
A generalized conversion matrix between

non-uniform B-spline and Bézier

representations with applications in CAGD

Giulio Casciola, Lucia Romani

Department of Mathematics, University of Bologna,

P.zza di Porta San Donato 5, 40127 Bologna, Italy

Abstract

This paper presents the recursive computations of the generalized conversion ma-
trices which allow direct transformations between non-uniform B-spline and Bézier
representations of arbitrary degrees, defined over a completely arbitrary interval of
the real axis. Although the very general setting assumed, the proposed algorithm
turns out to be very easy and practical, and provides interesting applications in
computer aided geometric design.

Key words: Matrix representation; Direct transformations; Non-uniform B-spline
basis functions; Explicit multi-Bézier form; Clamping and unclamping techniques;
Merging spline procedures

1 Introduction

In order to simplify the mathematical treatment of B-splines, during the last
two decades several algorithms have been developed to compute the Bézier
representation of each non-vanishing segment of a non-uniform B-spline curve
(Cohen et al., 1980; Boehm, 1981; Chui and Lai, 1987; Chui, 1988; Grabowski
and Li, 1991). While these were exclusively formulated to work out the B-
spline-to-Bézier conversion, there are also some algorithms which allow us
to convert a B-spline representation into a Bézier representation and vice
versa (Boehm, 1977; Sablonniere, 1978; de Casteljau, 1985; Ramshaw, 1987;
Prautzsch et al., 2002, pp. 72-73). However, none of these algorithms exploit

Email addresses: casciola@dm.unibo.it (Giulio Casciola),
romani@dm.unibo.it (Lucia Romani).

29 July 2004

the advantages of working with matrix representations. Since the use of ma-
trix forms (largely promoted in CAD/CAM) turns out to be both convenient
and practical in representing parametric curves and surfaces, in this paper we
propose an alternative conversion method which exploits the matrix notation
introduced in Romani and Sabin (2004) to generate direct matrix transforma-
tions between non-uniform B-spline and Bézier representations of arbitrary
degrees.
While the computation of the conversion matrix between uniform B-spline
and Bézier representations (Romani and Sabin, 2004) depends exclusively on
the degree of the polynomial representation (and thus can be computed once
for all), the conversion matrix between non-uniform B-spline and Bézier rep-
resentations depends also on the knot configuration and on the parametric
domain. As a consequence, the recursive computations presented in Romani
and Sabin (2004) necessitate a more general formulation. In this paper we
present an algorithm for efficiently computing the conversion matrices in a
very general setting. This extended formulation allows us to explain the origin
of the fairly criptic initial conditions assumed in Chui’s algorithm (Chui and
Lai, 1987; Chui, 1988) and to avoid the rather involved use of indices this
scheme requires, making our formulation much easier to follow.
Additionally, the possibility of choosing knots in a completely arbitrary con-
figuration, makes our proposal a very powerful procedure for solving problems
that very often appear in CAGD.

1.1 Preliminary details

Mathematically, the problem of transforming curve and surface representa-
tions is simply a problem of transforming the associated bases.
Let {uk+j−n, · · · , uk, uk+1, · · · , uk+j+1} be the arbitrary knot-partition defin-
ing the degree-n, n ≥ 1, non-uniform B-spline basis function Nk+j−n,n(u).
Then, for any j = 0, · · · , n, let Nk+j−n,n(u) denote the n + 1 basis functions
overlapping an arbitrary interval [a, b] of the real axis (not necessarily con-
tained in [uk, uk+1] as required by the classical procedures).
The key idea behind the B-spline-to-Bézier transformation over the interval
[a, b], is to express each Nk+j−n,n(u), j = 0, · · · , n as a linear combination of
the degree-n Bernstein-Bézier polynomials Bi,n(u), i = 0, · · · , n, by introduc-

ing for any j = 0, · · · , n a set of coefficients
{

s
(n)
i,j

}

i=0,···,n
such that

Nk+j−n,n(u) =
n∑

i=0

s
(n)
i,j Bi,n(u) ∀j = 0, · · · , n u ∈ [a, b]. (1)

2

Then, introducing vectors of basis functions, we can rewrite the transformation
in (1) in a convenient matrix form as

[Nk−n,n(u) · · · Nk,n(u)] = [B0,n(u) · · · Bn,n(u)] S(n). (2)

