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Abstract

In this paper a two–class classification problem is faced. One class is constituted

by tumoral masses, breast tumors with size ranging from 3 mm to 30 mm. The

other class is constituted by non–masses. A Support Vector Machine (SVM) is used

as a classifier. Both, masses and non–masses, are extracted from the University

of South Florida (USF) mammographic image database and are presented to the

classifier as crops with pixel size 64 × 64. In order to find the optimal solution to

this problem, different featureless crops representations are evaluated. In particular,

a pixel–based representation, a Discrete Wavelet Transform (DWT) representation

and an Overcomplete Wavelet Transform (OWT) representation are tested.
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1 Introduction

Breast cancer is one of the most common causes of death among women from

all over the world. An early detection of this disease is really important to

increase the probability of surviving. However, due to the subtle nature of the

mammographic lesions, poor radiographic image quality and eye fatigue, this

task could prove really difficult for the radiologists. In order to facilitate it,

Computer Aided Detection (CAD) systems have been introduced in the last

years. The idea behind these systems is to automatically detect the regions

suspected to be tumors. In this way, it is possible to turn the radiologists’

attention directly to the suspected regions, thus facilitating the diagnosis. In

Fig. 1, the CAD’s mark individuating a mass is shown.

Masses are the most common lesions associated with the presence of breast tu-

mor. They are thickenings of the breast tissue that, in the radiographic image,

appear as lesions with size ranging from 3 mm to 30 mm. In order to detect

them, the entire image is scanned with a resizeable window at different scales.

Each sub–image scanned by the window—also known as crop—is then resized

to an image with pixel size 64 × 64. Finally, each resized crop is classified as

belonging to the mass class or to the non–mass class by a previously trained

learning machine, namely a Support Vector Machine (SVM). For more infor-

mation concerning the whole scanning scheme and the application of SVM in

CAD systems for mammography, see respectively [1,2].

In this work, the whole attention is devoted to the crops classification, rather

than to the scanning of the mammographic image and to the crops resizing. A

two–class classification problem is faced, where the two classes, masses versus

non–masses, are both constituted by crops with pixel size 64× 64. In order to
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find the optimal solution to this two–class classification problem, some pixel–

based and wavelet–based image representations are evaluated. In the evalua-

tion of the pixel–based image representation, the raw pixel values of each crop

are used to train and to test SVM. In the evaluation of the wavelet–based

image representations—both in the Discrete Wavelet Transform (DWT) and

in the Overcomplete Wavelet Transform (OWT) approach—the wavelet coef-

ficients are presented to the classifier. For this reason, the approach adopted

could be considered as a featureless approach, since the training and the test

of the classifier are performed without extracting any feature from the crops,

thus without assuming any a priori knowledge about them.

The rest of the paper is organized as follows. In Section 2 an overview of the

dataset is given. Section 3 discusses the image representations evaluated. The

classification techniques adopted are discussed in Section 4. In Section 5 the

methods and results for each image representation are shown. The paper is

concluded in Section 6.

2 Dataset

The dataset used to evaluate both the pixel–based and the wavelet–based

image representations is composed of 6000 crops with pixel size 64 × 64 rep-

resenting the two classes, masses and non–masses, as shown in Fig. 2. The

crops representing the mass class are 1000, whereas the crops representing

the non–mass class are 5000. All the crops are extracted—and then resized to

64 × 64—from the mammographic images belonging to the Digital Database

for Screening Mammography (DDSM), collected by the University of South

Florida (USF), see [3]. The DDSM images are digitized with Lumisys scan-
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ner at 50 µm and Howtek scanner at 43.5 µm pixel size. They have a 12–bit

gray–level resolution.

3 Image representations

As mentioned in Section 1, in order to find the optimal solution to the two–

class classification problem, three image representations are tested: a pixel–

based, a DWT–based and an OWT–based. In the pixel–based image represen-

tation, the raw pixel values are presented to the classifier. In the DWT–based,

the Haar wavelet coefficients of the 1st level are presented to the classifier.

In the OWT–based, the redundant Haar wavelet coefficients of the 4th and

6th levels are presented to the classifier. In addition to these tests, the effects

on the image representations performance of some pre–processing techniques,

such as histogram equalization and crops resizing are evaluated. In the fol-

lowing, an overview of these representations and pre–processing techniques is

given.

3.1 Pixel–based image representation

In the pixel–based image representation the raw pixel values are used. See Fig.

3 for an example of the pixel–based image representation.

