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Abstract

We investigate the choice of market variable, price or quantity, of an opti-

mal implicit cartel. If the discount factor is high, the cartel can realize the

monopoly pro…t in both cases. Otherwise, it is optimal for the cartel to

rely on quantities in the collusive phase if goods are substitutes and prices

if goods are complements. The reason is that this minimizes the gains from

deviations from collusive play.
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1 Introduction

A recurrent theme in industrial organization is whether …rms choose quan-

tities, as envisioned by Cournot, or prices, as envisioned by Bertrand. This

lead Singh and Vives (1984) to investigate the equilibrium choices of a dif-

ferentiated doupoly, where each …rm can choose between setting a price or a

quantity (but not both). Singh and Vives show that …rms choose quantities

if goods are substitutes, while they choose prices if goods are complements.

The purpose of the present paper is to extend the analysis of Singh and Vives

to the case of tacit collusion.

The question we pose is whether …rms participating in an optimizing

cartel, which try to maximize pro…ts but has to rely on tacit collusion, will

use quantities or prices. Since the members of the cartel cannot write binding

contracts they have to agree on self enforcing contracts, i.e. strategies which

can be sustained in a subgame perfect equilibrium. There are two …rms

producing di¤erentiated products, but otherwise the …rms are identical. As is

well known, repeated games have many and very divergent equilibria (see e.g.

Fudenberg and Maskin, 1986). In oligopoly theory, researchers have typically

focussed on equilibria which are undominated in the set of equilibria. If

…rms are symmetric, attention has been driven upon the symmetric subgame

perfect equilibrium which gives the highest pro…t to …rms.1 In this paper

1See, for instance, Rotemberg and Saloner (1986), Green and Porter (1984), Abreu,

Pearce and Stachetti (1990) and Bernheim and Whinston (1990), or chapter 6 in Tirole

(1988) for a survey.
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we will take the same approach. So the question can be reformulated as

follows: do …rms set prices or quantities in the symmetric subgame perfect

equilibrium which give them the highest pro…t?

As is well known from the theory of repeated games (see Abreu, 1988),

any subgame perfect equilibrium payo¤ can be realized in a so called simple

equilibrium consisting of a normal (collusive) phase and a punishment phase

for each of the …rms. We study such equilibria. It is also well known that

the worse the punishment phase is, the higher payo¤ can be realized in the

normal phase. Although very strong punishments can be part of a subgame

perfect equilibrium, one may doubt the viability of such punishments (for

further discussion of this see e.g. Farrell and Maskin, 1989). We therefore

investigate two kinds of equilibria: equilibria involving optimal (very strong)

punishments, and equilibria involving punishments consisting of reversion to

the one-shot Nash equilibrium.

In a one-shot game the choice of price or quantity is …nal and commits

the …rm for the rest of the game. In a repeated game, this is not necessarily

so. In principle, the choice of market variable can commit the …rm for any

number of periods. However, it is hard to think of a commitment technology,

which can commit a …rm to set a price (or a quantity) for all future. In this

paper, therefore, we will assume that the choice of market variable in a period

only commits the …rm for that period, but not for subsequent periods. When

setting a price, the …rm commits to selling as much as consumers will demand

at the price, this corresponds to o¤ering a horizontal supply curve. When
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setting a quantity the …rm commits to selling this quantity at whatever price

clears the market, i.e. a vertical supply curve. This is as in Singh and Vives

(1984), they speak of a “quantity contract” and “price contract” between

a …rm and its customers. In principle one could imagine other contracts,

corresponding to di¤erent supply curves but we will not consider this here.

An optimizing cartel will aim at the highest possible pro…t, ideally the

monopoly pro…t. A given pro…t can be realized both when …rms choose

prices and when they choose quantities. Therefore, for an optimizing cartel,

the crucial feature in the choice of market variables is not the pro…t in a

period, but the pro…tability of a deviation. Say that the goods are very close

substitutes and both …rms choose the monopoly price so each …rm gets half

of the monopoly pro…t. If a …rm wants to deviate from collusive play, it

can undercut the other …rm by a small amount and gain (almost) the whole

market and obtain (almost) the whole monopoly pro…t. When goods are

close substitutes, price setting makes deviations very pro…table, the more

so the higher product substitutability is. If, on the other hand, …rms each

set a quantity equal to half the monopoly production, they also obtain the

monopoly pro…t. But now a deviator can never gain the whole market. The

cheated …rm will sell its quantity regardless of the price. Thus when goods

are close substitutes, a deviation is less tempting if the …rms set quantities

than if they set prices.

For a given punishment, it therefore follows that when goods are close

substitutes the smallest discount factor needed to sustain full collusion on the
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monopoly outcome is smaller when …rms choose quantities in the collusive

phase.

We show that when goods are substitutes then, for a range of intermedi-

ate discount factors, an implicit cartel can realize the monopoly pro…t only

if it relies on quantities. Similarly, if the discount factor is so low that the

monopoly pro…t cannot be sustained in a subgame perfect equilibrium, we

show that the highest pro…t which can be sustained if the …rms choose quan-

tities is higher than if they choose prices

This holds true when goods are substitutes. When goods are comple-

ments, the reverse is true. If the discount factor is not very high, then the

highest pro…t which can be sustained in a subgame perfect equilibrium is

higher if the …rms choose prices. If the discount factor is very high, the

choice of market variable does not matter. The discounted value of future

losses due to a punishment is then so high that they are su¢cient to deter

deviations even when the deviation pro…t is large.

Hence, for moderate discount factors, an optimizing cartel will choose to

compete in quantities if goods are substitutes and choose to compete in prices

if goods are complements. This is true regardless of the particular punish-

ment phase involved: optimal or reversion to the one-shot Nash equilibrium.

Our results could be seen as vindicating those of Singh and Vives. How-

ever, the mechanism behind the results is di¤erent. In Singh and Vives’

model, the choice of market variable is made non-cooperatively by the …rms

who try to maximize short run pro…ts. In the repeated game, the optimal im-
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plicit cartel maximizes long run pro…ts relying on tacit collusion. The choice

of market variable is therefore guided by the consequences for the deviation

pro…ts: they should be minimized.

We also brie‡y consider the choice of market variable in the punishment

phase of trigger-strategy equilibria with Nash-punishment. Here, the results

of Singh and Vives directly give that …rms choose quantities in the punish-

ment phase when goods are substitutes and prices when goods are comple-

ments. With optimal punishments, things are more involved, the equilib-

rium strategies are presumably non-stationary and we cannot characterize

the choice of market variable in the punishment phase.

The …rst to study the choice of market variable in a repeated duopoly

was Deneckere (1983, 1984). He analyzed trigger-strategy equilibria à la

Friedman (1971), and calculated the smallest discount factor necessary for

sustaining collusion on the monopoly outcome for two …rms committed to

be price setters in all periods as well as two …rms committed to be quantity

setters in all periods. Deneckere found that when goods are substitutes the

crucial discount factor is lower for quantity setting …rms than for price setting

…rms, except when goods are very close substitutes. The opposite is true

when goods are complements. Deneckere interpreted this as a cartel is more

stable if it competes in quantities when goods are substitutes and more stable

if it competes in prices when goods are complements. Majerus (1988) and

Rothschild (1992) asked similar questions in slightly di¤erent settings (see

also Albæk and Lambertini (1998a) for a discussion of Rotschild (1992)).
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Lambertini (1997) and Albæk and Lambertini (1998b) assume that …rms

independently and non-cooperatively choose market variable once and for

all in a meta-game, which takes place before the repeated game takes place.

