macroe-

conomic dynamics via the well-known �nancial acceleration mechanism. Since the

onset of the Great Recession, the literature has renewed interest in the interaction

between credit supply shock and macroeconomic activities. Most empirical con-

tributions study this interaction in a linear set-up. They �nd that credit supply

shocks have contractionary e�ects on macroeconomic variables. However, empiri-

cal evidences highlight that the macro-�nancial linkages may be nonlinear. Such

nonlinear relation has been scrutinized in studying the role of credit markets in the

transmission mechanisms of economic shocks rather than studying the asymmetric

e�ect of a credit supply shock per se.

We contribute to the state of art studying whether credit supply shocks a�ect

asymmetrically macroeconomic variables over the business cycle. We model vari-

ables with a Smooth Transition VAR (STVAR) in which an exogenous credit supply

shock is allowed to a�ect macroeconomic variables conditional on the states of the

economy ("Recessionary Periods" vs "Normal Times"). The credit supply shock is

identi�ed by appealing to the excess bond premium indicator (EBP).

Fitting the post-WWII U.S. monthly data in a Smooth Transition VAR, we

�nd systematic asymmetries across business cycle phases in the response to a credit

supply shock. We conjecture that the �nancial-accelerator mechanism may play

a larger role in severely deepen the macroeconomic activity, depending on which

phase of the business cycle the economy is when the credit shock occurs. Findings

reveal that during normal times, the EBP shock impacts negatively only industrial

production. Di�erently, there is an ampli�cation e�ect when the economy is already

in recessions: an exogenous contraction in the supply of credit a�ects negatively

not only industrial production, but also in�ation and employment. As our results

suggest, negative business cycle e�ects due to �nancial shocks get magni�ed when

the economy is already in a bust phase. Our impulse responses con�rm the role of

credit supply shocks in driving macroeconomic �uctuation quantifying a more than

double drop in the macroeconomic variables in recessions than in normal times.

Moreover, we show that contractions in the supply of credit in recessions (but not

in normal times) work as a demand shock, in the sense of being associated with a

fall in output and prices at the same time.

Interesting, the shock seems to explain a fraction of the variance of real variables

(industrial production and employment) and in�ation that is from six to eight times

larger in recessions than in normal times. Moreover, the credit supply shock appears

to be the �rst source of �uctuation of employment in recessions but not in normal

times on which the contribution of macroeconomic shocks prevail. The EBP is

more important than monetary shocks in explaining macroeconomic �uctuation in

recessions.
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1 Introduction

Financial shocks have been recognized as important drivers for explaining macroeconomic

dynamics via the well-known �nancial acceleration mechanism (see e.g., Bernanke and

Blinder, 1988; Gilchrist and Zakraj²ek, 2012). Since the onset of the Great Recession,

the literature has renewed interest in the interaction between credit supply shock and

macroeconomic activities (Gertler and Gilchrist, 2018). Most empirical contributions

study this interaction in a linear set-up (see e.g., Gilchrist and Zakraj²ek, 2012; López-

Salido, Stein, and Zakraj²ek, 2017; Caldara, Fuentes-Albero, Gilchrist, and Zakraj²ek,

2016; Faust, Gilchrist, Wright, and Zakraj²ek, 2013; Stock and Watson, 2012). They �nd

that credit supply shocks have contractionary e�ects on macroeconomic variables. How-

ever, empirical evidences highlight that the macro-�nancial linkages may be nonlinear.

Such nonlinear relation has been scrutinized in studying the role of credit markets in

the transmission mechanisms of economic shocks (see e.g., Alessandri and Muntaz, 2019;

Rüth, 2017; Alessandri, Conti, and Venditti, 2017) rather than studying the asymmetric

e�ect of a credit supply shock per se. As for the literature dealing with asymmetries of

credit supply shocks, Barnichon, Matthes, and Ziegenbein (2019) �nd that the e�ects of

such shock depend on its size and sign. It highlights that some asymmetries may be at

work.

Do credit supply shocks a�ect asymmetrically macroeconomic variables over the busi-

ness cycle? To answer our question, we model variables with a Smooth Transition VAR

(STVAR) in which an exogenous credit supply shock is allowed to a�ect macroeconomic

variables conditional on the states of the economy ("Recessionary Periods" vs "Normal

Times"). The credit supply shock is identi�ed by appealing to the excess bond premium

indicator (EBP) constructed by Gilchrist and Zakraj²ek (2012) and plotted in �gure 1.