3.2 Wavelet–based image representation

In the image processing community, the wavelet transform is a well–known

technique allowing the multi–resolution analysis of images. It offers a suitable

4



image representation for highlighting structural, geometrical and directional

features of the objects within the image, see [4].

The classical wavelet transform—also known as Discrete Wavelet Transform

(DWT)—is an orthogonal transform that, through a cascade of low–pass and

high–pass filters, transforms an image with pixel size N × N into N × N

wavelet coefficients [5]. Each pair of filters corresponds to a decomposition

level, in other words to a particular resolution of the analysis. The wavelet co-

efficients are divided into approximation coefficients, representing the image

structural information, and horizontal, vertical, diagonal coefficients, repre-

senting respectively the horizontal, vertical and diagonal information of the

image.

In order to split the information of the image on a higher number of wavelet

coefficients, the redundant wavelet transform—also known as Overcomplete

Wavelet Transform (OWT)—has been introduced [6]. It provides a redundant

encoding of the image information through a spatially superposed wavelet

analysis. For example, given an image with pixel size 64 × 64, the OWT

produces—up to the 6th decomposition level—approximately 14 000 wavelet

coefficients, whereas the application of the DWT produces 64 × 64 = 4096

wavelet coefficients.

3.2.1 DWT–based image representation

In the DWT–based image representation, the Haar wavelet coefficients of the

1st level are used, for a total number of 4096 wavelet coefficients for each

image. See Fig. 4 for an example of the DWT–based image representation.
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3.2.2 OWT–based image representation

In the OWT–based image representation, the Haar wavelet coefficients of the

4th and 6th levels are used (except the approximation coefficients) for a total

number of approximately 3000 wavelet coefficients for each image. See Fig. 5

for an example of the OWT–based image representation.

3.3 Crops pre–processing techniques

Some image processing techniques, such as image histogram equalization and

image resizing, are quite common in the imaging community, see [7]. Image

histogram equalization is often used to enhance the image contrast, image

resizing to decrease the image size. In order to evaluate the combined effects

of these techniques, together with the previously discussed image represen-

tations, they are applied to the crops as pre–processing techniques. In the

pixel–based image representation case they are applied before the SVM clas-

sification, whereas in the wavelet–based image representation case they are

applied before the wavelet transform and the following SVM classification.

3.3.1 Crops histogram equalization

The process of adjusting the image intensity values—also known as histogram

equalization—involves the transformation of the image intensity values so that

the histogram of the equalized image approximately matches a flat histogram.

A mass crop before and after histogram equalization is shown in Fig. 6.
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3.3.2 Crops resizing

The process of image resizing involves the interpolation of adjacent pixels in

order to estimate an image of a different size. The most common interpolation

methods are the nearest–neighbor, bilinear and bicubic. In this work, a bilinear

interpolation is used. This means that each pixel of the resized image is a

weighted average of pixels in the nearest 2–by–2 neighborhood. A mass crop

before and after resizing is shown in Fig. 7.

4 Classification

As introduced in Section 1, in order to evaluate the image representations

performance, an SVM is used as a classifier. Due to the limited number of

crops to train and test SVM, a cross–validation procedure is implemented.

The classification results are presented in terms of the Receiver Operating

Characteristic (ROC) curve of the system. In the following, an overview of

SVM theory is given, together with some background information regarding

the implementation of a cross–validation procedure and the evaluation of an

ROC curve for a classification system.

4.1 Support Vector Machine

SVM constructs a binary classifier from a set of l training examples, consisting

of labeled patterns (xi, yi) ∈ RN × {±1}, i = 1, . . . , l, see [8,9]. The classifier

aims to estimate a function f : RN → ±1, from a given class of functions,

such that f will correctly classify unseen test examples (x, y). An example is

assigned to the class +1 if f(x) ≥ 0 and to the class −1 otherwise.
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SVM selects hyperplanes in order to separate the two classes. Among all the

separating hyperplanes, SVM finds the one that causes the largest separation

among the decision function values for the borderline examples of the two

classes. The Maximal Margin Hyperplane (MMH) is computed as a decision

surface of the form:

f(x) = sgn

(

l
∑

i=1

yiαi(x · xi) + b

)

(1)

where the coefficients αi and b are calculated by solving the following quadratic

programming problem:































maximize
∑l

i=1
αi −

1

2

∑l
i,j=1

αiαj(xi · xj)yiyj

with
∑l

i=1
αiyi = 0 0 ≤ αi ≤ C

(2)

C is a regularization parameter, selected by the user. The classification of a

pattern x is therefore achieved according to the values of f(x) in (1). It is

worth mentioning that in a typical classification problem the hyperplane (1)

is determined only by a small fraction of training examples. These vectors,

named support vectors, are those with a distance from the MMH equal to half

the margin.

