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Abstract

The socioeconomic impact of spatial concentration has been receiving an increasing attention dur-
ing the last two decades. Consequently, the necessity of effective measures of this phenomenon
has increased too. This paper considers a population partitioned by subgroups and develops a
decomposition of the Gini index in two components, which measure the within and the between
group inequality and are also particularly effective to quantify spatial concentration. Indeed, they
possess a crucial property which overcomes important issues that may arise using any Gini index
decomposition in the spatial context, following a recent approach. In addition, the availability
of an only-two highly informative components decomposition provides in numerous applications
and several frameworks further significant advantages in the determination of the contributions
to global inequality of the intra and the inter groups differences. The ability of the components
to capture these phenomena is supported by a parametric bootstrap procedure. This highlights
extremely high correlations between the components and two axiomatically derived benchmarks.
The presentation of a case study concerning the income distribution in the Italian provinces con-
cludes the works, the informativeness and the interpretative advantages of the proposed decom-
position appear evidently.
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Non technical summary

In the last two decades an increasing attention has been paid to the study of between territories
inequality and its socioeconomic impact. Driven by this cutting-edge attention on territorial in-
equality and, more in general, on the effects of spatial concentration - which accounts for both
inequality and its spatial distribution - a particular new emphasis has to be also devoted to the
ability of effectively measuring these phenomena.

Several measures of spatial concentration have been proposed in literature. They can be very
useful but they also introduce some kind of arbitrariness. An alternative solution might be to
exploit the information nested in the most used inequality measure, following a recent approach.
We specifically consider the Gini index and propose a within-between decomposition of the index
that nests considerable information on both the inequality and its spatial distribution.
The decomposition proposal deals with partitioned population and only consists of the two in-
tra and inter groups inequality. The availability of an only-two highly informative components
provides relevant advantages in a descriptive context or a regression task in terms of both in-
terpretability and parsimony. To our knowledge, this is the first attempt of decomposition of
the Gini index dealing with a partitioned population which comes up with just two components.
We also notice that all the well known subgroup decompositions of the Gini index possess three
components and a between component that only accounts for the variability of the means of the
groups. This may be an oversimplification when the interest lies on the overall distance between
distributions. Thanks to a crucial property, the between component from our proposal solves this
potential drawback and further issues that may arise employing any Gini index decomposition in
the spatial context.

We demonstrate that both the components are highly informative thanks to their properties
and because - as we support by employing a parametric bootstrap procedure - they strongly and
positively correlate with their relative benchmark. The two benchmarks which have been con-
sidered are developed ex ante to reach their objective - to measure the within and the between
inequality - without constraining their sum to a preassigned formula, such as in our case with
reference to the Gini index. They are derived from literature and follow an axiomatic approach.
Hence, the introduced components approximately provide all the information contained in the
benchmarks and observe their axiomatically derived properties, despite the fact that they are de-
rived with a decomposition boundary - and not independently as for the benchmarks.

In addition, we prove that the same levels of correlation also hold in a real data analysis. We
apply the proposed decomposition to the municipality based Income and principal Irpef variables
statistical data, which are available on the Open-Source Data released by the Department of Fi-
nance of the Italian Ministry of Economy and Finance. In the bootstrap procedure the correlation
values are calculated simulating from independent scenarios. In the real data analysis we comple-
ment the assessment calculating correlations over time - our analysis ranges from 2000 to 2017
- and over different territorial aggregation. This strengthens the already mentioned results on the
informativeness of the components.
With the same data - focusing on the income distribution of the Italian provinces - we also high-
light the advantages of the proposed between component share in assessing the spatial distribution
of inequality and the interpretative benefits that a two-component decomposition ensures in em-
pirical contexts.

In fact, the decomposition is inspired by the spatial framework. Nonetheless, several appli-
cations of our decomposition are also meaningful and convenient outside of this context: groups
could be defined by several factors such as gender, education level, occupation, race, age, or other
criteria.
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1 Introduction

Inequality between territories of the same country has been diffusely considered as just ancil-
lary in the analysis of the inequality for a long period. But the presence in several countries of
many territories which have been left behind is leading to increasing socioeconomic problems
and facilitates populism, as Rodrı́guez-Pose (2018) pointed out. An increasing attention has been
recently paid to the study of place-based policies (see e.g. Neumark and Simpson, 2015; Kline
and Moretti, 2014). Driven by this cutting-edge attention on the territorial inequality and, more
in general, on the effects of spatial concentration - it accounts for both inequality and its spatial
distribution - a particular new emphasis has to be also devoted to the ability of measuring these
phenomena.

The inequality indexes such as the Gini or the Theil index (only to mention the most used)
are invariant to permutations of the units in the space. This can lead to the same inequality value
associated to drastically different spatial patterns of the variable of interest - in this paper we will
refer to income - as Arbia (2001) and Arbia and Piras (2009) effectively clarified. This means
that the classical inequality measures can not be used to assess spatial concentration because they
only partially capture this phenomenon. A symmetric argument holds for the spatial autocorre-
lation measures (see e.g. Moran, 1950; Ord and Getis, 1995), which only deal with the income
distribution along space but do not capture concentration.

Several measures of spatial concentration have been proposed in literature, see among the
others Ellison and Glaeser (1997), Campante and Do (2007), Bickenbach and Bode (2008) and
Arbia and Piras (2009). They can be very useful but they introduce some kind of arbitrariness: in
Ellison and Glaeser (1997) and Bickenbach and Bode (2008) the choice of a reference distribution
is required; the proposal introduced in Campante and Do (2007) defines a centered index of spa-
tial concentration and is appropriate when there is a place that can be considered central w.r.t. the
others; in Arbia and Piras (2009) a class of measures of spatial concentration which depend on
the choice of a spatial autocorrelation statistic is developed.
An alternative solution might be to combine inequality and spatial autocorrelation measures, as
firstly suggested in Arbia (2001). The introduced proposal was criticized in Bickenbach and Bode
(2008) which considers it as an ad hoc measure, but a similar approach was also adopted in A.
Shorrocks and Wan (2005). Here, the authors suggest to exploit a subgroup decomposition of
an inequality index in the spatial context. This means partitioning the population into geograph-
ical regions and evaluating a within component that measures the intra-territories inequality by
a weighted average of the inequality index in each region; and a between term that measures
the variation in the means of the regions. The idea of Shorrocks and Wan consists in assessing
the distributional impact of spatial factors by jointly considering the overall inequality and the
share of the between component. In this manner both the inequality and its spatial distribution
- the key features of spatial concentration - should be under control. Rey and Smith (2013) also
pursued a similar idea. They specifically consider the Gini index and propose a within-between
decomposition of the index arguing that it potentially nests sufficient information on both the in-
equality and its spatial distribution. The main diversities between the two approaches are that the
decomposition in Rey and Smith is not a subgroup decomposition and does not require a parti-
tion of the population. Rey and Smith have decomposed the index according to a matrix which
defines pairs of neighbours and non-neighbours. The differences between the former constitute
the within component while the latter sum up to the between term. More on the properties of the
two strategies will be discussed in the following section.

In this paper we follow these recent approaches and introduce a novel proposal to decompose
the Gini index. It deals with partitioned population and only consists of two components - within
and between - which result to be highly informative on the intra and the inter groups inequality.
To our knowledge, this is the first attempt of decomposition of the Gini index dealing with a par-
titioned population which comes up with just two components. We will show that its properties
guarantee important benefits and makes it also particularly effective to measure spatial concen-
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tration, in the spirit of Arbia (2001), A. Shorrocks and Wan (2005) and Rey and Smith (2013).
In fact, the work is inspired by the spatial framework that is clearly considered throughout the
work - the groups could be the regions or the sub-regions in a country, or the countries in a
confederation - and we often refer to any within-between decomposition as to a spatial decompo-
sition; and to the within and the between terms as to its spatial components. Nonetheless, several
applications of our decomposition are also meaningful and convenient outside of this context:
groups could be defined by several factors such as gender, education level, occupation, race, age,
or other criteria.