The payo¤ to the …rms in the meta-game is not pro…t, rather each …rm is

assumed be interested in choosing the market variable which minimizes the

discount factor necessary for sustaining collusion on the monopoly pro…t in

the subsequent repeated game. In order for this to be a well speci…ed game,

the authors also calculate the lowest discount factors compatible with …rms

realizing monopoly pro…ts in a subgame perfect equilibrium when one …rm is

a price setter and the other is a quantity setter. These papers show that the

meta-game may have the form of a prisoners’ dilemma, and hence that the

non-cooperative choice of the market variable be ine¢cient - relative to the

payo¤s of the meta-game. Firms choose to be price setters in the meta-game,

although cartel stability (in the sense of Deneckere) is higher if they chose to

be quantity setters.

Compared to this literature, our paper di¤ers in several aspects. Contrary

to Lambertini and Albæk-Lambertini, we insist that a …rms payo¤ is the total

sum of discounted pro…ts. There is no meta-game construction in the paper.

Secondly, we do not assume that …rms are able to commit to a particular

market variable for all future, the choice of market variable only commits

the …rm for one period. An important implication is that the choice of

market variable may be di¤erent in the normal and the punishment phase.

Thirdly, we are able to say what happens when …rms are unable to collude
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on monopoly outputs or prices, but still able to collude at some intermediate

level.

The organization of the paper is as follows: section 2 describes the stage

game, section 3 the repeated game. Section 4 features trigger strategy equi-

libria with Nash punishment, while optimal punishment equilibria are treated

in section 5. Some concluding remarks are o¤ered in section 6.

2 The stage game

There are in…nitely many periods t = 0; :::;1: In each period, the economy is

a symmetric, simpli…ed, version of the economy in Singh and Vives (1984)2.

There are two symmetric …rms, producing di¤erentiated goods, i = 1; 2 re-

spectively. They are faced with inverse demand functions3

pi = 1¡ qi ¡ °qj (1)

where qi and pi are the quantity and price respectively of good of …rm i and

j 6= i: We only consider non-negative quantities and assume ¡1 < ° < 1:

Goods are substitutes if 0 < ° < 1 and complements if ¡1 < ° < 0: When

2The same version is used in Lambertini (1997). A qualitatively equivalent formulation

is also in Deneckere (1983, 1984).
3As is well known, these inverse demand functions can be rationalized as follows. A

continuum of consumers all have an indirect utility function per period

q1 + q2 ¡ (q2
1 + 2°q1q2 + q2

2)=2 ¡
2X

i=1

piqi;

where ¡1 < ° < 1: Each consumer maximizes utility by choosing q1; q2 given prices, p1; p2.

See Spence (1976) and Dixit (1979).

7



non-negative; direct demands are

qi =
1

1 + °
¡ 1

1¡ °2 pi +
°

1¡ °2pj (2)

Firms have constant marginal costs, which we normalize to zero. Alter-

natively, one could interpret the model as one where a positive (constant)

marginal cost already has been subtracted in the price, which should then be

interpreted as a net price. Therefore negative prices could be sensible. How-

ever, there will be a lower bound for prices given by minus the marginal cost

if we assume that the …rm is not willing to pay consumers for taking its prod-

uct. For simplicity we let the bound be zero, and consider only non-negative

prices. The per period pro…t of …rm i is

¼i = piqi

In each period there are two stages. In the …rst stage, each …rm decides which

market variable, MV; to use, either price, PR; or quantity, QY . The choices

commit the …rms for the period, but not for subsequent periods. In the second

stage, each of them chooses the value, ¾; of the market variable selected in

the …rst stage, i.e. a price, p; or a quantity, q: When setting a price, the …rm

commits to selling as much as consumers will demand at the price, as long as

the demand is non-negative, this corresponds to o¤ering a horizontal supply

curve. When setting a quantity the …rm commits to selling this quantity at

whatever (non-negative) price clears the market, corresponding to a vertical

supply curve. If this quantity can only be sold at a negative price, the

…rm only ”sells” the amount consumers are willing to take at zero price.
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This is as in Singh and Vives (1984). One could justify the two kinds of

behavior by alluding to a “price-contract” or a “quantity-contract” between

…rms and their customers. In principle, one could imagine other contracts,

quantity rebates etc., but we will not consider this here. Notice that with

this formulation, the pro…ts to the …rms …rst accrue in the second stage.

If the …rms choose (¾i; ¾j); …rm i0s pro…t is ¼i(¾i; ¾j): In the sequel we

will need the expressions when both …rms set quantities and when they both

set prices. We …rst consider quantities. Using (1), and (2), we write the

pro…t as follows4,

¼1(q1; q2) =

8
>>>><
>>>>:

¼̂C(q1; q2) = q1 ¡ q21 ¡ °q2q1 if 1¡ q1 ¡ °q2 ¸ 0; 1¡ q2 ¡ °q1 ¸ 0

~¼C(q1; q2) = q1 ¡ (1¡ °2)q21 ¡ °q1if 1¡ q1 ¡ °q2 ¸ 0; 1¡ q2 ¡ °q1 · 0

0 if 1¡ q1 ¡ °q2 · 0

(3)

In (3), ¼̂C is the ordinary Cournot pro…t function, which is only valid if the

implied prices are positive at the quantities involved. This gives the restric-

tions p1(q1; q2) ¸ 0; which is equivalent to 1¡ q1¡ °q2 ¸ 0 and p2(q1; q2) ¸ 0

corresponding to 1¡ q2 ¡ °q1 ¸ 0:

For q1 =
1¡ q2
°

; p2(q1; q2) is zero. Suppose we are in the case of substi-

tutes, ° > 0: If …rm one increases its production further then p2(q1; q2) < 0:

This means that consumers are only willing to take the amount q2 if the price

4With a slightly abused notation.
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is negative. However, …rm 2 is not willing to pay consumers for taking its

product, it is willing to supply q2 at any non-negative price. Market clearing

then forces …rm 2’s price to zero, and the quantity demanded by the con-

sumers is ~q2 ´ 1¡ °q1: Looking then at …rm 1’s price as a function of …rm

1’s supply and the amount of q2 traded, we get

p1(q1; ~q2) = 1¡ q1 ¡ °~q2 = 1¡ q1 ¡ ° (1¡ °q1)

Inserting into …rm 1’s pro…t function we get the expression ~¼C : Although …rm

1’s pro…t function is patched together by two di¤erent parts, it is concave,

since both parts are concave and
@~¼C

@q1

¯̄
¯̄
q1=

1¡q2
°

<
@¼̂C

@q1

¯̄
¯̄
q1=

1¡q2
°

.