In the more general case in which the data are not linearly separable in the

input space, a non–linear transformation φ(x) is used to map the input vectors

into a high–dimensional space. The product K(xi,xj) ≡ φ(xi) · φ(xj) is called
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kernel function. Admissible and typical kernels are:















































































K(xi,xj) = xi
Txj Linear Kernel

K(xi,xj) = (γxi
Txj + r)d, γ > 0 Polynomial Kernel

K(xi,xj) = exp(−γ‖xi − xj‖
2), γ > 0 RBF Kernel

K(xi,xj) = tanh(γxi
Txj + r) Sigmoid Kernel

(3)

where γ, r and d are kernel parameters.

4.2 Cross–validation

Cross-validation is a common procedure used to train and test a classifier

when the dimensionality of the dataset is limited [10]. Given a n–dimensional

dataset D, first divide the entire dataset in f homogeneus sub–datasets, also

known as folds, F1, F2, . . . , Ff . Train the classifier with the collection of the

first f −1 folds, F1, F2, . . . , Ff−1, then test it on Ff , the fold left over. Permute

the procedure for each Fi, i = 1, . . . , f − 1.

As discussed in Section 2, the dataset used in this work is composed of 1000

crops representing the mass class and 5000 crops representing the non–mass

class. In order to implement a 10–folds cross–validation procedure, the dataset

is divided into 10 folds, each one containing 100 mass crops and 500 non–mass

crops. Thus, for each permutation of the cross-validation procedure, SVM is

trained with 900 mass crops and 4500 non–mass crops, then is tested on 100

mass crops and 500 non–mass crops.
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4.3 ROC

The receiver operating characteristic curve analysis is a widely used method

for evaluating the performance of a classifier used to separate two classes [11].

The ROC curve is a plot of the classifier’s True Positive Fraction (TPF) versus

its False Positive Fraction (FPF). Here the FPF is the fraction of non–masses

incorrectly classified as belonging to the mass class, whereas the TPF is the

fraction of masses correctly classified as belonging to the mass class. The TPF

is generally known as the system sensitivity, the quantity 1-FPF as the system

specificity. The best possible prediction method would yield 100% sensitivity

(all true positives are found) and 100% specificity (no negatives are found).

5 Methods and results

The pixel–based, the DWT–based and the OWT–based image representations

are evaluated as stand–alone image representations and together with the com-

bined effects of the previously discussed pre–processing techniques, namely

histogram equalization and resizing. A further technique—called scaling—is

tested in combination with the ones described above. It consists of scaling cor-

respondent features of the train and test sets in the range [0, 1]. The scaling

coefficients are calculated for each feature during the training phase, then are

used to scale correspondent features both in the train and test set. In this

work, correspondent features are correspondent pixels when evaluating the

pixel–based representation and are correspondent wavelet coefficients when

evaluating the wavelet–based representations. This technique is very common

in the pattern classification community, since it is useful in order to avoid
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that features of greater value dominate those of smaller value. Furthermore,

since classification depends mainly on the inner products of feature vectors,

the scaling technique is useful to avoid numerical difficulties.

In order to optimize SVM to the different representations, several polynomial

kernels are tested, from degree 1 up to degree 5. The performances are com-

pared using ROC curves generated by moving the hyperplane of the SVM

solution by changing the threshold b, see Eq. 1. The fraction of true positives

and false negatives for each choice of b is then computed. Each single point

of the ROC curves is obtained by averaging the results of a 10–folds cross–

validation technique applied to the entire dataset.

In the following, the tests performed and the results obtained are described

and discussed in detail. Notice the range of the axis in the performances plots

of the next figures: the FPF range is [0, 0.18] while the TPF range is [0, 1] in

order to show the most interesting parts of the ROC curves.

5.1 Pixel–based performances

For the sake of semplicity, the two pixel–based image representations tested

are referred to as PixRS and PixHRS.

• PixRS is a pixel–based representation in combination with resizing and

scaling techniques. In particular, the original crops with pixel size 64 × 64

are first resized to 16 × 16, then scaled as described above.