Fitting the post-WWII U.S. monthly data in a Smooth Transition VAR, we �nd the an-

swer to our question to be positive: (i) a one standard deviation shock leads to systematic

asymmetries across business cycle phases in the responses to a credit supply shock; (ii)

the variance of real and nominal variables explained by the shock is from six to eight

times larger in recessionary periods than in normal times; (iii) the shock triggers e�ects

of �demand-type� in recessions but not in normal times.

Our paper is structured as follows. Section 2 describes the data and the identi�cation

strategy implemented in the Smooth Transition VAR. Section 3 discusses the results.

Section 4 concludes.

2 Data and Methodology

We study the asymmetric e�ects of a credit supply shock relying on a Smooth Transition

VAR (STVAR) which is de�ned as follows:
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Xt = F (zt−1)ΠR(L)Xt + (1− F (zt−1))ΠNT (L)Xt + εt, (1)

εt ∼ N(0,Ωt), (2)

Ωt = F (zt)ΩR + (1− F (zt))ΩNT , (3)

F (zt) = exp(−γzt)/(1 + exp(−γzt)), γ > 0, zt ∼ N(0, 1). (4)

where Xt is a set of endogenous variables, Π(L)R and Π(L)NT are the polynomial

matrices capturing the dynamics of the system during recession and normal times, re-

spectively. The vector of reduced-form residuals (εt) has zero-mean and heteroskedastic

variance-covariance matrix Ωt. The function F (zt−1) is the logistic function capturing

the probability of being in a recession. It depends on the state variable zt and on the

smoothness parameter γ which dictates how smooth is the transition from one regime to

another (i.e. lower value a higher smooth, higher value lower smooth).

The transition variable zt is the standardized backward-looking 12-month moving

average growth rate of industrial production. As in Auerbach and Gorodnichenko (2012)

and Caggiano, Castelnuovo, Colombo, and Nodari (2015), we calibrate the smoothness

parameter γ to match the probability of being in recessions as identi�ed by the NBER

business cycle dates (15% in our sample). The recessionary phase is de�ned as a period

in which Pr(F (zt) > 0.85) ≈ 15%. It means that the economy spends about 15% of time

in recession and 85% in normal times. This implies setting γ = 2.3.1.

Following Caldara, Fuentes-Albero, Gilchrist, and Zakraj²ek (2016), Xt includes (from

the top to the bottom): (i) the CPI in�ation; (ii) the manufacturing industrial production

growth; (iii) the employment rate; (iv) the EBP; (v) the cumulated value-weighted total

stock market (log) return; (vi) the nominal 10-year Treasury yield, and (vii) the nominal

1-year Treasury yield2.

The EBP captures the �risk-bearing capacity� of the �nancial intermediate sector.

Based on market prices of individual corporate bonds traded in the secondary market,

Gilchrist and Zakraj²ek (2012) construct a credit spread of the U.S. non�nancial corpo-

rations over Treasury bond yields with identical cash �ow and maturity characteristics.

Then, they decompose such spread into a component re�ecting the countercyclical move-

1The choice is consistent with the threshold value of z = −0.95% discriminating recessions and normal
times. In particular, if the realizations of the standardized transition variable zt is lower (higher) than
the threshold value z, it will be associated with recessions (normal times). The transition variable
zt has been standardized to be comparable to those employed in the literature. Following Auerbach
and Gorodnichenko (2012), we rely on the lagged value of z in Equation (1) to avoid contemporaneous
feedbacks from the shock into the state of the economy. The online appendix, Section A, reports the
�gure of the F (zt).

2To overcome the fact that the Federal Funds rate was at the zero lower bound, we rely on the one-year
Treasury maturity since it accounts for term structure e�ects due, for instance, to forward guidance
(see e.g., Gertler and Karadi, 2015; Alessandri, Conti, and Venditti, 2017)
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ment in default risks and a residual, the so-call Excess Bond Premium (EBP) which is

linked to the �nancial conditions of the issuer. Thus, the EBP captures the extra return

that investors demand to hold corporate bonds over and above the compensation for the

credit risk (credit market sentiment).