In this way S(n) =
{

s
(n)
i,j

}

i,j=0,···,n
is the (n + 1) × (n + 1) matrix by which

we can multiply the column vector of control points Ck−n, · · · , Ck in the con-
trol polygon of a given B-spline curve of degree n, to obtain the Bézier control
points D0, · · · , Dn of the corresponding span. To compute the piecewise Bézier
representation of a complete curve we can build a much larger rectangular ma-
trix by stacking different matrices S(n). Since two adjacent Bézier pieces share
a common control point at the junction, it follows that the bottom row of
the matrix S(n) associated with the first piece is exactly the same as the top
row of the matrix S(n) associated with the following one. This consideration
turns out to be useful to compute the S(n) matrices that follow the first. In
this paper we take the stacking for granted and focus on the determination of
the elements of S(n) for arbitrarily large n by recurrence over the polynomial
degree.
Conversely, the Bézier-to-B-spline conversion matrix will be the (n+1)×(n+1)
matrix by which we can multiply the vector of control points D0, · · · , Dn of
a degree-n Bézier curve, to obtain a sequence of control points Ck−n, · · · , Ck

of a degree-n B-spline which contains that curve as a span (this time there is
no equivalent of stacking because in general a sequence of Bézier curves is not
necessarily a B-spline).
In particular, if by introducing for any i = 0, · · · , n a set of coefficients{

r
(n)
j,i

}

j=0,···,n
, we express the n + 1 Bernstein-Bézier polynomials Bi,n(u), i =

0, · · · , n defined over the interval [a, b], via the B-spline representation

Bi,n(u) =
n∑

j=0

r
(n)
j,i Nk+j−n,n(u) ∀i = 0, · · · , n u ∈ [a, b] (3)

and rewrite (3) in matrix form, we have that the matrix R(n) =
{

r
(n)
j,i

}

j,i=0,···,n

which satisfies

[B0,n(u) · · · Bn,n(u)] = [Nk−n,n(u) · · · Nk,n(u)] R(n), (4)

is exactly the degree-n Bézier-to-B-spline conversion matrix.

Since non-uniform B-spline basis functions and Bernstein-Bézier polynomials
are defined by recursion formulae over the degree, the conversion matrices S (n)

and R(n) turn out to be defined by a recurrence over the degree n. In the next
two sections the recursion algorithms for generating the B-spline-to-Bézier and
the Bézier-to-B-spline conversion matrices of arbitrary degree n are presented.
The last section is devoted to the description of some interesting applications
of these matrix transformations in CAGD.

3

2 The B-spline-to-Bézier conversion matrix

Since the non-uniform degree-n B-splines Nk+j−n,n(u) with n ≥ 1 turn out to
be defined by the following recursion integral relation (Prautzsch et al., 2002,
p. 68)

Nk+j−n,n(u) = n

u∫

−∞

[

Nk+(j−1)−(n−1),n−1(v)

uk+j − uk+j−n

−
Nk+j−(n−1),n−1(v)

uk+j+1 − uk+j+1−n

]

dv, (5)

by substituting every B-spline basis function overlapping the interval [a, b]
with its Bézier representation in (1) and by solving the Bézier integral that
derives from it, we get for any n ≥ 1 the following formula on the coefficients

s
(n)
i,j = s

(n)
i−1,j + (b− a)




s
(n−1)
i−1,j−1

uk+j − uk+j−n

−
s
(n−1)
i−1,j

uk+j+1 − uk+j+1−n



 (6)

i = 1, · · · , n j = 0, · · · , n

with s
(n−1)
i−1,−1 = s

(n−1)
i−1,n = 0 and S(0) ≡ s

(0)
0,0 = 1 since B0,0(u) = Nk,0(u) = 1 for

any u ∈ [a, b].

Looking at (6) we can see that we need to know the value of s
(n)
0,j , ∀j = 0, · · · , n

in order to determine all the entries s
(n)
i,j ∀j = 0, · · · , n, i = 1, · · · , n. Following

the notation introduced in Romani and Sabin (2004), we refer to s
(n)
0,j , j =

0, · · · , n as the integration constants of the degree-n matrix S (n). In general,
the computation of the integration constants cannot be worked out easily, since
it requires us to determine the value of Nk+j−n,n(a) ∀j = 0, · · · , n. The only
exception is the uniform case uk = k, when the interval [a, b] = [k, k + 1] (see
Romani and Sabin, 2004). In fact, in this special case (see Fig.1 as example),
since Nk+j−n,n(k) = Nk+j+1−n,n(k+1), the integration constants can easily be
computed as:

s
(n)
0,n = Nk,n(k) = 0,

s
(n)
0,j = Nk+j−n,n(k) = Nk+j+1−n,n(k + 1) = s

(n)
n,j+1 ∀j = n− 1, · · · , 0.

NN N

k−2 k−1 k k+1 k+2 k+3

k,2k−1,2k−2,2

Fig. 1. The uniform quadratic B-spline basis functions overlapping [a, b] = [k, k+1].