2.1 Reaction functions, quantities

We can now …nd the best reply of a …rm. Suppose …rm 2 has chosen a

quantity, q: The best quantity for …rm 1 solves

max
q1
¼1(q1; q)

we will denote it RC1(q)5; the associated pro…t is denoted ¼DC1 (q): We have

the following Lemma:

Lemma 1 Consider quantity setting (Cournot behavior) and assume q 2

[0; 1]:

a. Suppose ° < 0: Then, RC1(q) =
1¡ °q
2

and ¼DC1 (q) =
(1¡ °q)2

4
:

b. Suppose ° > 0:
5R for best response, C for Cournot.
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i. If q · 1 + ° ¡
p
1¡ °2

°(1 + °)
; then RC1(q) =

1¡ °q
2

and ¼DC1 (q) =

(1¡ °q)2
4

ii. If q >
1 + ° ¡

p
1¡ °2

°(1 + °)
; then RC1(q) =

1

2(1 + °)
and ¼DC1 (q) =

1¡ °
4(1 + °)

P roof. Suppose ° < 0: From (3) we see that ¼1 = ~¼C1 i¤ 1¡ q¡ °q1 < 0

or
1¡ q
°

> q1: Since ° < 0; this implies that q1 < 0; which is impossible.

Hence ¼ = ¼̂C for all q1: The result follows from maximization of ¼̂C w.r.t.

q1:

Suppose therefore that ° > 0: Again from (3) we have that p2 ¸ 0 i¤

q1 · 1¡ q
°
; in which case ¼ = ¼̂C and p2 < 0 for q1 >

1¡ q
°

in which case

¼ = ~¼C : Maximization of ¼̂C w.r.t. q1 gives q1 =
1¡ °q
2

:

If
1¡ °q
2

>
1¡ q
°
; which is equivalent to q >

2¡ °
2¡ °2 ; then ¼̂C is increasing

at
1¡ q
°
: Now look at ~¼C : Maximizing ~¼C w.r.t. q1 gives the expressions in

b:ii: of the Lemma. Furthermore, the best response (from maximizing ~¼C)
1

2(1 + °)
>
1¡ q
°
; for q >

2 + °

2(1 + °)
: As

2¡ °
2¡ °2 >

2 + °

2(1 + °)
; and we assume

q >
2¡ °
2¡ °2 we have q >

2 + °

2(1 + °)
, so indeed

1

2(1 + °)
>
1¡ q
°

and ~¼C is the

relevant part of the pro…t function.

If
1¡ °q
2

<
1¡ q
°
; which is equivalent to q <

2¡ °
2¡ °2 : Then ¼̂C is de-

creasing at the cut-o¤ point
1¡ q
°
: However, it may be that the optimal

pro…t is nevertheless obtained at q >
1¡ q
°
: The maximal pro…t for q <

1¡ q
°

is given by maxq¼̂
C =

(1¡ °q)2
4

; the maximal pro…t for q >
1¡ q
°

is given by maxq ~¼C =
1¡ °
4(1 + °)

: We …nd that
1¡ °
4(1 + °)

¸ (1¡ °q)2
4

if
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and only if q ¸ 1 + ° ¡
p
1¡ °2

°(1 + °)
(or q is negative, which is irrelevant).

It is easily checked that
1 + ° ¡

p
1¡ °2

°(1 + °)
<
2¡ °
2¡ °2 : Hence, for q ful…lling

1 + ° ¡
p
1¡ °2

°(1 + °)
· q · 2¡ °

2¡ °2 ; the best response and pro…t are as given

in b:i:i: We also have that for q · 1 + ° ¡
p
1¡ °2

°(1 + °)
; the best response and

pro…t are as given in b:i:

This completes the proof of the Lemma.

We notice that when goods are substitutes (0 < ° < 1); then quantities

are strategic substitutes, as long as the reaction function is the “normal”

reaction function, where the price of the other …rm is positive. When goods

are complements, quantities are strategic complements.

As also noted by Singh and Vives, it does not matter whether …rm 1

chooses a best reply in quantities or prices, the pro…t will be the same as

long as 2 sets the quantity q: Firm 1 chooses the best point along the residual

demand curve, whether this is done by choosing a price or a quantity is

irrelevant. Hence ¼DC(q) gives the deviation pro…t to …rm 1, regardless of

whether it has chosen to set prices or quantities in the …rst stage, as long as

…rm 2 sets a quantity (see also Deneckere, 1983, 1984).

The quantity of each …rm in the Cournot equilibrium is qCN =
1

2 + °
and

the corresponding pro…t level is ¼CN =
1

(2 + °)2
:
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2.2 Reaction functions, prices

Suppose …rms are price setters. The pro…t function of …rm 1 is:

¼1(p1; p2) =

8
>>>>><
>>>>>:

¼̂B(p1; p2) =

µ
1

1 + °
¡ p1
1¡ °2 +

°p2
1¡ °2

¶
p1 if p1 · 1¡ ° + °p2; p2 · 1¡ ° + °p1

e¼B1 (p1; p2) = (1¡ p1)p1 if p1 · 1¡ ° + °p2; p2 ¸ 1¡ ° + °p1

0 if p1 ¸ 1¡ ° + °p2

(4)

Here the condition p1 · 1 ¡ ° + °p2 ensures that …rm 1’s quantity is

non-negative and p2 · 1¡ °+°p1 ensures that q2 is non-negative, as is clear

from (2). ¼̂B is the standard pro…t function when the involved quantities are

non-negative, ~¼B corresponds to the case where …rm 2’s price is so high, that

it sells nothing (and everything is as if …rm 1 were a monopolist). There are

similar expressions for …rm 2.

If …rm two sets the price p; …rm 1’s best reply is the price which solves

max
p1

¼1(p1; p)

We denote this price RB1(p) and the associated pro…t ¼DB1 (p): In the sequel,

we will only be interested in prices for which quantities are non-negative

when both …rms set the price. Using (2), we see that this imply that p · 1:

Lemma 2 Consider price setting (Bertrand behavior) and assume p 2 [0; 1]:

a. Suppose ° < 0: Then, RB1(p) =
1¡ °(1¡ p)

2
and ¼DB1 (p) =

[1¡ °(1¡ p)]2
4(1¡ °2) :
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b. Suppose ° > 0:

i. If p · 2¡ ° ¡ °2
2¡ °2 ; then RB1(p) =

1¡ °(1¡ p)
2

and ¼DB1 (p) =
[1¡ °(1¡ p)]2
4(1¡ °2) :

ii. If p 2
µ
2¡ ° ¡ °2
2¡ °2 ; 1

¸
; then RB1(p) =

p¡ 1 + °
°

and ¼DB1 (p) =

(1¡ p)(p¡ 1 + °)
°2

:

P roof. Suppose ° < 0: From (4) we have that ¼̂B is the relevant function

for p · 1 ¡ ° + °p1, which is equivalent to p1 · p¡ 1 + °
°

: For ° < 0 and

p 2 [0; 1]; p¡ 1 + °
°

> 1, hence ¼̂B is relevant for all p1 2 [0; 1]: The result

follows from maximization of ¼̂B w.r.t. p1:

Now suppose ° > 0:Again from (4) we have that ¼ = ¼̂B for p· 1¡°+°p1

which is equivalent to p1 ¸ p¡ 1 + °
°

; and ¼ = ~¼ for p1 <
p¡ 1 + °

°
:

Maximizing ¼̂B w.r.t. p1 yields p1 =
1¡ °(1¡ p)

2
: If

1¡ °(1¡ p)
2

>
p¡ 1 + °

°
() p <

2¡ ° ¡ °2
2¡ °2

then ¼̂B is increasing at
p¡ 1 + °

°
:

Maximizing e¼B w.r.t. p1 yields p1 =
1

2
; which is larger than

p¡ 1 + °
°

i¤

p <
2¡ °
2

; which is ful…lled since
2¡ °
2

> 1 for ° 2]0; 1[ and we assume that

p · 1: Hence, ~¼B is increasing at
p¡ 1 + °

°
: Since ~¼B = ¼̂B at

p¡ 1 + °
°

;

we conclude that the global optimum is attained in the optimum of ¼̂B : This

proves b:i of the Lemma.

If instead p >
2¡ ° ¡ °2
2¡ °2 ; then

1¡ °(1¡ p)
2

<
p¡ 1 + °

°
and ¼̂B is

decreasing at the cut-o¤ point
p¡ 1 + °

°
: Hence, the optimal price is less than

or equal to
p¡ 1 + °

°
; where ~¼B is the relevant pro…t function. Maximizing
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~¼B; yields p1 = 1=2: However, as we showed above, 1=2 >
p¡ 1 + °

°
for

all p · 1; so ~¼B is increasing at
p¡ 1 + °

°
; and the optimal price is p1 =

p¡ 1 + °
°

: This proves b:ii: of the Lemma. We also need to check that the

pro…ts are non-negative at the optimal solutions, but this is trivial.

We may notice that, as long at the reaction function is the “normal”,

where the quantity of the other …rm is positive, then prices are strategic

substitutes when goods are complements and strategic complements when

goods are substitutes.

Using the formula found in a and b:i: of the Lemma, the Bertrand equilib-

rium price is pBN =
1¡ °
2¡ ° ; and the associated pro…t is ¼BN =

1¡ °
(2¡ °)2(1 + °) .

It is easily checked that indeed pBN =
1¡ °
2¡ ° · 2¡ ° ¡ °2

2¡ °2 for ° < 1:

Let ¼QPN (¼PQN ) be the Nash equilibrium pro…t to the quantity (price)

setter in the game where the …rms have chosen di¤erent market variables.

Singh and Vives (1984) show that the following relations then hold:

If 0 < ° < 1 then ¼CN > ¼QPN > ¼BN > ¼PQN (5)

If ¡ 1 < ° < 0 then ¼BN > ¼PQN > ¼CN > ¼QPN

These relations imply that if there is only one period, then the subgame

perfect equilibrium of the two-stage game is unique. If 0 < ° < 1; it is a

dominant strategy for both …rms to choose quantity as the market variable;

if ¡1 < ° < 0; it is a dominant strategy for both …rms to choose price as the

market variable (Singh and Vives (1984), proposition 2).
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3 Deviation pro…ts

We will be interested in symmetric equilibria, where the …rms get the same

pro…t. Let ¼Q(q) be the pro…t to each …rm if they both choose the quantity

q; and ¼B(p) be the pro…t if they both choose the price p: Using (1) and (2)

they are respectively

¼Q(q) = q ¡ (1 + °) q2 (6)

¼B(p) =
1

1 + °
p¡

µ
1

1¡ °2 ¡ °

1¡ °2
¶
p2

=
1

1 + °

¡
p¡ p2

¢
(7)

The monopoly price, quantity per …rm and pro…t per …rm are

pm =
1

2
; qm =

1

2

1

1 + °
; ¼m =

1

4

1

1 + °
: (8)

A given pro…t level can be obtained either by setting prices or quantities.

In each case, we can calculate the deviation pro…t associated with this level

of prices or quantities. For a given pro…t level, ¼; we would like to know

whether the deviation pro…t to a …rm is smaller or larger if the …rms choose

quantities rather than prices. If they should obtain this pro…t level by setting

quantities, they should each choose a quantity, q(¼); solving

¼ = q ¡ (1 + °) q2 (9)

This equation has two roots

q =
1 +

p
1¡ 4(1 + °)¼
2 (1 + °)

and q =
1¡

p
1¡ 4(1 + °)¼
2 (1 + °)

(10)
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The square root is well de…ned and less than one, since ¼ · ¼m =
1

4

1

1 + °
. As

¡1 < °; the second root is the smaller of the two. As we will see in the sequel,

the …rms will be interested in minimizing the deviation pro…ts. Therefore,

the relevant root is the root with lower deviation pro…t. From Lemma 1 a

and b:i; it is clear that, if ° < 0 or ° > 0 and q · 1 + ° ¡
p
1¡ °2

°(1 + °)
; the

deviation pro…t is
(1¡ °q)2

4
: For ° < 0; this deviation pro…t increases in q,

while decreases in q for ° > 0: Hence for ° < 0; the second (lower) root gives

the smallest deviation pro…t and is relevant. For ° > 0; the opposite is true

if indeed q · 1 + ° ¡
p
1¡ °2

°(1 + °)
: Inserting the Cournot pro…t in the …rst root

and evaluating, we get the Cournot production:

q =

1 +

s
1¡ 4(1 + °) 1

(2 + °)2

2 (1 + °)
=

1

2 + °
;

which is smaller than
1 + ° ¡

p
1¡ °2

°(1 + °)
: Since the root is decreasing in the

pro…t level, it is less than
1 + ° ¡

p
1¡ °2

°(1 + °)
for pro…t levels above the Cournot

pro…t. We conclude that, for ° > 0; the …rst root gives rise to the smaller

deviation pro…ts and therefore is the relevant one. Hence we have

q(¼) =

8
>><
>>:

1¡
p
1¡ 4(1 + °)¼
2 (1 + °)

for ¡ 1 < ° < 0
1 +

p
1¡ 4(1 + °)¼
2 (1 + °)

for 0 < ° < 1
(11)

In fact, the above is very intuitive. When ° > 0; there is a negative

externality from choosing a larger production and the Cournot production is

larger than the monopoly production. The lowest deviation pro…ts obtains

when production is high corresponding to the …rst root. When ° < 0, the
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externality from choosing a larger production is positive and the Cournot

production is smaller than the monopoly production. The lowest deviation

pro…ts then obtain when the production is low corresponding to the second

root.