Figure 1: Excess Bond Premium vs Business cycle

Notes: The shaded area indicate the U.S. recessionary phases (1973:M1-2018:M12), whereas the blue

line refers to the Excess Bond Premium indicator by Gilchrist and Zakraj²ek (2012).

The credit supply shock is identi�ed via the Cholesky-decomposition with the as-

sumptions provided by Gilchrist and Zakraj²ek (2012). In other words, the slow-moving

variables (CPI, Industrial Production, and Employment) are ordered before the shock,

whereas the fast-moving variables (risk-stock return and free rates) are ordered after

that. It means that we "purge" our credit supply indicator from the contemporaneous

movements of our macroeconomic variables, therefore sharpening the identi�cation of the

credit supply shock. Hence, an unexpected change in EBP will be orthogonal to the

business cycle at time t.

We estimate the STVAR in (1) via the Markov-Chain Monte Carlo simulation (Cher-

nozhukov and Hong, 2014) and we model the endogeneity of the transition from one

state to another one after a credit supply shock occurs computing the Generalized Im-

pulse Response Functions (GIRFs) proposed by Koop, Pesaran, and Potter (1996). Since

the GIRFs depend on the initial condition, we study the evolution of the GIRFs over

histories (i.e., recession versus normal times).

Our data are monthly and span the period 1973M1-2018M12. The beginning of

the period depends on the availability of the EBP indicator. We estimate a nonlinear

5



VAR including �ve lags, as indicated by the Akaike information criterion. The data are

retrieved from the Federal Reserve Bank of St. Louis, apart from the EBP and the stock

return downloaded by the Board of Governors of the Federal Reserve System's website

and the Center for Research in Security Prices (CRSP), respectively.

Before estimating the STVAR in (1), we test the linearity of our VAR and the LM

test suggests a strong rejection of the linearity for the system as a whole in favor of a

particular nonlinear model, the STVAR.3

3 Results

Figure 2 depicts the GIRFs of an EBP shock that is orthogonal to the state of the economy.

An unexpected increase of one standard deviation in EBP generates asymmetric e�ects

on the economy and �nancial markets. A higher EBP triggers negative macroeconomic

�uctuations both in recessions (�rst column of �gures 2) and in normal times (second

column). However, the responses of our variables are larger (in absolute value) and more

persistent in recessions than in normal times. Indeed, the shock causes a trough response

of industrial production that is more than twice larger in recessions than in normal times

(-1.3% versus -0.6%). The industrial production goes back to its steady-state two years

after the shock occurs in normal times but it takes one year more to turn to its pre-shock

level during a recessionary period. Meanwhile, the fall in employment is four times larger

in recessions than in normal times (-1.2% versus -0.3%). The de�ationary impact and the

reduction in employment of the shock are statistically signi�cant only during recessionary

periods but not in normal times. The Federal Reserve lowers the interest rate in both

states by adopting an expansionary monetary policy. Despite an easing monetary policy

environment, the stock market returns drop.

The statistical test based on the empirical density of the di�erence between the re-

actions of macroeconomic and �nancial variables in recessions and normal times (third

column of �gure 2) con�rms that quantitatively the responses are di�erent across regimes

from a statistical point of view.

Overall, our results highlight the systematic asymmetries across business cycle phases

in the response to a credit supply shock. A possible interpretation of our �ndings is

provided by Gilchrist and Zakraj²ek (2011). Working with a DSGE framework, they

show that an adverse �nancial shock conceptually in line with an increase in EBP reduces

the risk-bearing capacity of the �nancial sector and, consequently, the supply of credit

available to potential borrowers. Such a reduction in credit supply is associated to a drop

in �rms' cash �ows and in the value of asset prices, and a slowdown in economic activity.

We conjecture this �nancial-accelerator mechanism may play a larger role in severely

3See Section C, D and E of the online Appendix for further details related to the linearity test, the
STVAR estimation and the computation of the GIRFs.
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deepen the macroeconomic activity, depending on which phase of the business cycle the

economy is when the credit shock occurs. Findings reveal that during normal times,

the EBP shock impacts negatively only industrial production. Di�erently, there is an

ampli�cation e�ect when the economy is already in recessions: an exogenous contraction

in the supply of credit a�ects negatively not only industrial production, but also in�ation

and employment. As our results suggest, negative business cycle e�ects due to �nancial

shocks get magni�ed when the economy is already in a bust phase.