In order to overcome the problem of the determination of the integration
constants, when uk 6= k and [a, b] 6= [k, k + 1], we introduce a new approach

4

which, instead of the recurrence in (5), exploits the well-known Cox-de Boor
recursion formula (Prautzsch et al., 2002, p.61)

Nk+j−n,n(u) =
u−uk+j−n

uk+j−uk+j−n
Nk+j−n,n−1(u) +

uk+j+1−u

uk+j+1−uk+j+1−n
Nk+j+1−n,n−1(u). (7)

By substituting in (7) the Bézier representation in (1) of the n + 1 B-spline
basis functions overlapping the interval [a, b], we obtain the relation

n∑

i=0

s
(n)
i,j Bi,n(u) =

n−1∑

i=0

[
u−uk+j−n

uk+j−uk+j−n
s
(n−1)
i,j−1 +

uk+j+1−u

uk+j+1−uk+j+1−n
s
(n−1)
i,j

]

Bi,n−1(u). (8)

Now, by substituting in (8) the recurrence relation on Bernstein polynomials
(Prautzsch et al., 2002, p.10)

Bi,n(u) =
u− a

b− a
Bi−1,n−1(u) +

b− u

b− a
Bi,n−1(u), (9)

we obtain the following expression on the coefficients

u− a

b− a
s
(n)
i+1,j +

b− u

b− a
s
(n)
i,j =

u− uk+j−n

uk+j − uk+j−n

s
(n−1)
i,j−1 +

uk+j+1 − u

uk+j+1 − uk+j+1−n

s
(n−1)
i,j

i = 0, · · · , n− 1 j = 0, · · · , n. (10)

Evaluating (10) at u = a, we get

s
(n)
i,j =

a− uk+j−n

uk+j − uk+j−n

s
(n−1)
i,j−1 +

uk+j+1 − a

uk+j+1 − uk+j+1−n

s
(n−1)
i,j (11)

i = 0, · · · , n− 1 j = 0, · · · , n,

while evaluating (10) at u = b, it follows that

s
(n)
i+1,j =

b− uk+j−n

uk+j − uk+j−n

s
(n−1)
i,j−1 +

uk+j+1 − b

uk+j+1 − uk+j+1−n

s
(n−1)
i,j (12)

i = 0, · · · , n− 1 j = 0, · · · , n.

Therefore, the entries of the B-spline-to-Bézier conversion matrix S (n), n ≥ 1,
over the interval [a, b], can be defined ∀j = 0, · · · , n, either by the recurrence

s
(n)
i,j =

a− uk+j−n

uk+j − uk+j−n
s
(n−1)
i,j−1 +

uk+j+1 − a
uk+j+1 − uk+j+1−n

s
(n−1)
i,j ∀i = 0, · · · , n− 1

s
(n)
n,j =

b− uk+j−n

uk+j − uk+j−n
s
(n−1)
n−1,j−1 +

uk+j+1 − b
uk+j+1 − uk+j+1−n

s
(n−1)
n−1,j

(13)

5

or by

s
(n)
0,j =

a− uk+j−n

uk+j − uk+j−n
s
(n−1)
0,j−1 +

uk+j+1 − a
uk+j+1 − uk+j+1−n

s
(n−1)
0,j

s
(n)
i+1,j =

b− uk+j−n

uk+j − uk+j−n
s
(n−1)
i,j−1 +

uk+j+1 − b
uk+j+1 − uk+j+1−n

s
(n−1)
i,j ∀i = 0, · · · , n− 1

(14)

with s
(n−1)
i,−1 = s

(n−1)
i,n = 0 and S(0) ≡ s

(0)
0,0 = 1.

Remark 1 Note that s
(n)
0,j , j = 0, · · · , n computed by the first expression in

(14) are exactly the integration constants we need in (6). From now on we will
refer to the algorithm given by (6), with integration constants precomputed by
(14), using the term column procedure. This algorithm extends the computa-
tional scheme given by Chui and Lai (1987), Chui (1988) for computing the
Bézier representation of non-uniform B-splines with knots chosen in geometric
progression, to the more general setting of B-splines with completely arbitrary
knot configurations and completely arbitrary parametric domains.

Remark 2 Conversely, since both (13) and (14) give us the possibility of
working out each row of the conversion matrix S(n) independently of the others,
we will define them as the row procedures.

While the column procedure is computationally more efficient for determining
the entries of S(n) in the uniform case uk = k, when [a, b] = [k, k + 1] (see
Romani and Sabin, 2004), in the non-uniform case over an arbitrary interval
[a, b], we can deduce by our complexity analysis and implementation, that the
row procedures turn out to be less time-consuming. Additionally, there is also a
way to formulate the recursions for the entries (13) (and analogously (14)) by
means of the following matrix recursion between the matrices S(n) and S(n−1):

S(n) =













n

{

n
︷ ︸︸ ︷

S(n−1)L(n−1)

1
︷ ︸︸ ︷

0

1

{

0
︸︷︷︸

1

s
(n−1)
n−1 M (n−1)

︸ ︷︷ ︸

n













(15)

where

0 = [0 0 ... 0
︸ ︷︷ ︸

n

]t is a column vector with n zeros, s
(n−1)
n−1 = {s

(n−1)
n−1,j}j=0,···,n−1 is

the last row of S(n−1) and L(n−1), M (n−1) are respectively the following n× n

bidiagonal matrices:

6

L(n−1) =






















uk+1−a

uk+1−uk+1−n

a−uk+1−n

uk+1−uk+1−n
· · · 0

...
. . .