The deviation pro…t is ¼DC(q(¼)):We can summarize the above discussion

in

Lemma 3 Consider quantity setting (Cournot behavior). For a given pro…t

level ¼ the deviation pro…t is given by

¼DC(q(¼)) =

8
>>>>>>>><
>>>>>>>>:

Ã
1¡ ° 1 +

p
1¡ 4(1 + °)¼
2 (1 + °)

!2

4
if ° > 0

Ã
1¡ ° 1¡

p
1¡ 4(1 + °)¼
2 (1 + °)

!2

4
if ° < 0

(12)

Now consider the case where …rms set prices. The price which gives pro…t

level ¼ is p(¼) which solves

¼ =
1

1 + °

¡
p¡ p2

¢
:

There are two roots

p =
1¡

p
1¡ 4(1 + °)¼
2

and p =
1 +

p
1¡ 4(1 + °)¼
2

: (13)

Again …rms will chose the price level, which minimizes the deviation pro…t.

From Lemma 2, we see that if ° < 0 or ° > 0 and the price is not too highµ
p · 2¡ ° ¡ °2

2¡ °2
¶
; the deviation pro…t is ¼DB1 (p) =

(1¡ °(1¡ p))2
4(1¡ °2) .
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For ° < 0;
(1¡ °(1¡ p))2
4(1¡ °2) is decreasing in p; so the deviation pro…t is

smallest when p is high, and the relevant root is the second (large) root.

When ° > 0;
(1¡ °(1¡ p))2
4(1¡ °2) is increasing in p; so for p below

2¡ ° ¡ °2
2¡ °2

the …rst (lower) root is relevant. The …rst root is lower than
2¡ ° ¡ °2
2¡ °2 i¤

1¡
p
1¡ 4(1 + °)¼
2

· 2¡ ° ¡ °2
2¡ °2

or

1¡ 22¡ ° ¡ °2
2¡ °2 ·

p
1¡ 4(1 + °)¼ (14)

The right hand side is positive for pro…t levels ¼ below the monopoly pro…t ¼m =

1

4(1 + °)
: For ° ·

p
3¡1; the left hand side is negative. Hence the inequality

is ful…lled for all relevant pro…t levels if ° ·
p
3¡ 1:

For
p
3¡1 · ° < 1; the left hand side of (14) is positive. The right hand

side is larger than the left hand side if the pro…t level is su¢ciently small.

Solving (14), we see that it is equivalent to

¼ · ¼¤ ´
1¡

µ
1¡ 22¡ ° ¡ °2

2¡ °2
¶2

4(1 + °)
: (15)

For ¼ ¸ ¼¤; the small root in (17), i.e.,
1¡

p
1¡ 4(1 + °)¼
2

; is larger

than
2¡ ° ¡ °2
2¡ °2 : Evidently, so is the larger root, so from Lemma 2, the

deviation pro…t equals
(1¡ p)(p¡ 1 + °)

°2
: Notice, this deviation pro…t is

positive as p ¸ 2¡ ° ¡ °2
2¡ °2 : We claim that the deviation pro…t evaluated at
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the small root in (17) is smaller than evaluated at the large root. The claim

is equivalent to

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

! Ã
1¡

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

°2

·

Ã
1¡ 1 +

p
1¡ 4(1 + °)¼
2

!Ã
1 +

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

°2

which is ful…lled i¤
Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

!

Ã
1¡ 1 +

p
1¡ 4(1 + °)¼
2

! ·

Ã
1 +

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

Ã
1¡

p
1¡ 4(1 + °)¼
2

¡ 1 + °
! (16)

(remember that all parenthesizes are positive as the deviation pro…t is posi-

tive in the range we are considering now). Condition (16) is clearly ful…lled,

the left hand side is less than one, while the right hand side is larger than

one. Hence we know that the price the …rms use to obtain the pro…t level ¼;

p(¼); equals the smaller root
1¡

p
1¡ 4(1 + °)¼
2

and the deviation pro…t is

given by

¼DB(p(¼)) =

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

! Ã
1¡

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

°2

when
p
3 ¡ 1 · ° < 1, and ¼ ¸ ¼¤: For later reference we state our result
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about p(¼) :

p(¼) =

8
>>>>><
>>>>>:

1 +
p
1¡ 4(1 + °)¼
2

for ¡ 1 < ° < 0

1¡
p
1¡ 4(1 + °)¼
2

for 0 < ° < 1

(17)

We summarize this discussion in Lemma 4 below.

Lemma 4 Consider price setting (Bertrand behavior). For a given level of

pro…ts ¼; the deviation pro…t is given as follows

1. If ° < 0; then

¼DB(p(¼)) =

"
1¡ °

Ã
1¡ 1 +

p
1¡ 4(1 + °)¼
2

!#2

4(1¡ °2) (18)

2. If 0 < ° ·
p
3¡ 1; or

p
3¡ 1 · ° < 1, and ¼ · ¼¤; where ¼¤ is given

in (15), then

¼DB(p(¼)) =

"
1¡ °

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

!#2

4(1¡ °2) (19)

3. If
p
3¡ 1 · ° < 1 and ¼ > ¼¤; then

¼DB(p(¼)) =

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

! Ã
1¡

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

°2

(20)

As noted above, a given pro…t ¼ can be obtained by setting prices and by

setting quantities. In each case, there will be a particular deviation pro…t,
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which we have derived above. Therefore, we are now in a position to compare

these deviation pro…ts. As is clear from the avobe Lemmata, the comparison

depends on °:

If goods are complements ¡1 < ° < 0; equations (12) and (18) yield

¼DC(q(¼))¡ ¼DB(p(¼))

=

Ã
1¡ ° 1¡

p
1¡ 4(1 + °)¼
2 (1 + °)

!2

4
¡

Ã
1¡ °

Ã
1¡ 1 +

p
1¡ 4(1 + °)¼
2

!!2

4(1¡ °2)

=
1

4

³
2¼° + 2¼°2 ¡ ° ¡

p
(1¡ 4¼ ¡ 4¼°)

´ °2

(1¡ °2) (1 + °)

This expression has the same sign as the sign of the parenthesis

½(°; ¼) ´ 2°(1 + °)¼ ¡ ° ¡
p
1¡ 4(1 + °)¼ (21)

Evaluated at ¼ = 0; ½(°; 0) = ¡° ¡ 1 < 0: Evaluated at the Bertrand pro…t

¼BN =
1¡ °

(2¡ °)2(1 + °) we get

½(°; ¼BN ) = 2°(1 + °)
1¡ °

(2¡ °)2(1 + °) ¡ ° ¡
s
1¡ 4(1 + °) 1¡ °

(2¡ °)2(1 + °)

= 2°
1¡ °
(2¡ °)2

¡ ° ¡
s
1¡ 4 1¡ °

(2¡ °)2

Now observe that

sign

(
2°

1¡ °
(2¡ °)2

¡ ° ¡
s
1¡ 4 1¡ °

(2¡ °)2

)

= sign

(
2° (1¡ °)¡ ° (2¡ °)2 ¡ (2¡ °)2

s
1¡ 4 1¡ °

(2¡ °)2

)

= sign
©
°2 ¡ °3

ª
> 0 for ¡ 1 < ° < 0:
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So

½(°; ¼BN) > 0

Furthermore, we have

@½(°; ¼)

@¼
= 2

(1 + °)
³
1 + °

p
(1¡ 4(1 + °)¼

´

p
(1¡ (1 + °)¼

> 0

Since ½(°; ¼BN ) > 0 ;
@½(°; ¼)

@¼
> 0 implies that ½(°; ¼) is positive for all pro…t

levels ¼ 2 [¼BN ; ¼m]: To summarize the above, we state for later reference:

¼DC(q(¼)) > ¼DB(p(¼)) for ¡ 1 < ° < 0 and ¼BN · ¼ · ¼m: (22)

Now consider ° > 0: As is clear from Lemma 4, we have to distinguish

according to whether ° 7
p
3¡ 1 and whether ¼ 7 ¼¤ as given in (15).