Figure 2: Generalised impulse responses (GIRFs) to credit supply shocks

Notes: The �gure reports the generalized impulse responses (GIRFs) to an unanticipated U.S. credit

supply shock in recessions (�rst column), in normal times (second columns), and the median realizations

of the di�erences between generalized impulse responses in recessions and normal times (third column).

The red and blue lines denote the median GIRFs in recessions and in normal times, respectively. The

magenta lines refer to the median of the di�erence realizations between the two states of the world.

Shaded bands denote con�dence intervals at 68% levels. The responses of in�ation, industrial production

ad employment are accumulated. The horizontal axis identi�es months, whereas the vertical axis is

expressed in percentage points.

Relying on time-varying parameters VAR, Gambetti and Musso (2019) �nd that credit

supply shocks are particularly important during recessions. Our impulse responses con-

�rm the role of credit supply shocks in driving macroeconomic �uctuation quantifying

a more than double drop in the macroeconomic variables in recessions than in normal

times. Moreover, we show that contractions in the supply of credit in recessions (but not

in normal times) work as a demand shock, in the sense of being associated with a fall in
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output and prices at the same time.4

How important is a credit supply shock in driving economic dynamics? Table 1 reports

the state-dependent 12-months ahead forecast error variance decomposition (FEVD) for

each variable of interest computed à la Lanne and Nyberg (2016).

Forecast Error Variance Decomposition

Recession

Shock/Variable π y e EBP stock i10y i

ε̃π 60.8 11.3 5.6 5.3 0.4 5.1 2.7

ε̃y+ε̃e 14.7 42.7 22.9 4.4 9.2 10.5 16.5

ε̃EBP 10.8 27.3 41.1 79.9 32.3 16.3 18.4

ε̃stock 3.25 8.6 16.2 8.8 55.3 20.7 30.4

ε̃i10y+ε̃i 10.8 9.9 14.2 1.5 2.8 47.5 32.4

Normal times

ε̃π 87.5 2.7 2.3 2.5 7.1 4.7 4.5

ε̃y+ε̃e 3 86.5 79.2 3.3 1.3 8.9 13.3

ε̃EBP 1.3 4.1 5 87 5.9 2 2.9

ε̃stock 2.1 3.7 6.5 6 82.6 5.83 7.8

ε̃i10y+ε̃i 6.1 2.9 7 1.2 3.1 78.8 71.4

Table 1: Fractions of variances of each variable explained by the shocks reported on the column and
in percentage. π is the in�ation rate; y and e are the rate of growth of industrial production and
employment, respectively. EBP stands for excess bond premium, while stock refers to the stock return.
i10y denotes the 10 − year Treasury Bill and i is the 1 − year Treasury Bill. The shocks indicated in
the �rst column are the shocks to: in�ation (ε̃π), industrial production (ε̃y) and employment (ε̃e), the
excess bond premium (ε̃EBP ), stock return (ε̃stock) and long and short interest rate (ε̃i10y and ε̃i). The
variance decomposition is reported 12 months ahead.

Interesting, the shock seems to explain a fraction of the variance of real variables

(industrial production and employment) and in�ation that is from six to eight times larger

in recessions than in normal times. Moreover, the credit supply shock appears to be the

�rst source of �uctuation of employment in recessions but not in normal times on which

the contribution of macroeconomic shocks prevail. This result is in line with Caggiano,

Castelnuovo, and Figueres (2017) which found asymmetric reactions of (un)employment

across the business cycle. Moreover, the change in the short and long interest rates is