...

uk+j−a

uk+j−uk+j−n

a−uk+j−n

uk+j−uk+j−n

...
. . .

...

0 · · ·
uk+n−1−a

uk+n−1−uk−1

a−uk−1

uk+n−1−uk−1

0 · · · 0
uk+n−a

uk+n−uk






















,

M (n−1) =






















b−uk−n+1

uk+1−uk−n+1
0 0 · · · 0

...
. . .

...

uk+n−j+1−b

uk+n−j+1−uk−j+1

b−uk−j+1

uk+n−j+1−uk−j+1

...
. . .

...

0 · · ·
uk+n−1−b

uk+n−1−uk−1

b−uk−1

uk+n−1−uk−1
0

0 · · · 0
uk+n−b

uk+n−uk

b−uk

uk+n−uk






















.

3 The Bézier-to-B-spline conversion matrix

Although the Bézier-to-B-spline conversion matrix R(n) coincides with the in-
verse of S(n), we now want to exploit the row procedure approach in order to
generate R(n), for any n ≥ 1, without using the entries of S(n).
By substituting the B-spline representation (3) of the n + 1 Bernstein poly-
nomials defined over the interval [a, b] in the recurrence relation of Bernstein
polynomials (9), it follows that

n∑

j=0

r
(n)
j,i Nk+j−n,n(u) =

n−1∑

j=0

[

u− a

b− a
r
(n−1)
j,i−1 +

b− u

b− a
r
(n−1)
j,i

]

Nk+j+1−n,n−1(u). (16)

Now, substituting in (16) the recurrence relation on B-spline basis functions
(7), we obtain the following expression on the coefficients

u− uk+j+1−n

uk+j+1 − uk+j+1−n

r
(n)
j+1,i +

uk+j+1 − u

uk+j+1 − uk+j+1−n

r
(n)
j,i =

u− a

b− a
r
(n−1)
j,i−1 +

b− u

b− a
r
(n−1)
j,i

j = 0, · · · , n− 1 i = 0, · · · , n. (17)

7

Evaluating (17) at u = uk+j+1−n, we get

r
(n)
j,i =

uk+j+1−n − a

b− a
r
(n−1)
j,i−1 +

b− uk+j+1−n

b− a
r
(n−1)
j,i j = 0, · · · , n− 1 i = 0, · · · , n,

(18)

while evaluating (17) at u = uk+j+1, it follows that

r
(n)
j+1,i =

uk+j+1 − a

b− a
r
(n−1)
j,i−1 +

b− uk+j+1

b− a
r
(n−1)
j,i j = 0, · · · , n− 1 i = 0, · · · , n.

(19)

Therefore, the entries of the Bézier-to-B-spline conversion matrix R(n), n ≥
1, over the interval [a, b], can be defined for any i = 0, · · · , n either by the
recurrence

r
(n)
j,i =

uk+j+1−n − a
b− a

r
(n−1)
j,i−1 +

b− uk+j+1−n

b− a
r
(n−1)
j,i ∀j = 0, · · · , n− 1

r
(n)
n,i =

uk+n − a
b− a

r
(n−1)
n−1,i−1 +

b− uk+n

b− a
r
(n−1)
n−1,i

(20)

or by

r
(n)
0,i =

uk+1−n − a
b− a

r
(n−1)
0,i−1 +

b− uk+1−n

b− a
r
(n−1)
0,i

r
(n)
j+1,i =

uk+j+1 − a
b− a

r
(n−1)
j,i−1 +

b− uk+j+1

b− a
r
(n−1)
j,i ∀j = 0, · · · , n− 1

(21)

with r
(n−1)
j,−1 = r

(n−1)
j,n = 0 and R(0) ≡ r

(0)
0,0 = 1.

Remark 3 For any i = 0, · · · , n r
(n)
0,i computed by (21) are the integration

constants for the column procedure

r
(n)
j,i = r

(n)
j−1,i +

uk+j − uk+j−n

b− a

[

r
(n−1)
j−1,i−1 − r

(n−1)
j−1,i

]

j = 1, · · · , n i = 0, · · · , n

(22)

with r
(n−1)
j−1,−1 = r

(n−1)
j−1,n = 0 and R(0) ≡ r

(0)
0,0 = 1, that can easily be obtained by

substituting (3) in the integral relation of Bernstein polynomials

Bi,n(u) =
n

b− a

u∫

−∞

[Bi−1,n−1(v)−Bi,n−1(v)] dv i = 0, · · · , n u ∈ [a, b]

(23)

and by solving the resulting B-spline integral.