In Section 2 we present the main features of the most common decompositions of the Gini
index. Then we discuss the possibility of a two-component decomposition dealing with parti-
tioned population to exist; and its potential advantages. Section 3 introduces our decomposition
methodology when the groups are equal-sized and explains its ratio; a crucial property of the
obtained components is also derived. Section 4 generalises the procedure to the different-sized
groups case. In presenting Section 5 we stress how a rigorous axiomatic approach was followed
to accept an index as an inequality measure (see Allison, 1978 for an effective overview). We be-
lieve the same approach should also be pursued when evaluating the components of an inequality
index decomposition. Thus Section 5 shows, by employing a parametric bootstrap procedure, that
the components strongly and positively correlate with two related benchmarks. They are inspired
by literature and axiomatically derived to measure the within and the between inequality. Section
6 proves that the same levels of correlation also hold in a real data analysis, strengthening the
preceding section results on the informativeness of the components; it also highlights the advan-
tages of the proposed between component share in assessing the spatial distribution of inequality
and the interpretative benefits that a two-component decomposition ensures in empirical contexts.
Section 7 gives conclusive remarks.

2 Decomposing the Gini index

A very comprehensive outline of the most common subgroup Gini index decompositions (Bhat-
tacharya and Mahalanobis, 1967; Rao, 1969; Pyatt, 1976; Mookherjee and A. Shorrocks, 1982;
Yitzhaki and Lerman, 1991; Dagum, 1997) is provided in Radaelli (2010). These proposals
are developed by different approaches but the resulting components - except the ones derived in
Yitzhaki and Lerman (1991) - coincide. They all rely on a population of N individuals which is
partitioned in K groups; and exhibit three components: the two spatial components and a third
term.
The within components measure the intra-territories inequality by a weighted average of the Gini
index in each group, where the weights vary with the considered decomposition. Let Gk be the
value of the Gini index in group k = 1, . . . ,K; µk and nk its mean and dimension; µ the overall
mean. In the within component from Yitzhaki and Lerman (1991):

GY L
w =

K

Â
k=1

⇣nk

N

⌘✓µk

µ

◆
Gk =

K

Â
k=1

skGk (1)

each weight sk is immediately interpretable as the income share of the group k. In the other
proposals - we will refer to them considering their first specification from Bhattacharya and Ma-
halanobis (1967) - the income shares are multiplied again by the population shares:

GBM
w =

K

Â
k=1

⇣nk

N

⌘2
✓

µk

µ

◆
Gk =

K

Â
k=1

⇣nk

N

⌘
skGk (2)

The between component also depends on the decomposition choice, but every proposal presents
a measure which substantially just compares the means of the groups. As for the two decomposi-
tions we are considering, they are:
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GY L
b =

2
µ

Cov

 
µk,

1
nk

Ânk
i=1 Rik

N

!
(3)

where Rik is the rank of the unit i from the group k in the overall population; and

GBM
b =

1
2µ

K

Â
k=1

K

Â
h=1

nknh

N2 |µk �µh| (4)

The two components in eq. (3)-(4) appear very different in their form but they account accordingly
for low levels of territorial inequality when the groups have similar means - they are zero if the
means are identical - and vice versa, regardless of the potential different dispersion within each
group. This could be an oversimplification when the overall distance between the distributions is
relevant, as Ebert (2010) effectively pointed out.
The third term of the decompositions - which disappears if the group distributions do not over-
lap - has been left uninterpreted in the first attempts of decomposition and considered just as the
residual which guarantees the identity. Then several interesting interpretations in terms of groups
overlapping or stratification have been proposed (Yitzhaki and Lerman, 1991, Yitzhaki, 1994)
and all the three components became potentially useful and informative.
Nonetheless, it is incontestable that every two-component decomposition possesses an important
advantage: all the information of the inequality index and its decomposition can be provided spec-
ifying only the overall inequality and its between component. Indeed, the collinearity between the
inequality index and the two spatial components allows to provide all the information contained
in the decomposition by delivering only two of these three values, with relevant advantages in a
descriptive context or a regression task in terms of both interpretability and parsimony. The num-
ber and the specification of the components may become relevant also when measuring spatial
concentration using an inequality index and the share of its between component, as will become
clear in Section 6.
These arguments and the potential oversimplification generated by a between component relying
only on the means of the groups encouraged us to look for a novel solution. As we will show,
this possesses both the advantage of a two-component decomposition and a between component
which informs about the differences between the overall group distributions.
Actually, the spatial Gini index decomposition presented in Rey and Smith (2013) is also com-
posed only by the two spatial components and its between component directly relies on the indi-
vidual values - not only on the means. However it is only appropriate when the population groups
do not form a partition. When they do, a relevant drawback arises: the between component is pos-
itive even if the groups have the same distribution, hence it may tend to overestimate the between
group inequality in cases of groups characterised by similar distributions.

As we have anticipated, in this paper we introduce the first two-component decomposition
of the Gini index dealing with a partitioned population. This could appear in contrast with the
well known results presented in Bourguignon (1979), A. F. Shorrocks (1980) and A. F. Shorrocks
(1984) where the class and the properties of the measures which are additively decomposable
are derived. The Gini index is not additevely decomposable in the sense intended by these
works, which is partitioning the population into geographical regions and expressing the index
as a weighted average of the inequality values within each group, plus some contribution arising
from the variation in the means of the regions. Such a decomposition on the Gini index requires
a third component, as we explained above.
Differently, our proposal determines a between component which does not rely on the means of
the groups but directly depends on the incomes of individuals. This allows a two terms decom-
position to exist and to perform better than the other decomposition proposals when the groups
overlap1. In addition, as we will show in the following section, the between term is null if and only

1If the groups do not overlap the third component of the subgroups decompositions disappears and the variation of the
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(a) Couple differences composing g (b) Decomposition in the non-trivial case

Figure 1: A two-group-two-individual illustration

if the groups have the same distribution. The sufficiency of this condition solves the drawback of
the decomposition in Rey and Smith (2013) while its necessity solves the oversimplification of a
between component substantially relying just on the means of the groups.

3 The decomposition proposal

Keep on considering a population of N individuals. Let xi be the income of the generic individual
i = 1, . . . ,N. The Gini index is defined as follows:

G =
1

2µN2

N

Â
i=1

N

Â
j=1

��xi � x j
��= g

2µN2

where µ = 1
N ÂN

1 xi is still the average income. The index accounts for the sum g of all the dif-
ferences between individual incomes, averaging and normalizing by the factor

�
2µN2��1, so that

G is scale invariant and G 2 [0,1] if all the xi � 0. Consider now the population partitioned in K
equal-sized groups, i.e. nk = n 8 k = 1, . . . ,K and define xk

i to be the i-th element in the ordered
vector xk = (xk

1, . . . ,x
k
n) with xk

i � xk
i+1 8 i = 1, . . . ,n� 1. All the information concerning with

the spatial distribution of inequality is within g, which can be reformulated as

g =
K

Â
k=1

K

Â
h=1

n

Â
i=1

n

Â
j=1

���xk
i � xh

j

��� (5)

The assumption of equal-sized groups might be thought as extremely simplistic but, as we will
show in Section 4, it is only apparently limiting in the applicability of the proposal. Conversely,
it provides a deeply innovative insight into the structure of the Gini index.
Look at the Figure 1 which shows a two-group-two-individual situation. Figure 1a highlights
the absolute differences between all the couples of units, considered twice so that they consti-
tute g if they are summed up. As the scheme suggests we distinguish three kind of differences:
vertical, horizontal and diagonal ones. The vertical differences compare same-group pairs of ele-
ments. The horizontal differences compare same-rank pairs from different groups. The diagonal
differences compare different-rank pairs from different groups.