First, we consider the case where 0 < ° ·
p
3¡ 1 or where

p
3¡ 1 < °

<1 and ¼ · ¼¤: From (12) and Lemma 4 we have that

¼DC(q(¼))¡ ¼DB(p(¼))

=

Ã
1¡ ° 1 +

p
1¡ 4(1 + °)¼
2 (1 + °)

!2

4
¡

Ã
1¡ °

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

!!2

4(1¡ °2)

=
1

4

³
2¼°(1 + °)¡ ° +

p
(1¡ 4¼ ¡ 4¼°)

´ °2

(1¡ °2) (1 + °)

This expression has the same sign as the sign of the parenthesis

»(°; ¼) ´ 2¼°(1 + °)¡ ° +
p
(1¡ 4¼(1 + °) (23)

which is positive evaluated at ¼ = 0: Evaluated at the Cournot pro…t ¼CN =
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1

(2 + °)2
; we get:

»(°; ¼CN) ´ 2
1

(2 + °)2
°(1 + °)¡ ° +

sµ
1¡ 4 1

(2 + °)2
(1 + °

¶

= ¡°2 1 + °
(2 + °)2

< 0 :

Furthermore,

@»(°; ¼)

@¼
= 2

°
p
1¡ 4¼(1 + °) + °2

p
1¡ 4¼(1 + °)¡ 1¡ °p

1¡ 4¼(1 + °)
< 0 for 0 < ° < 1:

We thus have that »(°; ¼) is negative for all pro…t levels in-between ¼CN and

¼m: To summarize:

¼DC(q(¼)) < ¼DB(p(¼))

8
><
>:

for 0 < ° ·
p
3¡ 1 and ¼CN · ¼ · ¼m

for
p
3¡ 1 < ° < 1 and ¼ · ¼¤

(24)

Finally, we need to consider the case where
p
3¡ 1 < ° < 1 and the pro…t is

high, ¼ > ¼¤. Using (12) and Lemma 4 we get:

¼DC(q(¼))¡ ¼DB(p(¼)) =

Ã
1¡ ° 1 +

p
1¡ 4(1 + °)¼
2 (1 + °)

!2

4
+ (25)

¡

Ã
1¡ 1¡

p
1¡ 4(1 + °)¼
2

!Ã
1¡

p
1¡ 4(1 + °)¼
2

¡ 1 + °
!

°2

Now de…ne

k ´
p
1¡ 4(1 + °)¼

then k is decreasing in ¼: The expression in (25) above can then be written
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³(k) ´

µ
1¡ ° 1 + k

2 (1 + °)

¶2

4
¡

µ
1¡ 1¡ k

2

¶µ
1¡ k
2

¡ 1 + °
¶

°2

which is a second degree polynomium in k; as can be seen from the following

rewrite

³(k) =
1

16 (1 + °)2 °2
¢

¡¡
°4 + 4 + 8° + 4°2

¢
k2 +

¡
8 + 8° ¡ 8°2 ¡ 12°3 ¡ 2°4

¢
k ¡ 8°2 ¡ 4°3 + °4 + 4

¢

There are two real roots, k1 and k2:

k2 =
1

(4°2 + °4 + 4 + 8°)

³
°4 + 4°2 + 6°3 ¡ 4¡ 4° + 4

p
(°4 + 3°5 + 3°6 + °7)

´

k1 =
1

(4°2 + °4 + 4 + 8°)

³
°4 + 4°2 + 6°3 ¡ 4¡ 4° ¡ 4

p
(°4 + 3°5 + 3°6 + °7)

´

As the coe¢cient to the squared term, k2; is positive, we know that ³(k) is

positive for k < k1 and k > k2 and negative for k1 < k < k2:

In the range ° 2 [
p
3¡ 1; 1]; k1 < 0 < k2: Now

k(¼CN) =

s
1¡ 4(1 + °) 1

(2 + °)2
=

°

2 + °
> 0

and

k(¼¤) =

vuuut
1¡ 4(1 + °)

1¡
µ
1¡ 22¡ ° ¡ °2

2¡ °2
¶2

4(1 + °)

= 1¡ 22¡ ° ¡ °2
2¡ °2 ¸ 0 for ° 2 [

p
3¡ 1; 1]

while

k(¼m) =

s
1¡ 4(1 + °) 1

4(1 + °)
= 0
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We are only interested in ¼ 2 [max[¼¤; ¼CN ]; ¼m]: Since k(¼) is decreasing

in ¼; this implies that we are interested in k 2 [0;min[k(¼¤); k(¼CN)]]: Now

consider the following equation.

k(¼CN ) = k2 ,

°

2 + °
=
°4 + 4°2 + 6°3 ¡ 4¡ 4° + 4

p
(°4 + 3°5 + 3°6 + °7)

4°2 + °4 + 4 + 8°
:

It has two solutions

°1 =
1

6
3

r³
100 + 12

p
69

´
+

2

3 3

q¡
100 + 12

p
69

¢ ¡ 1

3
¼ : 754 88

°2 = ¡1

For ° > °1; k(¼
CN ) < k2: Hence in this range, ³(k) < 0 for k · k(¼CN ):

Accordingly we have

³(k(¼)) < 0 for ¼ > ¼CN and ° 2 [°1; 1] (26)

Then consider the equation

k(¼¤) = k2 ,

1¡ 22¡ ° ¡ °2
2¡ °2 =

°4 + 4°2 + 6°3 ¡ 4¡ 4° + 4
p
(°4 + 3°5 + 3°6 + °7)

4°2 + °4 + 4 + 8°
:

In the range ° 2 [
p
3¡1; 1]; this equation has a unique solution, ~° ¼ :946 97:

For ° < ~°; k(¼¤) < k2: Hence in this range, k < k(¼¤) implies that ³(k) < 0:

We therefore have

³(k(¼)) < 0 for ¼ > ¼¤ and ° 2 [
p
3¡ 1; ~°] : (27)
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Using (26) and (27), we can now conclude

³(k(¼)) < 0 for ¼ 2 [max[¼CN ; ¼¤]; ¼m] and ° 2 [
p
3¡ 1; 1] : (28)

Finally, this yields

¼DC(q(¼)) < ¼DB(p(¼)) for ¼ 2 [max[¼CN ; ¼¤]; ¼m] and ° 2 [
p
3¡ 1; 1] :

(29)

The following proposition summarizes the results of equations (22), (24) and

(29).