8

As in the non-uniform B-spline-to-Bézier conversion, from our complexity
analysis and implementation it follows that the determination of R(n) results
less time-consuming using the row procedures, especially by using the formulae
in (21). The complexity order of (21) consists of O(n3) floating point opera-
tions (O(2

3
n3) multiplications/divisions and O(1

3
n3) additions/subtractions);

the cost is the same as computing the inverse of S(n), but we do not need to
know S(n).

4 Geometric applications of the conversion matrices

While in practice, applications of the uniform conversion matrices are very
restrictive (see Romani and Sabin, 2004), the generalized conversion matri-
ces proposed in sections 2-3 can be exploited for solving many problems that
often appear in CAGD. Indeed, the possibility of choosing knots in a com-
pletely arbitrary configuration, makes our proposal a very powerful procedure
for working out all the classical algebraic operations on B-spline curves and
surfaces (degree-elevation, inner product, etc). In subsections 4.1 and 4.2 we
propose respectively to exploit the generalized conversion matrices for com-
puting precise conversions between clamped/unclamped B-splines and for pro-
viding approximate conversions of Bézier curves/surfaces that almost join C0,
into Bézier curves/surfaces joined Ck continuously. While in these situations
classical approaches turn out to be very tedious, the procedures we are going
to propose provide an easy and practical solution.

4.1 Clamping and unclamping techniques

Up to now we have assumed the very general terminology “non-uniform B-
splines” to underline that we are working with completely arbitrary knot-
configurations. To be more precise, this freedom allows us to define clamped/
unclamped and uniform/non-uniform B-splines. In particular, clamped/uncla-
mped refers to whether or not the first and last knot values in the B-spline
knot vector are repeated with multiplicity equal to degree plus one, and
uniform/non-uniform refers to the knot spacing. To be uniform and unclamped,
every knot must be a simple knot and all knots spans must be of equal lengths
(this is the case treated in Romani and Sabin (2004)). To be uniform and
clamped, only internal knots must be simple and only the internal knot spans
must be of equal length. In comparison to unclamped curves, clamped B-
splines pass through the first and the last control points and are tangent to
the first and the last line segments of the control polygon. If we denote the
knot vector by {u0, u1, ..., um}, a degree-n Bézier curve on [un, um−n] is an
example of clamped B-spline with n + 1 knots clamped at un and um−n, but

9

with no internal knots.
In the following paragraphs we provide matrix transformations for precise
conversion of an unclamped B-spline into a clamped one and vice versa.

4.1.1 The clamping matrices

Let {u0, u1, ..., um} be the knot vector associated with an unclamped B-spline
of degree n defined by m−n control points Ci, i = 0, ...,m−n− 1. Clamping
the curve at un and um−n is nothing more than inserting the knots un and um−n

until they have multiplicity n + 1, and then discarding the knots and control
points lying outside the clamped region. The classical procedures (like the
knot insertion formula (Boehm, 1981)) are also valid as long as one does not
index knots outside the range 0 to m (which does not happen when clamping
at un and um−n), but they turn out to be very tedious. On the contrary,
using the conversion matrices defined in sections 2-3, we can extract the curve
between the parameters un and um−n in a very easy way, that is by a simple
matrix multiplication with the column vector of the spline control points.
In particular, let us denote by S

(n)
∆,I and R

(n)
I,∆ the conversion matrices that

transform the degree-n B-spline defined over the knot-partition ∆ into the
degree-n Bézier curve defined over the interval I, and vice versa.
Then, the control point vector C∗ = [C∗

0 , C
∗
1 , ..., C

∗
n, Cn+1, ..., Cm−n−1]

T which
defines the original curve clamped at its left end un, can be computed in the
following way:









C∗
0

C∗
1
...

C∗
n









= P (n)un








C0
C1
...

Cn








(24)

where

P (n)un
= R

(n)
In,∆n

S
(n)
∆0,In

is the so-called clamping matrix at un, defined by In = [un, un+1], ∆0 =
{u0, un+1, ..., u2n+1} and ∆n = {un, un+1, ..., u2n+1}, with un denoting the n+1-
fold knot un.
Analogously, the control point vector C∗ = [C0, ..., Cm−2n−2, C

∗
m−2n−1, C

∗
m−2n, ...,

C∗
m−n−1]

T which defines the original curve clamped at its right end um−n, can
be computed in the following way:









C∗
m−2n−1

C∗
m−2n
...

C∗
m−n−1









= P (n)um−n









Cm−2n−1

Cm−2n
...