As a point of departure, we would like a decomposition which assigns the vertical and the
horizontal absolute differences to the within and the between component, respectively.

means of the groups fully characterises the between group inequality. Our proposals is useless in such cases.
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Despite the fact that the diagonal differences involve different-group pairs, they partly reflect the
vertical differences - i.e. the within inequality - and can not be totally addressed to the between
group inequality. Consider a situation with two identical groups: the possibly positive values of
the diagonal differences equal the vertical ones and can not be addressed to the absent between
group inequality.
In Lambert and Aronson (1993) the residual term is described as “at once a between groups and
a within groups effect: it measures a between groups phenomenon, overlapping, that is generated
by inequality within groups” (p. 1224). The sum of the diagonal differences especially accom-
modates this characterisation and can be thought as a kind of residual term of this decomposition
strategy. In fact, this term is unambiguously dependent on the interaction of the intra and the inter
groups differences but it does not disappear when the groups do not overlap. Thus it can not be
interpreted as an overlapping component.
This is not an issue for our purpose because with the equal-sized group representation a quite
intuitive and effective paradigm to decompose the diagonal differences exists and generates two
contributes to the spatial components.
Sometimes, an extremely reasonable strategy is viable to decompose the diagonal lines and to
disentangle the within contribution from the different-group differences. We invite the reader to
inspect the diagonal differences and to move along the legs of the triangles depicted in the scheme
in Figure 1a. Look at the solid black diagonal line as an example: the absolute difference between
the richest of the group k and the poorest of the group h is 6. The former is 5 units richer than his
group poorest individual, who is 1 unit richer than his counterpart in group h. A similar argument
holds from the opposite point of view, looking at the difference between the poorest of group h
and the richest of group k - dashed black diagonal line. The diagonal absolute differences between
the two individuals considered in the example are predominantly due to the within inequality in
the two groups and reflect it. Accordingly, we suggest to split the global contribution to g of
the couple composed by the richest of the group k and the poorest of the group h (6+ 6 = 12)
assigning 5+4 = 9 to the within component and 1+2 = 3 to the between one.
This straightforward strategy is not directly feasible in situations - such as those represented by
the gray lines - in which the three values involved in the path along the legs do not increase or
decrease monotonically as in the black lines situations, namely when the product between the
horizontal and the vertical difference is negative. In such cases we should subtract the horizontal
value from the vertical one to obtain the value of the difference along the diagonal, with paradox-
ical effects on interpretation if we subtract the horizontal value - 1 - from the between component.
As an example, imagine to replace the poorest individual of group h with a poorer one. We would
obtain a lower value of the between inequality (we subtract a value 3� (2� e)> 1) even though
the intuition suggests the between inequality is now higher - the poor group is poorer - and we
should sum up a positive value to it.
To overcome this problem, we propose to reduce both the vertical and the horizontal values pro-
portionally to make their sum equal to the diagonal difference. Hence, both the vertical and the
horizontal values are divided by their sum and multiplied by the diagonal difference - look at
the Figure 1b for an illustration. In other words we suggest to split each diagonal difference
proportionally to the vertical and the horizontal ones and to assign these two (positive) values to
the within and the between component, respectively. Thanks to this solution we preserve both
reasonable proportions between the values added to the spatial components - these proportions
observe the black lines decomposition argument - and the Gini index compliance, i.e. the pos-
sibility to have a two-components decomposition. With this overall strategy the contributions of
the diagonal differences to the within and between inequality mimic to the utmost the vertical and
horizontal differences. This is the key that makes the two components highly informative.
Until now, we have just presented the intuition at the base of the decomposition. We will now
generalise this strategy, formalise the decomposition proposal and deliver the two spatial compo-
nents. At the end of this section, the preannounced property of the two components is derived.
For each difference |xk

i �xh
j |> 0, we define the sum of the (absolute) legs Lkh

i j = |xk
i �xk

j|+ |xk
j�xh

j |
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and their product c = (xk
i � xk

j)(x
k
j � xh

j). We can write:
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i j
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j

���
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i � xh
j |

Lkh
i j

if c < 0

(6)

where to obtain the first equation we exploited the fact that c � 0 implies |xk
i � xh

j | = |xk
i � xk

j +

xk
j � xh

j |= Lkh
i j .

We propose to assign the first and the second addends of eq. (6) to the within and the between
inequality components, respectively. The first equation fills all the trivial-case decompositions
(the vertical differences when k = h; the horizontal differences when i = j and the black diagonal
differences kind when k 6= h and i 6= j) while the second stands for analogous situations to the
two sketched by the gray lines.
We stress here the importance of the equal-sized groups hypothesis which guarantees that each
unit has a counterpart in each other group, i.e. given the couple (xk

i ,x
h
j), the element xk

j always
exists. Notice that considering xk

j or xh
i in the decomposition is not an issue, since the Gini index

counts each difference twice by inverting the indices of the summations.

To simplify the notation in eq. (6) we define2 wkh
i j =

|xk
i �xh

j |
Lkh

i j
and obtain:

���xk
i � xh

j

���=
���xk

i � xk
j

���wkh
i j +

���xk
j � xh

j

���wkh
i j (7)

It is always wkh
i j 2 [0,1]: wkh

i j � 0 holds by definition and wkh
i j = 1 iff c � 0. Hence, |xk

i � xk
j|wkh

i j

and |xk
j �xh

j |wkh
i j can be considered, respectively, as the contributions of the difference |xk

i �xh
j | to

the within and the between group inequality; and wkh
i j the vertical and the horizontal differences

rescaling factor. This factor can be less than one because of the possibility of a proportional reduc-
tion of the horizontal and the vertical values before assigning them to the spatial components: as
we showed in the numerical example, the difference |xk

i �xh
j | can be less than |xk

i �xk
j|+ |xk

j �xh
j |

(it happens iff c < 0), so we have to rescale the two addenda by the factor wkh
i j  1. This value de-

creases, by definition, according to the ratio between the diagonal difference and the summation
between the horizontal and the vertical ones. This means that when two individuals are similar
the contribution of their couple to the within and the between components are accordingly small,
even if the two vertical and horizontal differences involved in the decomposition are greater. The
latters account, as desired, only in the proportion between the two spatial contributions, while
their absolute values depend on the starting level of the inequality in the couple.

The Gini index decomposition proposal can be now derived just by substituting eq. (7) into
eq. (5). Denoting ÂK

h=1 wkh
i j = wk

i j and Ân
i=1 wkh

i j = wkh
j , we have:

g =
n

Â
i=1

n

Â
j=1

K

Â
k=1

���xk
i � xk

j

���wk
i j +

K

Â
k=1

K

Â
h=1

n

Â
j=1

���xk
j � xh

j

���wkh
j = gw +gb (8)

and

G = Gw +Gb =
gw

2µN2 +
gb

2µN2

The Gini index appears composed by only two terms. We propose to interpret the first as the
2We set wkh

i j to zero a priori if |xk
i � xh

j |= 0
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within component of the inequality, because it depends on the summation of the contribution of
all the couples of units belonging to the same group, i.e. the couple differences multiplied by the
relative weights wk

i j; and the second as the between component of inequality, because it depends
on the summation of the contribution of all the couples of same-rank units in different groups, i.e.
the couple differences multiplied by the relative weights wkh

j .
Note that the within and the between component involve, respectively, the weights wk

i j and wkh
j

which do not exclusively depend on the differences within or between groups. This is not a
drawback but a necessary property which allows each contribute of the intra-group (same-rank
units) differences to the within (between) inequality to depend on how it affects the different-rank
units differences, i.e. the diagonal ones. Indeed wk

i j (wkh
j ) grows when the diagonal differences

are enlarged by the vertical (horizontal) ones.
Given that wkk

i j = 1, wkh
j j = 1 and wkh

i j � 0 8 i, j,k,h imply wk
i j � 1 8k, i, j and wkh

j � 1 8 j,k,h,
the crucial property - that we have mentioned before - of the two spatial components is ensured:

Gw = 0 () |xk
i � xk

j|= 0 8 i, j,k
Gb = 0 () |xk

j � xh
j |= 0 8 j,k,h

The first relation ensures the within component to be zero iff all the intra-group differences are
zero, i.e. all the individuals equal their group mean. Actually, all the decompositions we have
considered until now possess this property. The second relation is symmetric to the first and
guarantees the between component to be zero iff all the same-rank differences are zero, i.e. all
the groups have the same distribution. This is a very reasonable condition too - at the end of the
previous section we have already stressed the relevant advantages it ensures - but it is satisfied
just by our component.
As stressed before, the structure of the weights wk

i j and wkh
j depends on many units and not only

on the two involved in the difference they multiply. Unfortunately, this compromises the analyti-
cal tractability of the expressions we obtained for the two components and hinders the derivation
of additional properties. An alternative approach to corroborate the appropriateness of the two
components is followed. Section 5 will show that each component strongly and positively corre-
lates with a related benchmark. The two benchmarks which have been considered are developed
ex ante to reach their objective - to measure the within and the between inequality - without con-
straining their sum to a preassigned formula, such as in our case with reference to the Gini index.
They are derived from literature and follow an axiomatic approach.
We have essentially demonstrated that the two components have a correct starting point - zero
- and we will demonstrate that they move in the right direction and proportion with reference
to different scenarios, because they strongly correlate with their relative benchmark. These two
properties have a remarkable consequence: the components approximately provide all the infor-
mation contained in the related benchmarks and observe their axiomatically derived properties.
In addition, the extent of the approximations is small because it inversely depends on the (high)
correlation values.

In the following section we show that the equal sized groups hypothesis is not binding. It is
necessary to understand the decomposition arguments but the proposal can be easily generalised
to cope with a more realistic situation in which groups have different sizes.

4 Different-sized groups

Consider now the K groups having a vector of sizes n = (n1, . . .nK) where ÂK
k=1 nk = N. We have:

g =
N

Â
i=1

N

Â
j=1

��xi � x j
��=

K

Â
k=1

K

Â
h=1

nk

Â
i=1

nh

Â
j=1

���xk
i � xh

j

���
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Figure 3: Exact approach: a two-group illustration

and a way to guarantee the element xk
j to exist is needed to employ the decomposition proposal.

We can proceed by two distinct approaches. The first allows to evaluate with no approxi-
mation the two components but necessitates potentially unaffordable computations. The second
drastically reduces computational requirements paying the cost of a negligible approximation.
The exact approach. It exploits the principle of population. It considers a new common size
n = mcm(n) and the resampling weights pk = nk

n so to build the vectors yk = (yk
1, . . . ,y

k
n) =

(xk
1 . . .x

k
1| {z }

p�1
k

, . . .xk
nk
. . .xk

nk| {z }
p�1

k

). Defining li
mk

= p�1
k (i � 1) + mk, by construction we have xk

i = yk
li
mk

,

8 i= 1, . . .nk and 8 mk = 1, . . . , p�1
k . Hence 8 (k,h)2 {1, . . . ,K}⇥{1, . . . ,K} the following holds:

nk

Â
i=1

nh

Â
j=1

���xk
i � xh

j

���=
n

Â
i=1

n

Â
j=1

pk ph

���yk
i � yh

j

��� (9)

Proof.
n

Â
i=1

n

Â
j=1

pk ph

���yk
i � yh

j

���=
nk

Â
i=1

nh

Â
j=1

p�1
k

Â
mk=1

p�1
h

Â
mh=1

pk ph

����y
k
li
mk
� yh

l j
mh

����=
nk

Â
i=1

nh

Â
j=1

p�1
k

Â
mk=1

p�1
h

Â
mh=1

pk ph

���xk
i � xh

j

���=

=
nk

Â
i=1

nh

Â
j=1

pk ph p�1
k p�1

h

���xk
i � xh

j

���=
nk

Â
i=1

nh

Â
j=1

���xk
i � xh

j

���

Substantially, imagine to have two groups composed, respectively, of two and three individu-
als, as the ones reported in the left rectangle of Figure 3, and replace them with those in the right
part. By the principle of population xk and yk (as well as xh and yh) are identical from the point of
view of their internal inequality, and also the comparison between the two groups should remain
unvaried. Notice that each difference in the left scheme appears in the right scheme nine times if
the couple belongs to yk, four times if it belongs to yh and six times if the units belong to different
groups. In order to respect the principle of population we have only to adjust for this effect. This
is what eq. (9) means.
The Gini index numerator can be now decomposed with an analogous technique to the one em-

ployed deriving eq. (8). The following is obtained:

g =
N

Â
i=1

N

Â
j=1

��xi � x j
��=

K

Â
k=1

K

Â
h=1

nk

Â
i=1

nh

Â
j=1

���xk
i � xh

j

���=
K

Â
k=1

K

Â
h=1

n

Â
i=1

n

Â
j=1

pk ph

���yk
i � yh

j

���=

=
n

Â
i=1

n

Â
j=1

K

Â
k=1

���yk
i � yk

j

���wk
i j +

K

Â
k=1

K

Â
h=1

n

Â
j=1

���yk
j � yh

j

���wkh
j = gw +gb

(10)
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The only difference w.r.t. eq. (8) is in the new weights wk
i j =ÂK

h=1 pk phwkh
i j and wkh

j =Ân
i=1 pk phwkh

i j .
They are the general case of the previous defined weights and incorporate the information needed
to preserve the original impact of each couple.

As we said, in most cases this approach requires an unaffordable computational effort because
of the potentially huge magnitude of the minimum common multiple. Thus, we present an alter-
native procedure which drastically reduces computational requirements paying the minimal cost
of a negligible approximation.
Quantilisation. We propose to replace the vectors yk with others K vectors: for each group we se-
lect a vector composed by n quantiles from the income vector of the group. As for the resampling
weights, their calculation is the same employed in the exact approach, but now nothing ensures
n � nk so it can be pk > 1. The decomposition proposal has the same form of eq. (10) but G, Gw
and Gb now incur in some approximation.

In order to employ this method there are the definition of quantile and the value of n to be
selected.
As for the former, we advise the definition 7 reported in Hyndman and Fan (1996), which is also
the default definition adopted by the quantile() function in the software R. Given each vector
xk 2 Rnk , accordingly to this definition and in order to alter as little as possible the quantilisa-
tion results w.r.t. the exact calculation, we suggest to interpolate linearly the vertices

⇣
i�1

nk�1 ,x
k
i

⌘

where i = 1, . . . ,nk, and then to estimate the n quantiles by determining the values associated to
the probabilities

prob j =
j�1
n�1

j = 1, . . . ,n (11)

on the resulting piecewise linear curve.
As for the latter, we define wk =

nk
ÂK

k=1 nk
and recommend the value

n =
K

Â
k=1

wknk =
ÂK

k=1 n2
k

ÂK
k=1 nk

(12)

This expression determines n as the average of the nk, each weighted by its own share of popula-
tion wk.