• PixHRS is a pixel–based representation in combination with histogram

equalization, resizing and scaling techniques. The original crops with pixel

size 64 × 64 are first treated with histogram equalization, then resized to

16 × 16 and finally scaled.
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Fig. 8 shows the performances of PixRS and PixHRS. A linear kernel for the

SVM classifier is used in both the experiments. This is in fact the one leading

to the best results, when working with this image representation. Looking at

the performances, PixHRS seems to perform significantly better than PixRS.

This is manly due to the fact that the histogram equalization enhances the

image contrast, thus probably leading to a two–class classification problem

more easily separable. It is worth mentioning that the scaling technique proves

to be fundamental with this image representation since, without scaling the

pixels, the training of the system does not converge.

5.2 DWT–based performances

The first four DWT–based image representations tested are referred to as Dwt,

DwtH, DwtS and DwtHS.

• Dwt is a simple DWT–based representation. The original crops with pixel

size 64 × 64 are decomposed by DWT up to level 1 using the Haar wavelet

filters.

• DwtH is a DWT–based representation in combination with histogram equal-

ization. The original crops with pixel size 64 × 64 are first treated with

histogram equalization, then decomposed by DWT up to level 1 using the

Haar wavelet filters.

• DwtS is a DWT–based representation in combination with scaling. The

original crops with pixel size 64 × 64 are decomposed by DWT up to level

1 using the Haar wavelet filters, then scaled.

• DwtHS is a DWT–based representation in combination with histogram

equalization and scaling. The original crops with pixel size 64 × 64 are
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first treated with histogram equalization, then decomposed by DWT up to

level 1 using the Haar wavelet filters and finally scaled.

Fig. 9 shows the performances of the DWT–based representations discussed

above. In this first set of experiments a linear kernel is used. It is possible to

notice that there is not a significant difference among the four representations.

This probably arises from the fact that the range of the wavelet coefficients

is smaller than the range of the pixel values, thus scaling has a quite limited

influence. Similarly, histogram equalization has a weak impact on the per-

formances of the system, since the DWT itself enhances the contrast of the

image.

The second set of tests using the DWT–based image representation is oriented

in the direction of quantifying the importance of the kernel used in order to

improve the classification performances. Chosen DwtHS, which has slightly

better performances, several polynomial kernels are tested, from degree 2 up

to degree 5. These tests are referred to as DwtHS2, DwtHS3, DwtHS4, DwtHS5,

where the number indicates the degree of the polynomial kernel used. The per-

formances are shown in Fig. 10. It is evident here that, differently from the

pixel–based case, in which the linear kernel is the best performing one, better

performances correspond to increasing values of the polynomial kernel degree.

5.3 OWT–based performances

The two OWT–based image representations evaluated are called Owt2 and

OwtH2, where the number, as in the previous case, indicates the degree of the

polynomial kernel used.
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• Owt2 is a simple OWT–based representation. The original crops with pixel

size 64 × 64 are decomposed by OWT using the Haar wavelet filters and

retaining only the wavelet coefficients corresponding to the levels 4 and 6.

• OwtH2 is an OWT–based representation in combination with histogram

equalization. The original crops with pixel size 64×64 are first treated with

histogram equalization, then decomposed by OWT using the Haar wavelet

filters and retaining only the wavelet coefficients corresponding to the levels

4 and 6.

Fig. 11 shows the performances of the OWT–based representations discussed

above. In both the experiments a polynomial kernel with degree equal to 2

is used, since this is the one leading to the best results. In these two tests,

similarly to what discussed for the DWT–based image representation, there

is no evidence of an outperformance of one representation with respect to

the other. The reason is probably the same mentioned in Section 5.2 for the

DWT case, in other words the fact that the wavelet transform itself tipically

enhances the image contrast.

5.4 Image representations comparison

The previously discussed tests show that PixRHS is the image representation

leading to the best results among all the pixel–based image representations,

DwtHS5 among all the DWT–based and Owt2 among all the OWT–based. In

Tab. 1, the results obtained with these image representations are compared.

It is clear from the results that PixRHS has similar performances, compared

to DwtHS5 and Owt2. This result is quite interesting. First, it demonstrates

that one of the simplest representations leads to the same results obtained with
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more elaborated representations. This means that it is possible to avoid time–

consuming image processing techniques, such as DWT or OWT, achieving

similar results. Second, it demonstrates that decreasing the dimensionality of

the classification problem to 256, as it is for PixRHS, it is possible to obtain

results similar to the ones obtained by representations characterized by a much

higher dimensionality, as 4096 for DwtHS5 or approximately 3000 for Owt2.