Cm−n−1









(25)

10

where

P (n)um−n
= R

(n)
Im−n,∆m−n

S
(n)
∆m,Im−n

is the so-called clamping matrix at um−n, defined by Im−n = [um−n−1, um−n],
∆m = {um−2n−1, um−2n, ..., um} and ∆m−n = {um−2n−1, um−2n, ..., um−n−1,

um−n}, with um−n denoting the n + 1-fold knot um−n.

Figure 2 shows an example of curve clamping at both the ends. The orig-
inal degree-4 B-spline defined over the unclamped uniform knot-partition
{−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} is shown in Figure 2 left, whereas the
original curve clamped at both its ends u4 = 0, u8 = 4, is pictured in Figure
2 right.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 2. An unclamped B-spline (left) - The original curve clamped at its ends (right).

In this example the left end clamping matrix is

P
(4)
0 =

1

24










1 11 11 1 0
0 8 14 2 0
0 0 18 6 0
0 0 0 24 0
0 0 0 0 24










while the right end one is

P
(4)
4 =

1

24










24 0 0 0 0
0 24 0 0 0
0 6 18 0 0
0 2 14 8 0
0 1 11 11 1










.

11

4.1.2 The unclamping matrices

On the other hand, unclamping is essentially knot removal. However, we
present here an algorithm which computes the new control points at each
end all in place, just by a simple matrix multiplication. In fact, if C =
[C0, C1, ..., Cn, ..., Cm−n−1]

T denotes the original control point vector, the con-
trol point vector C∗ = [C∗

0 , C
∗
1 , ..., C

∗
n, Cn+1, ..., Cm−n−1]

T which defines the
original curve unclamped at its left end un, can be computed in the following
way:









C∗
0

C∗
1
...

C∗
n









= Q(n)un








C0
C1
...

Cn








(26)

where

Q(n)un
= R

(n)
In,∆0

S
(n)
∆n,In

is the so-called unclamping matrix at un,defined by In = [un, un+1], ∆0 =
{u0, un+1, ..., u2n+1} and ∆n = {un, un+1, ..., u2n+1}, with un denoting the n+1-
fold knot un.
Analogously, the control point vector C∗ = [C0, ..., Cm−2n−2, C

∗
m−2n−1, C

∗
m−2n, ...,

C∗
m−n−1]

T which defines the original curve unclamped at its right end um−n,
can be computed in the following way:









C∗
m−2n−1

C∗
m−2n
...

C∗
m−n−1









= Q(n)um−n









Cm−2n−1

Cm−2n
...

Cm−n−1









(27)

where

Q(n)um−n
= R

(n)
Im−n,∆m

S
(n)
∆m−n,Im−n

is the so-called unclamping matrix at um−n, defined by Im−n = [um−n−1, um−n],
∆m = {um−2n−1, um−2n, ..., um} and ∆m−n = {um−2n−1, um−2n, ..., um−n−1,

um−n}, with um−n denoting the n + 1-fold knot um−n.

Figure 3 shows an example of curve unclamping. The original degree-3 B-spline
defined over the clamped knot-vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} is shown in
Figure 3 left, whereas the original curve unclamped at the left end u3 = 0 is
pictured in Figure 3 right.

12

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
3

3.5

4

4.5

5

5.5

6

6.5

Fig. 3. A clamped B-spline (left) - The original curve unclamped at its left end
(right).

In this example the unclamping matrix Q
(3)
0 is the 4× 4 matrix

Q
(3)
0 =

1

2








12 −12 2 0
0 3 −1 0
0 0 2 0
0 0 0 2








.

Remark 4 Clearly, the extension of these results to surfaces is straightfor-
ward. A surface is clamped/unclamped in the u (v) direction by applying the
same clamping/unclamping matrix to the rows (columns) of control points.
Thus, in these situations, the advantage of working with the proposed trans-
formation matrices is really evident.

4.2 Merging spline procedures

In this subsection we introduce a procedure for modifying the control points
of two assigned degree-n Bézier curves almost C0, in order they can join Ck-
contiuously, for any k < n. The name merging spline procedure derives from
the fact that to join the Bézier curves together, we make their spline repre-
sentations become part of a unique degree-n spline that approximates them.

4.2.1 Merging spline of a pair of Bézier curves

Without any loss of generality let us assume that d0(u) =
∑n

i=0D
0
n−i Bi,n(u)

and d1(u) =
∑n

i=0D
1
i Bi,n(u), u ∈ [0, 1], are two polynomial curves of degree

n given by their Bézier representations, which almost join C0. In order to
make d0(u) and d1(u) join exactly Ck-continuously (for a given k < n) at the

13

common parameter value 0, we propose a strategy for opportunely modifying
their Bézier point sets without changing the original curves significantly. The
key idea is exploiting the Bézier-to-B-spline conversion in order to transform
d0(u) and d1(u) into two B-spline representations c0(u) =

∑n
i=0C

0
n−i Ni,n(u)

and c1(u) =
∑n

i=0C
1
i Ni,n(u), defined over the same knot-partition

{−1, −1, · · · , −1, −1
︸ ︷︷ ︸

k+1

, 0, 0, · · · , 0, 0
︸ ︷︷ ︸

n−k

, 1, 1, · · · , 1, 1
︸ ︷︷ ︸

n+1

}.