A formal assessment which legitimises the decisions proposed both for the quantile definition
and for the value of n is provided in the appendix. Here we only inform about the negligibility of
the approximation which the quantilisation procedure cope with when the advised definitions are
employed.
Actually, the optimal performance associated to these two decisions should not come as a surprise.
The outstanding results of the proposed choice of n derives directly from the consistency with the
resampling weights system. This choice assigns greater weights wk to the sizes of the most sized
groups, which is desirable because these are the groups the biggest values of pk are associated
to. It is reasonable to preserve their information choosing a large n and resampling the smaller
groups. But if many small groups are present n is attracted towards their small size. Here the
quantilisation reduction of big groups and the related loss of information are preferred to pay
the approximation cost of the quantilisation resampling for many small groups. Nonetheless,
notice that it could be also acceptable to choose a value n << min(n) if min(n) is high and a
computational cost saving choice is required.
With the choice determined by eq. (11) the values p j partition the interval [0,1] in n� 1 equal
parts, with 0 and 1 two of the n vertices of the partition. It is straightforward to verify that, also
employing the quantile selection procedure discussed, min(xk) and max(xk) are preserved for
each n and k. Moreover, if n = nk for any k the vectors xk are entirely preserved, too. Both this
properties hold at the same time only employing the definition 7 and the discussed choice of the
values p j. They ensure robustness to the quantilisation procedure w.r.t. outliers and contribute to
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explain the negligible approximation incurred.
We finally observe that a generalised version of the quantilisation procedure may be wanted

to increase its appropriateness in coping with weighted data, i.e. to consider the weights of the
observations. We suggest - but other choices we do not discuss here can be also suitable - to
employ functions which account for the sample weights in returning quantiles (as the R function
wtd.quantile()) in place of a standard quantile function (as the R function quantile()). This is
equivalent to applying a stantard quantile function to vectors with the income of each unit in the
starting vector repeated as many times as the value of its weight states. We consequently advise
to consider the weights summation in each group as the group weight in eq. (12), in place of the
defined wk. This is the way we will proceed in Section 6.

In the analysis which follows each group k will be replaced by the n quantiles selected from
xk. The value of n will be determined by eq. (12). The definition 7 and eq. (11) will be employed
to select the n quantiles.

In the next section a parametric bootstrap will exhibit that each component of the introduced
decomposition strongly and positively correlates with the related benchmark. These results will
be compared to the one achieved by employing the components from eq. (1)-(4) in place of
the introduced ones. In Section 6 the reliability of the simulation process will be strengthened
showing very similar results obtained using real data.

5 Correlation with benchmarks

The two benchmarks which we consider are developed ex ante to measure the within and the
between inequality, without constraining their sum to a preassigned formula as it happens for the
Gini index decompositions. They are derived from literature and observe an axiomatic approach.

The following equation defines the reference measure of the global intra-group inequality:

Wr =
K

Â
k=1

skGk

where Gk is the Gini index in group k and sk is the share of income possessed by group k. Hence,
the within benchmark is defined as a weighted average in which the Gini of each group is
weighted by its own share of income. Every Gk incorporate the axiomatic approach observed
by the Gini index and the related properties. Thus, the global properties of Wr depends on them
and on the aggregating consequences of the weighted mean, which in this case assigns a greater
weight to the inequality values of the groups which possess the biggest shares of income. This
measure coincides with the within component reported in (1). We selected this weighting choice
due to its immediate interpretability, as discussed in Section 2.

As for the between benchmark, the following index has been selected as the reference mea-
sure of the global inter groups inequality:

Br =
K

Â
k=1

K

Â
h=1

⇣nknh

N2

⌘
Ebkh

where Ebkh is the diversity measure between the two groups k and h proposed in Ebert (1984). He
proposes a class of measures dependent on a parameter r. Here Ebkh is the measure corresponding
to r = 1, which employs the absolute difference as a distance. A slight modification - the incomes
are standardized dividing by the average of the population µ - is required to guarantee the scale
invariance criterion to be respected in addition to the other properties the index already observes.
The measure is defined as:

Ebkh =
1

mµ

m

Â
i=1

���xk
i � xh

i

���
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Figure 4: Correlations between the intra and the inter groups inequality benchmarks and the
related spatial components from the three Gini index decompositions: A, YL and BM in the
legend stand for the decomposition proposed in this work, in Yitzhaki and Lerman (1991) and
in Bhattacharya and Mahalanobis (1967), respectively. The figures report the values obtained
simulating with K = 30 and n ⇠ U

⇣
[100,500]K

⌘
for different values of CV

⇥
E
⇥
x̄k
⇤⇤

where m = min(nk,nh) and xk
i is the i-th of the m quantiles selected from the income vector

of the group k. A preceding proposal by Dagum (1980) had already developed a measure of
economic distance but it has been criticized by A. F. Shorrocks (1982) because of its asymmetric
nature. Ebert proposal, instead, presents all the properties of a distance and observes a more
general axiomatic approach. In addition, it perfectly reflects our idea that a measure of inequality
between groups has to compare their overall distributions. Br inherits all these properties and
its value depends on them and on the aggregating consequences of the weighted mean, which in
this case assigns greater weights to the inequalities of the couples selected from the groups which
possess the biggest shares of couples.

In order to evaluate the extent of the correlation between the components of the three con-
sidered decompositions and the related benchmarks, a parametric bootstrap algorithm has been
employed. It considers three parameters: the number of groups, the distribution of n and the
expected coefficient of variation between the averages of the groups CV

⇥
E
⇥
x̄k
⇤⇤

.
The algorithm fixes these parameters and generates incomes from a lognormal distribution. Prop-
erly, the third parameter is the vector composed by the minimum and the maximum values of
the uniform distribution the expected value of the lognormal distribution is drawn from. These
two values straightforwardly determine the value of CV

⇥
E
⇥
x̄k
⇤⇤

. More details about the income
simulation procedure and its theoretical foundations can be found in the Appendix. The algorithm
evaluates 50 times all the involved indices to estimate the two triples of correlations between the
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two spatial components of the three involved decompositions and the related benchmarks. It runs
this procedure 20 times and obtains 20 replicates of the following couple of triples of correlation
estimates:

2

4
cori

�
GA

w,Wr
�

cori
�
GY L

w ,Wr
�

cori
�
GBM

w ,Wr
�

3

5 ;

2

4
cori

�
GA

b ,Br
�

cori
�
GY L

b ,Br
�

cori
�
GBM

b ,Br
�

3

5

with i = 1, . . . ,20. Following the notation introduced in Section 2, the superscripts A, YL and
BM identify the decomposition proposed in this work, in Yitzhaki and Lerman (1991) and in
Bhattacharya and Mahalanobis (1967), respectively.
Each of the 20 replicates of triples constitute one triple of boxplots in the pertaining diagram
reported in Figure 4. The value of CV

⇥
E
⇥
x̄k
⇤⇤

is varied to obtain all the eight triples of box-
plots. Hence, for each considered value of CV

⇥
E
⇥
x̄k
⇤⇤

, the three kinds of boxplots in Fig-
ure 4a (4b) represent the replicates of the triples: black, gray and white boxplots describe the
distribution of the correlation that the within (between) benchmark has, respectively, with the
within (between) components proposed in this work, in Yitzhaki and Lerman (1991) and in Bhat-
tacharya and Mahalanobis (1967). Figure 4 reports the values obtained simulating with K = 30
and n ⇠ U

⇣
[100,500]K

⌘
.

We have varied the value of CV
⇥
E
⇥
x̄k
⇤⇤

to evaluate correlations in contexts characterised by dif-
ferent degree of homogeneity in the vector of the means of the groups. This allows us to notice
the evident advantages that the proposed between component has w.r.t. the between components
derived from the alternative decompositions - which only account for the variability of the means
of the groups - in situations characterised by low and medium levels of variability in the vector of
the means of the groups. As for the within component, the one obtained using the decomposition
in Yitzhaki and Lerman (1991) presents by definition a perfect correlation with Wr. However,
better than GBM

w , GA
w always reports extremely high correlations with Wr.