4Our results are robust to: (i) (re)calibrate the probability of being in recessions equal to 10% (γ = 1.6)
and to 20% (γ = 3.2); (ii) (re-)estimate the model with one lag and a zt de�ned as standardized
backward-looking 6-month moving average growth rate of industrial production; (iii) the inclusion of a
factor extracted from macroeconomic variables of a large panel dataset of the U.S. macro and �nancial
variables as discussed in McCracken and Ng (2016) to improve the identi�cation of the shock; (iv)
alternative indicators of credit supply shock such as the Moody's BAA−AAA, the GZ corporate bond
credit spread (Gilchrist and Zakraj²ek, 2012), and Chicago Fed's National Financial Conditions Index;
(iv) focus on a small sample size excluding from our sample the Great Recession (1973:M1-2007:M11).
We report the results of the above exercises on the online Appendix, Section B.
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six and eight times, respectively, larger in recessions than in normal times. The EBP

is more important than monetary shocks in explaining macroeconomic �uctuation in

recessions. The macroeconomic shocks appear to be more important than the monetary

ones in explaining the �uctuation of macroeconomic activity. Conversely, the contribution

of monetary policy shocks tend to be more important for the �uctuation of monetary

variables.5

4 Conclusion

We investigate to what extent a U.S. credit supply shock has asymmetric e�ects on

in�ation, industrial production, and employment. The estimated Smooth Transition

VAR provides evidence of a systematic asymmetry in the impact of credit supply shocks

between recessionary and normal times. The contribution of an exogenous variation of

the excess bond premium indicator is from six to eight times larger in recessions than in

normal times.
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Technical Appendix
This Technical Appendix reports the �gure of the transition function, the robustness

checks, the statistical evidence in favor of a nonlinear relationship between the endogenous

variables included in the STVAR, the estimation of the non-linear VARs, the computation

of the Generalised Impulse Responses. The technical sections are partially drawn on

Caggiano, Castelnuovo, Colombo, and Nodari (2015) Appendix.

A Appendix: Transition Function

Figure A.1: Transition Function vs Business cycle

Notes: Recession Probabilities for the U.S. The shaded area indicate the U.S. recessionary phases

(1973:M1-2018:M12), whereas the blue line refers to the moving average over 12 months of the industrial

production growth rate.

B Appendix: Robustness Checks

Figure B.1 plots the density of the di�erences per industrial production, employment

and in�ation between recessions and normal times obtained by the battery of exercises

we run to assess the robustness of our �ndings.

Smoothness parameter. We calibrate the smoothness parameter to match the

frequencies of the U.S. recessions obtained as identi�ed by the NBER business cycle

dates (15% in our sample). To check the sensitivity of our results to the alternative

calibrations of the smoothness parameter, we (re)calibrate γ in order to include in our

sample a number of recessions ranging from 10% to 20%. The probability of 10% refers

to the minimum amount of observations each regime should contain (Hansen, 1999). The

calibration implies a value of γ = 1.6 or γ = 3.2 to capture the probability of being
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in recessions equal to 10% to 20%, respectively. Our results are robust to alternative

calibrations of parameters.

Lag speci�cation and transition variable. We estimate a nonlinear VAR in-

cluding �ve lags, as indicated by the Akaike information criterion. Moreover, rely on a

transition function zt de�ned as a standardized backward-looking 12-month moving aver-

age growth rate of industrial production. We modify this speci�cation choice by relying

on the lag length L = 1 and a state indicator, zt, that include six-term moving average

of the monthly growth rate of industrial production Our results are consistent with the

benchmark speci�cation.

Factor STVAR. The credit supply shock is identi�ed via the Cholesky-decomposition

with the assumptions provided by Gilchrist and Zakraj²ek (2012). In particular, we set

the credit supply indicator after in�ation variable and the real ones. It means that we

"purge" our indicator from the contemporaneous movements of our macroeconomic vari-

ables, therefore sharpening the identi�cation of credit supply shocks. To improve the

identi�cation of the shock, we extract a factor from the macroeconomic variables of a

large panel dataset of the U.S. macro and �nancial variables as discussed in McCracken

and Ng (2016). We place such factor �rst in the vector Xt to ensure that credit supply

shock is purged from the information content of the factor. Our results are robust to

such exercise.

Alternative credit supply indicators. We proxy credit supply shock trough the

Excess Bond Premium (EBP) provided by Gilchrist and Zakraj²ek (2012). We repeat

our exercise replacing the EBP measure with alternative indicators commonly used to

proxy credit supply shock: the di�erence between yields on BAA bonds and AAA ones

computed by Moody's; the GZ corporate bond credit spread (Gilchrist and Zakraj²ek,

2012) from which is extracted the EBP indicator; the FCI that is the Chicago Fed National

Financial Conditions Index. Our results are consistent with the benchmark �ndings.