In this way, considering c0(u − 1), we are able to represent the two splines
over the consecutive intervals [−1, 0] and [0, 1] on the extended common knot-
partition

{−1, −1, · · · , −1, −1
︸ ︷︷ ︸

n+1

, 0, 0, · · · , 0, 0
︸ ︷︷ ︸

n−k

, 1, 1, · · · , 1, 1
︸ ︷︷ ︸

n+1

}.

Thus, defining a unique spline c(u) =
∑2n−k

i=0 Ci Ni,n(u) having

Ci =







C0n−i i = 0, · · · , n− k − 1
1
2
(C0n−i + C1i−n+k) i = n− k, · · · , n

C1i−n+k i = n + 1, · · · , 2n− k

it follows, from the standard spline theory, that c(u) represents the required
Ck-join at the common parameter value 0 between the two curves c0(u − 1)
and c1(u) with the first k+1 control points slightly modified, since the original
Bézier curves are assumed to be almost C0.

To illustrate this we present a concrete example. Let d0(u) and d1(u), u ∈
[0, 1], two assigned sextic Bézier curves almost C0, we want to modify in
order to make them join exactly C3-continuously (Fig. 4, left). Following the
algorithm given above, the two Bézier curves d0(u) and d1(u) have to be
converted into their B-spline representation c0(u) and c1(u) over the knot-
partition {−1, −1, −1, −1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1} (Fig. 4, right).

Then, by introducing the new set of control points

Ci =







C06−i i = 0, · · · , 2
1
2
(C06−i + C1i−3) i = 3, · · · , 6

C1i−3 i = 7, · · · , 9
,

we define on the knot-partition

{−1, −1, −1, −1, −1, −1, −1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1}

a unique spline c(u) (Fig. 5, left) that restricted to the consecutive intervals
[-1,0] and [0,1] gives c0(u−1) and c1(u) slightly modified respectively. If c(u) is
converted back into two Bézier form curves, they join exactly C3-continuously
(Fig. 5, right).

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D

D

D
D

D

D
D

D

C

C

C

C

C C

C

C

0

0
0

0

0
0

0
0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

2

3

3

3

3

Fig. 4. Bézier (left) and B-spline (right) representation of sextic curves almost C0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 5. B-spline (left) and Bézier (right) representation of the two curves C3-joined.

Remark 5 Note that (21), as well as being the cheapest procedure for com-
puting the Bézier-to-B-spline transformation, also turns out to be the most
convenient when we only have to convert some control points of the Bézier
representation, as happens in the example above. In fact, since to join Ck con-
tinuously two given degree-n Bézier curves, it is sufficient to modify only the
first k + 1 control points of their Bézier representations, we can limit our-
selves to exploiting the row procedure (21) to compute only the first k rows
of the Bézier-to-B-spline conversion matrix R(n) (and the first k rows of the
B-spline-to-Bézier conversion matrix S(n), if we wish to convert back the two
Ck-joined curves into the Bézier form). This is because the last n + 1 − k

control points always remain the same (Fig. 4, right).
In particular, in the example above, the conversion matrices R(6) and S(6) asso-
ciated with the knot-partition {−1, −1, −1, −1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1}
are:

15

R(6) =













8 −12 6 −1 0 0 0
0 4 −4 1 0 0 0
0 0 2 −1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1













and S(6) =













1
8

3
8

3
8

1
8 0 0 0

0 1
4

1
2

1
4 0 0 0

0 0 1
2

1
2 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1













.

Note that, thanks to the assumed notation in the definition of the original
Bézier curves, the two conversion matrices are exactly the same for both the
curves. Thus it is sufficient to compute them once.

4.2.2 Merging spline of four Bézier patches around a vertex

The procedure given in subsection 4.2.1 can be trivially extended to the tensor-
product bivariate case for achieving the Ck-join (for a given k < n) of two
degree-(n, n) Bézier patches dh(u, v) =

∑n
i=0

∑n
j=0 Dh

i,j Bj,n(u) Bi,n(v), u, v ∈
[0, 1], h = 0, 1 that join almost C0 across their common boundary. Since the
tensor-product bivariate case is just a tensor-product of the univariate results,
the conversion of a Bézier patch into a B-spline surface is given exactly by
applying the univariate matrix R(n) to the rows and columns of the control
point matrix.
Consequently, a solution to the problem of smoothly joining four degree-(n, n)
Bézier patches dh(u, v), h = 0, · · · , 3, enumerated anticlockwise around a given
point (Fig. 6), follows directly from applying a Bézier-to-B-spline conversion
to each patch dh(u, v) (Fig. 7) over the knot-partition