Furthermore, the correlation values are studied by the same algorithm in multiple contexts by
also varying the number of groups and the distribution of n. A summary of the results for some
representative choices of the parameters is reported in Table 1. It also contains the results already
represented in Figure 4. In this table the 20 replicates produced to estimate each correlation dis-
tribution are summarised by their averages and standard deviations. These values - obtained from
all the eight different levels of CV

⇥
E
⇥
x̄k
⇤⇤

- are averaged pairwise determining four values for µ
and sd. They correspond to low, medium-low, medium-high and high levels of CV

⇥
E
⇥
x̄k
⇤⇤

.
The results are extremely encouraging. The correlation values of the proposed decomposition
only marginally depend on the parameters specification. They just show some negligible vari-
ations both in the mean and the standard deviation. We notify the most perceptible. Higher K
values negatively influence the within average correlations, but an increase in the values in n
seems to absorb this small effect. The within average correlations also decrease for higher level
of CV

⇥
E
⇥
x̄k
⇤⇤

, while their standard deviations tend to increase. However, the averages are never
behind 0.92 and the maximum standard deviation is 2.8 ·10�2. As for the between correlation, it
slightly decreases and shows higher standard deviations when the variability in n gets higher and
both the values in n and K are small.
Despite all these details, the values of the correlations for the components of the introduced de-
composition reported in Table 1 always maintain analogous advantages to those explained de-
scribing Figure 4. The sole exception occurs when the variability in n is small: in this case the
results for the within component from eq. (2) are enhanced and turn out to be comparable with the
decomposition introduced with this work. Indeed, the former perfectly correlates with the within
component from eq. (1) when the groups are equal-sized - it can be easily proved. However, the
correlation decreases rapidly as soon as the size variability increases, so this aspect remains a
negligible issue. Summarising, Table 1 strengthens the conclusions drawn looking at Figure 4.
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6 Validation on real data and the Italian provincial-based evidence

In this section we apply the proposed decomposition to the municipality based Income and prin-
cipal Irpef variables statistical data, which are available on the Open-Source Data released by
the Department of Finance of the Italian Ministry of Economy and Finance. It annually collects
- our analysis ranges from 2000 to 2017 - data from the tax declarations related to the whole set
of Italian taxpayers and reports several variables on a municipality base. The income informa-
tion are detailed by source but we focused our attention only on the variable total income. For
each municipality, the available information about total income is referred to the following eight
classes: (�•,0], (0,10000], (10000,15000], (15000,26000], (26000,55000], (55000,75000],
(75000,120000], (120000,•); the frequency of the taxpayers and the total amount possessed
in each class are provided. Hence, up to eight observations for each municipality3 - the aver-
age income of each class with an attached weight given by its frequency - were available and
we grouped them on provincial, regional and territorial (NUTS 1) base obtaining three different
areal-unit partitions. We notice that this kind of data clearly provides much more information
than only considering the per capita income in each group.

In the previous section the correlation values were calculated simulating from independent
scenarios. Here we complement the analysis evaluating the components from the three consid-
ered decompositions and the discussed benchmarks in each of the 18 years, and calculating their
correlations over time. Despite the differences in the derivation, the results reported in Table 2

cor (Gw,Wr) cor (Gb,Br)

Aggregation level K A YL BM A YL BM
Provinces 107 .968 1 .887 .998 .630 .768
Regions 20 .988 1 .963 .993 .778 .880

Territorials 5 .970 1 .987 .997 .677 .781

Table 2: Correlations between the
components from the three con-
sidered decompositions and the
discussed benchmarks over time.
The results are evaluated over
three different aggregation levels.

confirm the very high correlations between the benchmarks and the proposed components. All the
reported correlation values are definitely compatible with the findings in Table 1 and strengthen
the consistency of the conclusions driven by the simulation analysis: the two components are
appropriate to measure the within and the between inequality.
In Figure 6 we investigate the consequences of the decomposition choice on the between compo-
nent share trajectory, with consideration to the provincial based aggregation. The three time series
range in different intervals. Hence, we have normalised them to their starting values to better un-
derline their relative evolution. The between component share from the proposed decomposition
presents an initial marked decreasing path followed by an inversion started during the years in
which the financial crisis affected Italy. The trajectories from the other decompositions appear
quite similar in their shapes until the financial crisis years, then the component from Bhattacharya
and Mahalanobis (1967) moves more similarly to ours. However, they have both varied irregu-
larly during the first ten years and did not unambigously capture the decreasing path followed by
the introduced between component. This suggests that the variation of the group means may not
be always able to exhaustively inform about the overall differences between groups and the spa-
tial patterns in the income distribution, as guessed in Section 2. Instead, the introduced between
component consider additional information to better assess this phenomenon.

We now present further advantages from our proposal that arise in this simple descriptive
context. These are general traits which are discernible whenever a two-component decomposition
is employed. Indeed, every two-component decomposition of an inequality index allows for the
considerations which will follow, but their reliability depends on both the appropriateness of the
components and the index involved. As for the former, we have already appropriately justified

3They are less if the municipality possesses some classes containing less than four units



Within-between decomposition of the Gini index: a novel proposal 17

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ● ●

●

0.8

0.9

1.0

1.1

2000 2005 2010 2015
Year

Be
tw

ee
n 

co
m

po
ne

nt
 s

ha
re

A
BM
YL

Figure 6: Time series of the share
of the between components from
three different Gini index decom-
positions - A, YL and BM stand
for the decomposition proposed in
this work, in Yitzhaki and Lerman
(1991) and in Bhattacharya and
Mahalanobis (1967), respectively
- over the Gini index. The series
are normalised to their initial val-
ues.

both the components. As for the index to decompose, the Gini index is the most used inequality
measure; and we have now the opportunity to decompose it in two components while considering
a population partitioned by subgroups.
We refer again to the data already presented and we still consider the provincial based aggregation.
Thus, the Gini index measures the inequality in the municipal per-class income distribution; and
the between and the within component share represent the contributions, respectively, of the inter
and intra-provinces diversity to the overall inequality. The values of the share of the proposed
between component on the Gini index are plotted in Figure 7 - right scale. The path of the within
component share can be easily derived by a reflection and a one unit long vertical translation,
because the two components complement to the overall Gini. The Gini index is reported too, but
on the left scale. The share of the components seems to be independent from the overall value of
the index. Indeed, the latter varies quite irregularly during the considered period, while Sb shows
an initial marked decreasing trend followed by a light recovery; the converse holds for the within
component share. As it is evident, we can deliver a lot of information about the inequality and its
subgroup distribution by a simple plot.
It is also possible to inform on the contributions which the two components provide to the Gini
index percentage variation. The Gini index yearly percentage variations are reported in Figure
8 along with the relative contributions of the change in the between component. Despite, as
shown in Figure 7, for this aggregation level the between component has a minority share over
the Gini index, its contribution on the Gini index path has been relevant. In the first years of the
period under consideration the changes in the between inequality have mainly acted restraining
the effects of the variations of the within inequality on the Gini index path. Conversely, the two
spatial components have affected the overall inequality in the same direction since 2010.
From the results shown for the between component, conclusions on the within inequality can also
be easily evinced. This is the main advantage of having a two highly informative components
decomposition in empirical contexts.
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7 Conclusions

Many spatial concentration measures have been developed in the literature. A recent line of re-
search convincingly considers the Gini index as a source from which to derive an effective spatial
concentration measure. A certain spatial decomposition of the inequality index has to be em-
ployed for this purpose.
The most common spatial Gini index decomposition have been considered in this work. They
consist of three components: a residual term augment the sum of the two spatial components,
which measure the within and the between group inequality. When the groups do not overlap
this term generates some drawbacks w.r.t. our aim of assessing spatial concentration, as we ex-
plained in Section 2, and represents a cost in a descriptive context or a regression task in terms
of both interpretability and parsimony. Furthermore, the between components of the considered
decompositions are designed so that groups with similar means present low levels of territorial
inequality regardless of the potential different dispersion within each group. This is an oversim-
plification that should be avoided if the distance in the overall group distributions is of interest
and the groups overlap.