Sample size. The baseline STVAR model is estimated on the sample from 1973M1

to 2018M12. Our �ndings show asymmetric e�ects of credit supply shocks conditional

on the state of the economy. Such results may be driven by the inclusion of the Great

Recession period in our sample. We estimate again our model excluding from vector Xt

such period and focusing on a sample spanning from 1973M1 to 2007M11. Of course,

the reaction of the macroeconomic aggregates is weaker, but our exercise con�rms the

nonlinearity of credit supply shock e�ects.

The �gure B.1 con�rms that our impulse responses are statistically di�erent between

the two regimes.
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Figure B.1: GIRFs

Notes: The �gure reports the median realizations of the di�erences between generalized impulse responses

in recessions and normal times to a one-standard deviation shock for in�ation, industrial producttion

and employment. Each row refers to an alternative speci�cation of our baseline. For each speci�cation

the �gure shows the median of the di�erence from the baseline speci�cation (magenta lines) and its

con�dence intervals at 68% levels (shaded bands) against the median realizations of the di�erences from

the alternative speci�cation. From the top to the bottom: (i) γ = 3.2 and γ = 1.6 refer to the probability

of being in recessions equal to 20% and 10%, respectively (rows 1, 2); model with one lag and transition

variable de�ned as the 6-month moving average growth rate of industrial production (row 3); the inclusion

of a macroeconomic factor McCracken and Ng (2016) to improve the identi�cation of the shock (row 4);

alternative indicators of credit supply shock such as the Moody's BAA−AAA (row 5), the GZ corporate

bond credit spread as in Gilchrist and Zakraj²ek (2012) (row six), and the Chicago Financial Condition

Index one (row seven); in last row we focus one a small sample size excluding from our sample the Great

Recession (1973 :M1− 2007 :M11).

C Appendix: Linearity Test

We test linearity versus non-linearity applying the Teräsvirta and Yang (2014) test for

Smooth Transition Vector AutoRegression (STVAR) with a single transition variable as

in our framework. According to this test, we assume linearity under null hypothesis

versus a nonlinear model with a logistic smooth transition component under alternative

hypothesis. Let us assume a p-dimensional 2-regime approximate logistic STVAR model:

Xt = Θ
′

oYt +
n∑
i=1

Θ′iYtz
i
t + εt, (5)

where Xt is the (p x 1) vector of endogenous variables, Yt= [Xt−1 | . . . | Xt−k] is the
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(k x p+q) vector of exogenous variables which includes lagged variables (k) and a vector

of constants. The transition variable is zt, while Θ0 and Θi are matrices of parameters.

In our empirical assessment, we have p=7 as number of endogenous variables, q=1 as

number of exogenous variables, and k=5 as number of lags. Under the null hypothesis

of linearity, we assume Ho : Θi=0 ∀i. The Teräsvirta and Yang (2014) test features the

following four steps:

1) We estimate the restricted model (Ho : Θi=0 ∀i) by regressing Xt on Yt. We collect

the residual Ẽ calculating the matrix for the residual sum of squares RSS0=Ẽ'Ẽ.

2) We run an auxiliary regression of Ẽ on (Yt,Zn) where the subscript n indicates the

n-order Taylor expansion of the transition function. We save the residuals Ξ̃ computing

the matrix for the residual sum of squares RSS1=Ξ̃'Ξ̃.

3) We compute the test-statistic:

LM = Ttr[RSS−10 (RSS0 −RSS1)] = T [p− tr(RSS−10 RSS1)]. (6)

Under the null hypothesis, the test statistic is distributed as a χ2 with a number of

degree of freedoms equals the number of restrictions, p(kp+q). We compute two LM-type

linearity tests �xing the value of the n-order of the Taylor expansion equal to n = 1 and

n = 3 (as proposed by Luukkonen, Saikkonen, and Teräsvirta, 1988). In our estimation,

LM=503.4 and LM=1254.6 when n = 1 and n = 3, respectively. The corresponding

p-value in both tests is zero. In other words, our model presents non-linear dynamics.