Proposition 5 For a given pro…t level ¼; we have the following relations

between the deviation pro…ts:

1. ¼DC(q(¼)) > ¼DB(p(¼)) for ¡1 < ° < 0 and ¼BN · ¼ · ¼m

2. ¼DC(q(¼)) < ¼DB(p(¼)) for 0 < ° < 1 and ¼CN · ¼ · ¼m

4 The repeated game

Both …rms seek to maximize the discounted sum of pro…ts. They have the

same discount factor ±; where 0 < ± < 1: Discounting occurs between peri-

ods, but not between the two stages of a period. At time t; at the beginning

of stage 1; the history h1t of the game consists of the market variables cho-

sen by each …rm in the previous periods’ …rst stages, MVi¿ ; as well as the

values chosen in the second stages, ¾i¿ ; so h1t = (MV10;MV20; ¾10; ¾20;....;
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MV1t¡1;MV2t¡1; ¾1t¡1; ¾2t¡1) . In the second stage of period t; the history,

h2t ; consists of h1t as well as the chosen market variables in the …rst stage of

period t : h2t = (h
1
t ;MV1t;MV2t): A (pure) strategy for a …rm is a sequence

of functions mapping histories into the relevant actions. For …rm i; a strategy

is (µ1it; µ
2
it)
1
t=0, where for each t : µ1it : h

1
t 7! fPR;QY g ; and µ2it : h

2
t 7! R:

We will study subgame perfect equilibria of this repeated game. In each

period and at each stage, the pair of continuation strategies from that point

on should form a Nash equilibrium.

As is well known from Abreu (1986, 1988), it is without loss of generality

to restrict attention to simple strategies, which consists of a normal phase

and a punishment phase. We will study two kinds of equilibria in simple

strategies: 1. trigger strategy equilibria à la Friedman (1971) where the

punishment phase consists of reversion to the one shot Nash equilibrium in

all future periods, and 2. equilibria with optimal symmetric punishment

schemes à la Abreu (1986, 1988), Abreu, Pearce and Stacchetti (1986).

5 Nash punishment

We will focus on subgame perfect equilibria where the …rms receive the same

payo¤ in the normal phase. In this section, the focus is on the best such

equilibrium, where the punishment phase consists of reversion to the one

shot Nash equilibrium in all future.

First notice that (5) directly gives that if goods are substitutes ( 0 < ° <

1); then the one shot Nash equilibrium involves …rms choosing quantities and
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subsequently playing the Cournot equilibrium. If goods are complements

(¡1 < ° < 0); then they choose prices and play the Bertrand equilibrium.

Let ¼N denote the per period pro…t of the punishment phase.

We divide into two cases, …rst where the discount factor is so large that

the monopoly pro…t can be realized in each period. Secondly, we look at the

case of a moderate discount factor, where the …rms have to settle on a pro…t

level smaller than the monopoly pro…t. Clearly, if the discount factor is very

close to one, then the monopoly pro…t can be sustained in a subgame perfect

equilibrium, regardless of whether the …rms choose prices or quantities. For

a lower discount factor, this may not be possible. For each case, quantities

and prices, there is a crucial smallest discount factor, which allows the …rms

to sustain the monopoly pro…t in a subgame perfect equilibrium. We will

now derive these crucial discount factors.

Consider …rst the case of quantities. The trigger strategy equilibrium

looks like this:

I. If t = 0 or both …rms have chosen QY and qm in all previous periods,

choose QY in the …rst stage and qm in the second stage.

II. If there is an earlier period t0 < t where at least one …rm has chosen

PR in the …rst stage or something di¤erent from qm in the second stage, or

if at least one of the …rms have chosen PR in the …rst stage of this period,

choose QY; qCN
¡
PR; pBN

¢
from now on and in all future if 0 < ° < 1;

(if ¡ 1 < ° < 0) :

Since the punishment phase (II) consists of in…nite repetition of the one
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shot Nash equilibrium, we just need to check that strategies are optimal for

each …rm in the normal phase. If a …rm adheres to the strategy, it receives ¼m

in all periods. Clearly, if a …rm wants to deviate, it should do it in the second

stage of a period. If it deviates in the …rst stage, it is punished already in the

second stage, so the deviation pro…t will be smaller, than if it waits until the

second stage. The best deviation consists of choosing the best reply, which

will give the deviation pro…t ¼DC(qm) in the period of deviation, and ¼N in

all future. Hence, the condition that a …rm will not deviate is

1

1¡ ±¼
m ¸ ¼DC(qm) +

±

1¡ ±¼
N

which is ful…lled if and only if

± ¸ ±Q ´ ¼DC(qm)¡ ¼m
¼DC(qm)¡ ¼N (30)

Notice that, although we have not explicitly written it, ±Q is a function of

°. Then consider the case where …rms set prices in the normal phase. The

non-deviation constraint becomes

1

1¡ ±¼
m ¸ ¼DB(pm) +

±

1¡ ±¼
N

or

± ¸ ±P ´ ¼DB(pm)¡ ¼m
¼DB(pm) ¡ ¼N (31)

As ¼m > ¼N ; the fraction x¡¼m
x¡¼N is increasing in x: Hence we have that

±Q < ±P , ¼DC(qm) < ¼BC(pm) (32)
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It then directly follows from Proposition 5 that if goods are complements

(¡1 < ° < 0); then ±P < ±Q; and if goods are substitutes (0 < ° < 1); then

±Q < ±P :

Hence,

±Q < ±P if and only if 0 < ° < 1

±Q > ±P if and only if ¡ 1 < ° < 0

We see that if goods are substitutes (0 < ° < 1); then there is a non-

empty range of discount factors, [±Q; ±P ] where the …rms can realize the

monopoly pro…t, if they choose quantities while this is not possible if they

choose prices. Hence, in this range a pro…t maximizing implicit cartel will let

the …rms choose quantities. When goods are substitutes they will also choose

quantities in the punishment phase, as we discussed above. When goods are

complements, on the other hand, there is a non-empty range of discount fac-

tors [±P ; ±Q] for which …rms only can realize the monopoly pro…t by choosing

prices, so in this range the cartel chooses prices. For very high discount fac-

tors, the …rms can realize the monopoly pro…t whether they choose prices

or quantities. The result resembles the result of Deneckere (1983,1984), but

there is a di¤erence. In Deneckere, …rms are committed to either prices or

quantities in all periods and phases of the repeated game, this means that,

for given °; the discount factor for quantities is calculated with quantities

in the punishment phase, while discount factor for prices is calculated with

prices in the punishment phase. Thus, for given °; the punishment pro…t

di¤ers in the two cases. In our game, on the other hand, there is no commit-
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ment, so it is not necessarily the case that the market variable is the same in

the two phases. This implies that, for given °; the two discount factors are

calculated with the same punishment pro…t. Hence, although the relative

ranking is the same as if we had proceeded like Deneckere, the exact values

of the discount factors are di¤erent.