In order to overcome these two potential drawbacks, in Section 3 and Section 4 we have pre-
sented a Gini index decomposition for a population partitioned in groups. It is only composed by
the two spatial components. As far as we know this is the first Gini index spatial decomposition
proposal for partitioned populations to avoid the residual term. In addition, the between compo-
nent relies directly on the individual incomes, hence the overall group income distributions are
considered while accounting for territorial inequality.
We have demonstrated that the two components have a correct starting point and move in the right
direction and proportion with reference to different scenarios. Indeed, they strongly and positively
correlate with two related benchmarks developed to measure the within and the between inequal-
ity following an axiomatic approach. In other words, the components approximately provide all
the information contained in the benchmarks and observe their axiomatically derived properties,
despite the fact they are derived with a decomposition boundary - and not independently as for
the benchmarks. Contrariwise, the decomposition boundary strengthens the informativeness of
the components. It ensures their collinearity with the Gini index and consequently provides rele-
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vant advantages in a descriptive context or a regression task in terms of both interpretability and
parsimony.

The correlation values we refer to were calculated in Section 5 by simulations. Many contexts
have been considered by varying the simulation parameters and results appear to be robust. In
Section 6 we strengthened the reliability of the simulation algorithm and of the correlation esti-
mates by considering the municipality based Income and principal Irpef variables statistical data
available on the Open-Source Data released by the Department of Finance of the Italian Ministry
of Economy and Finance. In addition, an illustration of the advantages ensured by the proposed
decomposition - in terms of informativeness and interpretability in a spatial empirical context - is
provided.
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Appendix

On the approximation due to the quantilisation procedure
The first section of this appendix is due in order to assess the quantilisation procedure, quantify
the magnitude of the approximation incurred and identify the optimal definition of quantile and
the value of n to be selected.

Recall that, defining w = (w1, . . .wK), we suggested the value n = wn|.
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(a) MSE (left scale) and MAE (right scale) of the 150
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(b) Boxplots of the 150 relative differences in Sb for
different choices of n.

Figure 9: Between component share relative approximation for different choices of n. The ap-
proximation is evaluated considering the 150 values of the relative difference in the between share
obtained by the quantilisation procedure w.r.t. the one obtainable employing the exact approach.

This expression determines n as the average of the nk, each weighted by the related share of pop-
ulation wk. The performance of this value are firstly shown in Figure 9, where approximation is
evaluated looking at the relative discrepancy between the two values of Gb

G obtained employing
the exact or the quantilisation method. More precisely, let Sb =

Gb
G the between component share

obtained by the quantilisation method and Se
b =

Ge
b

Ge the same share in the exact approach. The
relative discrepancy is measured by the Mean and the Absolute Squared Errors of Sb

Se
b

w.r.t. 1 =
Se

b
Se

b

obtained running 150 simulations - MSE
⇣

Sb
Se

b

⌘
= E

⇣
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Se

b
�1
⌘2
�

and MAE
⇣
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b

⌘
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h��� Sb
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b
�1
���
i
.

In other words in each simulation, for different choices of n, we looked at the relative difference
of the between share obtained by the quantilisation procedure w.r.t. the one obtainable employing
the exact approach. The results are summarised by averaging the square or the absolute errors.
The simulation procedure flows as follow. In each running lognormal-distributed incomes with
a vector of sizes n are drawn as described in the second section of this Appendix. The different
choices of n are its minimum value, its deciles and the value obtained by eq. (12). The vector
n is also drawn and we imposed some constraint on its elements to ensure affordable values for
the mcm when employing the exact approach. To be specific, we firstly specified K (= 5, 10
or 20). Then we built a vector mul composed by the divisors of 24335 belonging to an interval
[min,max]. The min (36 or 72) and the max (360 or 720) were both included in n. The other
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K � 2 values were sampled with repetition from mul. With this choice the mcm can not exceed
the value 2160 and the computations are affordable. Figure 9 represents the results for K = 20,
min = 72 and max = 720. As shown in Figure 9a the proposed value of n, represented by the
solid point, always minimizes (or reach a value very close to the minimum of) the approximation
this method copes with, both for the MSE (left scale) and the MAE (right scale). The minimum
approximation by the proposed value of n is achieved both thank to a vanished distortion and the
variance reduction, as Figure 9b shows. We also stress the irrelevance of the approximation when
that value of n is employed: the correspondent MAE measures for Sb a mean absolute percentage
error of the 0.22%.
Obviously, the magnitude of the percentage between component share approximation due to the

Probability associated to the deciles n = wn|

K [min,max] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 n p̄

5

[36,360] 6.12 4.88 4.14 3.20 2.53 2.17 1.42 1.20 1.00 0.92 0.90 0.94 0.78
[36,720] 8.28 6.41 5.45 4.13 3.26 2.79 1.71 1.44 1.05 0.91 0.86 0.91 0.83
[72,360] 2.66 2.19 1.93 1.52 1.18 1.01 0.76 0.69 0.61 0.57 0.58 0.60 0.73
[72,720] 4.07 3.24 2.79 2.14 1.70 1.45 1.00 0.86 0.69 0.61 0.59 0.64 0.79

10

[36,360] 4.72 3.90 2.97 2.23 1.61 1.14 0.86 0.65 0.55 0.56 0.60 0.53 0.77
[36,720] 5.44 4.42 3.35 2.56 1.94 1.43 0.99 0.69 0.52 0.45 0.47 0.45 0.84
[72,360] 2.11 1.76 1.41 1.11 0.87 0.65 0.49 0.38 0.34 0.33 0.35 0.35 0.71
[72,720] 3.17 2.66 2.13 1.63 1.20 0.85 0.61 0.47 0.38 0.32 0.32 0.34 0.78

20

[36,360] 3.72 2.94 2.26 1.77 1.26 0.83 0.54 0.37 0.31 0.36 0.42 0.30 0.75
[36,720] 4.85 3.81 2.93 2.20 1.55 1.08 0.67 0.43 0.29 0.25 0.30 0.24 0.82
[72,360] 1.78 1.53 1.17 0.89 0.64 0.44 0.29 0.22 0.21 0.23 0.26 0.21 0.69
[72,720] 2.68 2.20 1.66 1.26 0.89 0.61 0.43 0.29 0.24 0.26 0.32 0.22 0.78

Table 3: Percentage between component share approximation generated by the quantilisation
procedure. It is evaluated by the algorithm described in this section for different choices of n,
K and of the interval [min,max]. The approximation is measured by the MAE. The last column
represents the average fraction of elements in the vector n which are less than the suggested n.