{−1, · · · , −1
︸ ︷︷ ︸

k+1

, 0, · · · , 0
︸ ︷︷ ︸

n−k

, 1, · · · , 1
︸ ︷︷ ︸

n+1

} × {−1, · · · , −1
︸ ︷︷ ︸

k+1

, 0, · · · , 0
︸ ︷︷ ︸

n−k

, 1, · · · , 1
︸ ︷︷ ︸

n+1

}

(28)

and determining a Ck-join for the three following pairs of adjacent spline
patches c01(u, v) := (c0(u, v), c1(u, v)), c23(u, v) := (c2(u, v), c3(u, v)),
c0123(u, v) := (c01(u, v), c23(u, v)), over the following extended common
knot-partition

{−1, · · · , −1
︸ ︷︷ ︸

n+1

, 0, · · · , 0
︸ ︷︷ ︸

n−k

, 1, · · · , 1
︸ ︷︷ ︸

n+1

} × {−1, · · · , −1
︸ ︷︷ ︸

n+1

, 0, · · · , 0
︸ ︷︷ ︸

n−k

, 1, · · · , 1
︸ ︷︷ ︸

n+1

}.

(29)
In this way, a single spline c0123(u, v), approximating the four original ones,
remains defined. More precisely, c0123(u, v) represents a spline over the knot-
partition (29) approximating c01(u, v) and c23(u, v), while the latter represent
two splines over (29) approximating c0(u, v), c1(u, v) and c2(u, v), c3(u, v), re-
spectively.

16

Fig. 6. Four degree-(7,7) Bézier patches almost C0 (left) and their C3-join (right).

Fig. 7. Bézier-to-B-spline conversion of the 1st (left), 1st and 2nd (right) patches.

Remark 6 Note that, thanks to the assumed notation, the Bézier-to-B-spline
conversion matrix that allows us to represent the four patches on a common
knot-partition, is exactly the same for all the patches (that is, for the rows and
columns of their control point matrices).

5 Conclusions

In this paper we have introduced the very general matrix conversion formulae
that provide a practical tool for transforming arbitrary non-uniform degree-n
B-spline representations into Bézier form and vice versa. While in practice, ap-
plications of the uniform conversion matrices are very restrictive (see Romani
and Sabin, 2004), the generalized conversion matrices proposed in this pa-
per can be exploited for solving many problems that often appear in CAGD,
in a really simple way. Indeed, the possibility of choosing knots in a com-
pletely arbitrary configuration, makes our proposal a very powerful procedure

17

for working out all the classical algebraic operations on B-spline curves and
surfaces (degree-elevation, inner product, etc). Additionally, as explained in
the last section, interesting applications of these general matrix conversions
concern also clamping/unclamping and merging spline procedures, since in
these situations classical approaches turn out to be very tedious.

Acknowledgements

This work has been supported by MIUR-Cofin 2004 and FIRB 2004.

References

Boehm, W., 1977. Uber die Konstruktion von B-spline-Kurven. Computing 18, 161-
166.

Boehm, W., 1981. Generating the Bézier points of B-spline curves and surfaces.
Computer Aided Design 13(6), 365-366.

Chui, C.K., Lai, M.J., 1987. Computation of box-splines and B-splines on triangu-
lations of nonuniform rectangular partitions. Approx. Theory Appl. 3, 37-62.

Chui, C.K., 1988. Multivariate Splines. In: CBMS Lectures Series, vol. 54. SIAM,
Philadelphia.

Cohen, E., Lyche, T., Riesenfeld, R., 1980. Discrete B-splines and subdivision tec-
niques in computer aided geometric design and computer graphics. Computer Graph-
ics and Image Processing 14(2), 87-111.

de Casteljau, P., 1985. Formes á pôles. In: Mathematiques et CAO, vol. 2. Hermés,
Paris.

Grabowski, H., Li, X., 1991. General matrix representation for NURBS curves and
surfaces for interfaces. In: Hoschek, J. (Ed.), Freeform Tools in CAD Systems - A
Comparison. Teubner, pp. 219-232.

Prautzsch, H., Boehm, W., Paluszny, M., 2002. Bézier and B-spline techniques.
Springer-Verlag, Berlin.

Ramshaw, L., 1987. Blossoming: A connect-the-dots approach to splines, Technical
Report 19, Digital System Research Center, Palo Alto.

Romani, L., Sabin, M.A., 2004. The conversion matrix between uniform B-spline
and Bézier representations. Computer Aided Geometric Design 21(6), 549-560.

Sablonniere, P., 1978. Spline and Bézier polygons associated with a polynomial
spline curve. Computer Aided Design 10, 257-261.

18