D Appendix: Estimation of the Non-linear VARs

Our STVAR model (1)-(4) is estimated via maximum likelihood. The log - likelihood

function is as follows:

logL = const− 1

2

T∑
t=1

log|Ωt| −
1

2

T∑
t=1

ε′tΩ
−1εt, (7)

where the vector of residuals εt = Xt − (1 − F (zt))ΠNTXt−1 − F (zt)ΠRXt−1. Our pur-

pose is to estimate the parameters Ψ = {ΩR,ΩNT ,ΠR(L),ΠNT (L)}, where Πj(L) =

[Πj,1, ...,Πj,p], j ∈ {R,NT}.
Due to the high non-linearity of the model its estimation is problematic using standard

optimisation procedures. Hence, as in Auberbach and Gorodnichenko (2012), we employ

the procedure as described as follows.

Conditional on γ, ΩR, ΩNT , where γ is the slope parameter calibrated as described in

section 2, the model is linear in ΠR, ΠNT . Hence, for a given guess on γ, ΩR, ΩNT ,

the coe�cients ΠR, ΠNT can be estimated by minimizing 1
2

∑T
t=1ε

′
tΩ
−1εt. Hence, we can

re-write the regressors as below.
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Let Wt = [F (zt)Xt−1(1−F (zt))Xt−1...F (zt)Xt−p(1−F (zt))Xt−p] be the extended vector

of regressors, and Π = [ΠR(L)ΠNT (L)]. Consequently, we can write εt = Xt −ΠW′
t.

In this case, the objective function becomes:

1

2

T∑
t=1

(Xt −ΠW
′

t)
′
Ω−1t (Xt −ΠW

′

t). (8)

We can show that the �rst order condition with respect to Π is given by:

vecΠ
′
= (

T∑
t=1

[Ω−1t ⊗W
′

tWt])
−1vec(

T∑
t=1

W
′

tXtΩ
−1
t ). (9)

We iterate this procedure over di�erent sets of values for {ΩR, ΩNT} (conditional on a

given value for γ). For each set of values, Π is obtained and the logL (7) is calculated.

Due to the high non-linearity of the model in its parameters, we might get several local

optima. Then, it is recommended to try di�erent starting values of γ. To guarantee

positive de�niteness of the matrices ΩR and ΩNT , we focus on the alternative vector of

parameters Ψ= {chol(ΩR), chol(ΩNT ), ΠR(L), ΠNT (L)}, where chol means the Cholesky

decomposition.

We compute the con�dence intervals using a Markov Chain Monte Carlo (MCMC) algo-

rithm developed by Chernozhukov and Hong (2003) (CH hereafter). This methodology

gives us both a global optimum and densities for the parameter estimates.

We implement the CH estimation via a Metropolis-Hastings algorithm. Given a starting

value Ψ0, the procedure constructs chains of length N of the parameters of the estimated

model following two steps:

Step 1: Draw a candidate vector of parameter values Θ(n) = Ψ(n) + ψ(n) for the chain's

n + 1 state, where Ψ(n) is the current state and ψ(n) is a vector of i.i.d. shocks drawn

from N(0,ΩΨ), and ΩΨ is a diagonal matrix.

Step 2: Set the n+1 state of the chain Ψ(n+1) = Θ(n) with probabilitymin{1, L(Θ(n))/L(Ψ(n))},
where L(Θ(n)) is the value of the likelihood function conditional on the candidate vector

of parameter values, and L(Ψ(n)) is the value of the likelihood function conditional on

the current state of the chain. Otherwise, set Ψ(n+1) = Ψ(n).

The starting value Θ(0) is calculated using the second-order Taylor approximation of the

model described from (1) to (4) in the section 2, hence the model can be written as

regressing Xt, Xtzt, and Xtz
2
t . We employ the residuals from this regression to �t the

expression for the reduced-form time-varying variance-covariance matrix of the VAR (as

explained in the main text) using maximum likelihood to estimate ΩR and ΩNT .

We can construct Ωt, conditional on these estimates and given the calibration for γ.

Conditional on Ωt, we can compute the starting values for ΠR(L) and ΠNT (L) using

equation (9).
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Given the calibration for the initial (diagonal matrix) ΩΨ, a scale factor is adjusted to

generate an acceptance rate close to 0.3, the typical value for this computational methods

as pointed out by Canova (2007). The estimation accounts for N = 50, 000 draws and

we use the last 20% for inference.