quantilisation procedure depends on the simulation parameters, as Table 3 points out. It reports
the MAE - already multiplied by 102 - of the between component share obtained by the proce-
dure designed in this section for different choices of n, K and of the interval [min,max]. We have
chosen it because of its interpretability as average absolute percentage error.
Results are really encouraging. The values of the MAE are below the percentage point approx-
imately in the half of the analysed contexts and always when the suggested choice of n is em-
ployed. In addition, the dependence on the employed parameters - which is described just below
- could further ensure a reduction in the approximation in many realistic contexts where presum-
ably the parameters are more conducive.
The way the MAE reacts to choices of n, K and of the interval [min,max] should not come as a
surprise. For each choice of n, when the ratio max

min stays constant, the MAE informs about better
performances for higher min and max. If that ratio increases - i.e. if the variability of n increases
- the approximation raises, too. Results are also enhanced when the number of groups increases.
As desired, the MAE reaches a quasi-minimum value when n is selected by eq. (12), especially
when K is high. Furthermore, the suggested choice guarantees an almost always relevant reduc-
tion in the computational cost which the procedure would incur in choosing n = max(n). This
reduction is not negligible in our simulations: p̄ is the average of the probabilities corresponding
to the values of n selected by eq. (12) in the 150 simulations. It is reported in the last column of
the table. Its values range from 0.69 to 0.84 and a clear dependence from the distribution of n is
highlighted in the table.
In addition we point out - as supported by the values in the third column of the table, which de-
crease when min(n) increase - that it could be also acceptable to choose a value n << min(n) if
min(n) is high and a computational cost saving choice is required.
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Figure 11: Between component
share approximations - measured
by the MSE and through the same
procedure which produced Fig-
ure 9 - obtained employing the 9
quantile definitions presented in
Hyndman and Fan (1996). In soft-
ware R, each definition can be se-
lected by the option type of the
function quantile(). Here, Tj: j =
1, . . . ,9 stands for selecting the
option type = j.

We now present the assessment procedure which leads to the selection of the quantile defi-
nition employed in the analysis. We evaluated the impact of several quantile definitions on the
approximation the quantilisation procedure copes with. Figure 11 shows differences between
results achieved iterating the same procedure which generates Figure 9a using the 9 different
quantile definitions presented in Hyndman and Fan (1996). Definition 7, which is also the default
definition adopted by the quantile() function in the software R, presents both the lowest MSE
and MAE substantially for each choice of n and ensures computational advantages because it ap-
proaches 0 for smaller n.
The better performances resulting from the definitions 1 and 2 when the selected probability ap-
proaches 1 are exceptions. Both the definitions rely on a stepwise cumulative probability function
which estimates the quantiles only allowing for the values present in the starting vector. Thus,
if p = 1 and max(n) = mcm(n) the vector of the quantiles corresponds to the yk of the exact
approach and no approximation is encountered. Positive effects are also encountered for max(n)
close to mcm(n) and p approaching 1, i.e. n close to max(n). In Figure 11 they are evident from
p = 0.8.
Nonetheless, the advantage in terms of approximation is quite negligible. Most importantly, in
the vast majority of the real applications the vector n is much more variable than the bounded vec-
tors used in these simulations. Hence mcm(n) is generally far from max(n). In conclusion, the
definition 7 is definitely recommended unless max(n) is close to mcm(n) and the computational
burden is not an issue.

The income simulation algorithm
A parametric bootstrap algorithm has been employed to evaluate both the extent of the approxi-
mation of the quantilisation procedure and the correlations between the two components of the
introduced decomposition and the related benchmarks. This section of the appendix provides with
the theoretical foundations of the income simulation procedure which feeds both the algorithms.

The distribution of n is a K-variate uniform. The number of groups K and the extremes of the
distribution were determined ex-ante.

The uniform distribution was also exploited to draw the expected average income of each
group: E

⇥
x̄k
⇤
⇠ Unif(m,M).
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The minimum m of this distribution was set to 104. As for the maximum M, it was fixed to 5 ·104

in the simulations which generate the results in Section 4. In Section 5 it was varied to highlight
the impact of the variability in the vector of the means of the groups on the values of interest, i.e.
on the correlations between the two components of the introduced decomposition and the related
benchmarks.
Indeed, a modification of M directly affects CV

⇥
E
⇥
x̄k
⇤⇤

. For the uniform distribution Eu
⇥
E
⇥
x̄k
⇤⇤
=

1
2 (M+m) and Varu

⇥
E
⇥
x̄k
⇤⇤

= 1
12 (M�m)2, the coefficient of variation of E

⇥
x̄k
⇤

is:

CV
h
E
h
x̄k
ii

=

p
Vu [E [x̄k]]

Eu [E [x̄k]]
=

1p
3
(M�m)

(M+m)
2


0,
1p
3

�

and, with m fixed, only depends on the value of M. In Figure 4 the interval
h
0, 1p

3

i
and the values

of CV
⇥
E
⇥
x̄k
⇤⇤

are normalised to [0,1] by a simple scale transformation. Notice that the values
CV
⇥
E
⇥
x̄k
⇤⇤

are not comparable with the ones dealing with a E
⇥
x̄k
⇤

from an other distribution,
which can be potentially unbounded. Any comparison would be meaningless, hence the scale
transformation is not an issue.
Denote by M(s), s = 1 . . .8 the S = 8 different values of the maxima required to produce the eight
values of the coefficient of variation. The maxima were selected so that the values of the coeffi-
cient of variation divided the interval in eight equal parts. Hence, the values M(s) satisfy:

M(s)�m
M(s) +m

� M(s�1)�m
M(s�1) +m

= c

with M(1) = m and c = 1p
3S

. The following holds:

(M(s)�m)(M(s�1) +m)� (M(s�1)�m)(M(s) +m) = c(M(s) +m)(M(s�1) +m))

)2mM(s)�2mM(s�1) = cM(s)M(s�1) + cmM(s�1) + cmM(s�1) + cm2 )

)2mM(s)� cM(s)M(s�1)� cmM(s) = cmM(s�1) + cm2 +2mM(s�1) )

)M(s)(2m� cM(s�1)� cm) = m(cM(s�1) + cm+2M(s�1)))

)M(s) =
m(cM(s�1) + cm+2M(s�1))

(2m� cM(s�1)� cm)

and the M(s) can be calculated iteratively.
Fixed all the parameters, the incomes of each group k are drawn from a log-normal distribution

with E
⇥
x̄k
⇤

as expected value. The last requirement is to define a reasonable way to accordingly
determine the two parameters µ and s2 of the distribution.
As it is well known, for a log-normal distribution the following holds:

E
h
x̄k
i
= eµk+

s2
k
2 (13)

This equation allows to design an effective way to split E
⇥
x̄k
⇤

in the two seminal elements µk e
sk - required to draw from the distribution - in a manner that the log-normal distribution is likely
to be an income distribution. Starting from eq. (13) it is possible to write:

lnE
h
x̄k
i
= µk +

s2
k

2

and to split linearly lnE
⇥
x̄k
⇤

in µk and s2
k :



Within-between decomposition of the Gini index: a novel proposal 25

µk = ak lnE
h
x̄k
i

(14)

s2
k = 2(1�ak) lnE

h
x̄k
i

(15)

Their ratio is:

s2
k

µk
=

2(1�ak) lnE
⇥
x̄k
⇤

ak lnE [x̄k]
=

2(1�ak)

ak

At this point, the 82 couples of log-normal parameters estimated in Bandourian, McDonald, and
Turley (2002) using real data along different countries and periods have been considered. For
each couple the correspondent ci =

s2
i

µi
, i = 1, . . . ,82 has been evaluated.

Verisimilar values for ak can be obtained sampling a value of i for each group and using the cor-
respondent ci to solve the following equation:

ci =
s2

k
µk

=
2(1�ak)

ak
=) ak =

2
ci +2

(16)

Thus µk and s2
k were determined - taking E[x̄k] as known - from the equations (14)-(16).

The appropriateness of the last step - i.e. sampling a value of i for each group and using the
correspondent ci - is justified by the fact that the 82 values of a in Bandourian, McDonald, and
Turley (2002) seems not to be influenced by the associated E[x̄k]. A simple linear regression
reports for the regressor E[x̄k] a very low coefficient and a large p-value (0.65).

Substantially, 82 possible proportions to split E[x̄k] in a likely way in its two addends µk and s2
k

2
are available.
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