What happens when the discount factor is not so high that the monopoly

pro…t can be realized? Recall that, in the one shot Nash equilibrium, …rms

choose quantities as market variable and the pro…t is the Cournot pro…t, ¼CN ;

if 0 < ° < 1. A pro…t-maximizing cartel will at least get the one shot Nash

equilibrium pro…t as average pro…t, hence the equilibrium average pro…t, ¼;

ful…ls ¼ ¸ ¼CN if 0 < ° < 1: Similarly, if ¡1 < ° < 0; …rms choose prices in

the one shot Nash equilibrium and the pro…t is the Bertrand pro…t ¼BN : A

cartel will at least get this pro…t, hence the equilibrium average pro…t ful…lls

¼ ¸ ¼BN when ¡1 < ° < 0:

Given the discount factor, ±; the implicit cartel will aim at the highest

average pro…t level, ¼; where the non-deviation constraint is not violated.

Thus, if …rms cannot get the monopoly pro…t, then the constraint will be

binding, and this is true in each period. Furthermore, the pro…t will be the

same and equal to the average pro…t in each period. To see this, suppose that

there are two periods where the pro…t is lower in the …rst. Then, the average

pro…t can be increased in the …rst period by dropping the …rst period action

and choosing the actions prescribed for all subsequent periods one period

earlier. If, on the other hand, the equilibrium pro…t is higher in the …rst
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period than in the second, the pro…t of the second period can be increased

to the pro…t of the …rst period by repeating the actions of the …rst period.

This will not cause …rms to deviate in the …rst period, since it will increase

the normal phase pro…t and thus lessen the deviation constraint in the …rst

period.

Suppose the …rms set quantities. To obtain the average pro…t level ¼, the

…rms choose the quantity q(¼) as given by (11). If a …rm wants to deviate

from q(¼); it will receive the deviation pro…t ¼DC(q(¼)). Therefore, the no-

deviation constraint associated with the highest pro…t level, ¼; which can be

sustained becomes:

1

1¡ ±¼ ¸ ¼DC(q(¼)) +
±

1¡ ±¼
N : (33)

The highest possible pro…t level attainable when …rms set quantities solves

this condition with equality. Similarly, if …rms set prices, the best pro…t level,

¼0; is the solution to the following non-deviation constraint:

1

1¡ ±¼
0 ¸ ¼DB(p(¼0)) +

±

1¡ ±¼
N : (34)

Consider the pro…t level ¼; which solves equation (33)6. If goods are substi-

tutes (0 < ° < 1); then Proposition 5, 2. directly imply that at this ¼ the

right hand side of equation (34) is larger than the left hand side. Hence, if

this ¼ should be obtained by setting prices the …rms want to deviate from

collusive play. Conversely, because of Proposition 5, 2, at the largest ¼0 which

solves (34) with equality, (33) holds with strict inequality. We conclude that,

6If there are several solutions, pick the largest.

33



if goods are substitutes, the cartel can obtain a higher pro…t by choosing

quantities rather than prices. When goods are complements (¡1 < ° < 0);

Proposition 5, 1, directly gives the opposite conclusion. If ¼0 solves (34), then

(33) is violated at this ¼0; so the cartel can obtain a higher pro…t by setting

prices.

We can summarize the discussion:

Theorem 6 Given °: There exist discount factors ±Q and ±P which depend

on ° where 0 < ±Q; ±P < 1 such that the following is true for the optimal

trigger-strategy equilibria with Nash-punishment.

1. If ± > max[±Q; ±P ]; the implicit cartel is indi¤erent between choosing

prices or quantities in the normal phase. Firms receive the monopoly

pro…t.

2. If goods are substitutes (0 < ° < 1); then ±Q < ±P : If ± < ±P ; …rms

set quantities in the normal phase. If ± 2 [±Q; ±P ]; …rms receive the

monopoly pro…t; if ± < ±Q; they receive less. For all ± 2 (0; 1), …rms

set quantities in the punishment phase.

3. If goods are complements (¡1 < ° < 0); then ±P < ±Q: If ± < ±Q;

…rms set prices in the normal phase. If ± 2 [±P ; ±Q] …rms receive the

monopoly pro…t; if ± < ±P ; they receive less. For all ± 2 (0; 1), …rms

set prices in the punishment phase.

Qualitatively, the results for the normal phase obtained above carry over

to the case where the punishment is the optimal symmetric punishment. The
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arguments do not depend on the particular punishment phase, the size of ¼N

does not enter the arguments. Let ¼L(±) be the lowest average pro…t which

can be sustained in a symmetric subgame perfect equilibrium, when the …rms’

discount factor is ±: From the results of Abreu (1986, 1988) it is clear that

such an equilibrium exists. Similarly, let ¼H(±) be the highest average pro…t

which can be sustained in a symmetric subgame perfect equilibrium. This

pro…t can be obtained in a simple equilibrium, where the punishment phase is

as severe as possible (given the equilibrium is symmetric), which means that

it gives the …rms an average pro…t of ¼L(±): The same arguments as above

show that if the discount factor is high, the monopoly pro…t can be realized

regardless of the choice of market variable. There are crucial discount factors

±QO (O for optimal) and ±PO below which the choice of market variable is

important for the pro…t the cartel can realize. Without further proof, we

state for completeness:

Theorem 7 Given °: There exist discount factors ±QO and ±PO which de-

pend on ° where 0 < ±QO; ±PO < 1 such that the following is true for the

optimal trigger-strategy equilibria with optimal punishment.

1. If ± > max[±QO; ±PO]; the implicit cartel is indi¤erent between choosing

prices or quantities in the normal phase. Firms receive the monopoly

pro…t.

2. If goods are substitutes (0 < ° < 1); then ±QO < ±PO: If ± < ±PO; …rms

set quantities in the normal phase. If ± 2 [±QO; ±PO]; …rms receive the

monopoly pro…t; if ± < ±Q; they receive less.
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3. If goods are complements (¡1 < ° < 0); then ±PO < ±QO: If ± < ±QO;

…rms set prices in the normal phase. If ± 2 [±PO; ±QO] …rms receive the

monopoly pro…t; if ± < ±PO; they receive less.

An interesting question, which is not easy to answer, is which market vari-

able the …rms use in the optimal punishment phase. Unfortunately, we have

not been able to solve this question. A major obstacle is that presumably

the optimal punishment phase is non-stationary.

6 Concluding Remarks

We have considered the choice of market variable of an optimizing implicit

cartel, which has to rely on tacit collusion. The framework is similar to the

framework of Singh and Vives (1984). Our results partly correspond to the

results Singh and Vives found for the one shot game. If goods are substitutes

…rms compete in quantities, if goods are complements …rms compete in prices.

However, the mechanism behind the results are di¤erent. In the static setting

of Singh and Vives, …rms choose market variables non-cooperatively in order

to maximize short run pro…ts, in the repeated game the choice of market

variable is guided by deviation pro…ts, the optimizing cartel seeks to minimize

deviation pro…ts.

While we have used the framework of Singh and Vives in order to facilitate

comparison, it is clear that our results hold more generally. The important

feature is the size of the deviation pro…t. For a given pro…t level in the
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normal phase, the deviation pro…t depends on the market variable. The

cartel will use the market variable which gives the smallest deviation pro…t.

This is clearly also true in more general settings. In the framework of Singh

and Vives this furthermore is linked to whether goods are substitutes of

complements in demand.
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