As described by CH, Ψ∗ = 1
N

∑T
t=1Ψ

(n) is consistent estimate of Ψ under standard reg-

ularity assumptions on maximum likelihood estimators. The covariance matrix of Ψ is

given by V = 1
N

∑T
t=1(Ψ

(n)−Ψ∗)2 = var(Ψ(n)), which is the variance of the estimates in

the generated chain.

E Appendix: Generalized Impulse Response Functions

The Impulse Response Functions for the STVAR model are computed following the

approach introduced by Koop, Pesaran, and Potter (1996) which propose an algorithm

to calculate the Generalized Impulse Response Functions (GIRFs). The implementation

of their procedure is composed of the following steps.

1) We construct the set of all possible histories Λ of length p = 12 : {λi ∈ Λ}, where Λ

contain T − p+ 1 histories λi and T is the sample size (T=551).

2) We separate the set of all recessionary histories from that of all normal times histories.

We calculate the transition variable zλi for each λi. If zλi ≤ z∗=-0.95 %, then λi ∈ ΛR,

where ΛR refers to all recessionary histories; if zλi > z∗ = −0.95%, then λi ∈ ΛNT , where

ΛNT refers to all normal times histories.

3) We select at random one history λi from the set ΛR, taking Ω̂λi obtained as follows:

Ω̂λi = F (zλi)Ω̂R + (1− F (zλi))Ω̂NT , (10)

where zλi is the transition variable computed for the selected history λi. Ω̂R and Ω̂NT are

calculated from the generated MCMC chain of the parameter values during the estimation

step. As in Koop, Pesaran, and Potter (1996), we consider the distribution of parameters

rather than their mean values to allow for parameter uncertainty.

4) We estimate the variance-covariance matrix Ω̂λi using the Cholesky-decomposition:

Ω̂λi = ĈλiĈ
′
λi
, (11)

we orthogonalize the estimated residuals to get the structural shocks as:

e
(j)
λi

= Ĉ−1λi ε̂. (12)

5) From eλi draw with replacement h nine-dimensional shocks and get the vector of
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bootstrapped shocks

e
(j)∗
λi

= {e∗λi,t , e∗
∗
λi,t+1

, ..., e∗∗λi,t+h}, (13)

where h is the number of horizons for the IRFs we compute.

6) We form another set of bootstrapped shocks which are equal to (13) except for the

kth shock in e
(j)∗
λi

which is the shock we perturb by a δ amount. We call the vector of

bootstrapped perturbed shocks as e
(j)δ

λi
.

7) We transform back e
(j)∗
λi

and e
(j)δ

λi
as follows:

ε̂
(j)∗
λi

= Ĉλie
(j)∗
λi
, (14)

and

ε̂
(j)δ

λi
= Ĉλie

(j)δ

λi
. (15)

8) We use (14) and (15) to simulate the evolution of X
(j)∗
λi

and X
(j)δ
λi

and we construct

the GIRF (j)(h, δ, λi) as X
(j)∗
λi

- X
(j)δ
λi

.

9) Conditional on history λi, repeat for j=1,...,B vectors of bootstrapped residuals and

get GIRF 1(h, δ, λi), GIRF
2(h, δ, λi), ..., GIRF

B(h, δ, λi). We set B=500.

10) We calculate the GIRF conditional on history λi as:

ˆGIRF
(i)

(h, δ, λi) = B−1
B∑
j=1

GIRF (i,j)(h, δ, λi). (16)

11) We repeat all previous steps for i=1,...,500 histories belonging to the set of reces-

sionary histories, λi ∈ ΛR, and we get ˆGIRF
(1,R)

(h, δ, λ1,R), ˆGIRF
(2,R)

(h, δ, λ2,R), ...,
ˆGIRF

(500,R)
(h, δ, λ500,R) where the subscript R means that we are conditioning upon re-

cessionary histories.

12) We take the average and we get ˆGIRF
(R)

(h, δ,ΛR), which is the average GIRF under

recessions.

13) We repeat all the previous steps from 3 to 12 for 500 histories belonging to the set of

all normal times and we get ˆGIRF
(NT )

(h, δ,ΛNT ).

14) We compute the 68% con�dence bands for the IR by picking up for each hori-

zon of each state, the 16th and 84th percentile of the densities ˆGIRF
([1:500],R)

and
ˆGIRF

([1:500],NT )
.
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