This means a further saving of time, since the lower is the dimensionality of the

classification problem, the lower is the time used to perform the classification.

6 Conclusions and future works

The tests performed to evaluate the different combinations of representa-

tions and pre–processing techniques showed some interesting results. First,

as regards the pixel–based image representation, image histogram equaliza-

tion proved to be really important in order to get better performances. Image

scaling proved to be fundamental for the convergence of SVM training. Linear

kernel proved to be the best performing one, with this image representation.

Second, as regards the wavelet–based image representations, image histogram

equalization and image scaling did not seem to be fundamental. The polyno-

mial kernels with higher degrees proved to be the best performing ones with

this image representation. Nevertheless, the main result of this work is that

it is possible to obtain quite close performances with specific combinations

of the discussed representations and pre–processing techniques. In particular,

PixRHS performs similarly to DwtHS5 and Owt2. PixRHS is a pixel–based

representation in combination with histogram equalization, resizing and scal-

ing techniques, DwtHS5 is a DWT–based representation in combination with
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histogram equalization and scaling, while Owt2 is an OWT–based representa-

tion. This demonstrates that, using one of the simplest representation tested,

namely PixRHS, it is possible to obtain results quite close to the ones ob-

tained with representations much more sophisticated, such as DwtHS5 and

Owt2. This literally means having the possibility to obtain similar results sav-

ing a lot of computational time.

Obviously, when dealing with a classification problem, the final aim is to

achieve the best classification results, namely the best possible sensitivity and

specificity, as discussed in Section 4.3. In this work, the best possible results are

achieved both by sophisticated image representations—DwtHS5 and Owt2—

and by a much simpler image representation—PixRHS—in much less time.

The next step will be in the direction to understand whether there is the

possibility to improve the performances. Since the pixel–based representation

has probably achieved its best performances at all, the future research will be

mainly concentrated on the wavelet–based representation. Two aspects will be

investigated. First, a deeper study of the wavelet–based representation will be

conducted. Basically, different wavelet–based multi–resolution techiques will

be evaluated, such as ridgelets, curvelets and steerable filters, in combination

with some wavelet–based de–noizing techniques, such as wavelets shrinking

and quantizing. Second, in order to investigate whether it is possible to re-

duce the dimensionality of the problem—thus reducing the computational

time—without affecting the classification performances, some techniques such

as Principal Component Analysis (PCA), Indipendent Component Analysis

(ICA) and Recursive Feature Elimination (RFE) will be evaluated.
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Table 1

Classification results comparison. TPF values obtained by the best performing image

representations, for FPF values approximately equal to 0.01, 0.02, 0.03, 0.04 and

0.05, are shown.

FPF ∼ 0.01 FPF ∼ 0.02 FPF ∼ 0.03 FPF ∼ 0.04 FPF ∼ 0.05

PixRHS .70 ± .06 .77 ± .07 .84 ± .05 .86 ± .05 .89 ± .03

DwtHS5 .68 ± .08 .76 ± .05 .81 ± .04 .85 ± .04 .86 ± .03

Owt2 - .75 ± .05 .82 ± .05 .85 ± .05 .87 ± .05

Fig. 1. Mammographic image. The square mark is the CAD’s mass detection.
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Fig. 2. The two classes. Mass class (top) vs. non–mass class (down).

Fig. 3. Pixel–based image representation. Mass (left) vs. non–mass (right).

Fig. 4. DWT–based image representation. Mass (left) vs. non–mass (right). The

approximation (upper–left), horizontal (upper–right), vertical (lower–left) and di-

agonal (lower–right) wavelet coefficients are shown both for mass and non–mass.
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Fig. 5. OWT–based image representation. Mass (left) vs. non–mass (right). The

horizontal (left), vertical (center) and diagonal (right) wavelet coefficients of level

4 (up) and 6 (down) are shown both for mass and non–mass.

Fig. 6. Crops histogram equalization. Equalized mass (left) vs. non equalized mass

(right).

Fig. 7. Crops resizing. Resized mass (left) vs. non resized mass (right).
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Fig. 8. Pixel–based performances using linear kernel.
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Fig. 9. DWT–based performances using linear kernel.
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Fig. 10. DWT–based performances using polynomial kernels with degree > 1.
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Fig. 11. OWT–based performances using polynomial kernels with degree = 2.
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