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Abstract  —  This paper describes the design and 
realization of a high performance linear power amplifier in 
the 2.4GHz band for the IEEE 802.11b/g WLAN (Wireless 
Local Area Network) and ISM (Industrial Scientific and 
Medical) applications using a proprietary 0.5um 
enhancement-mode Pseudomorphic High-Electron-Mobility 
Transistor (e-pHEMT) technology. The amplifier exhibits a 
linear power output of 18.5dBm at 5% Error Vector 
magnitude (EVM) and efficiency of 30% at 2.45GHz at 3.3V 
supply in a chip-on-board (COB) module. The design also 
includes an integrated power detector. 

I. INTRODUCTION

With the ever-increasing demand for higher data rates 
in wireless applications, e.g. 802.11 WLAN, designers 
have an uphill challenge to design linear amplifiers to 
meet ever more demanding performance goals such as 
lower current (hence efficiency), higher power output 
and improved linearity. For example, the 802.11g 
(2.4GHz) specification enables up to 54Mbps of data rate 
employing Orthogonal Frequency Division Multiplexing 
(OFDM) 64-QAM modulation while maintaining a total 
system EVM of not more than 5.6%. This is a vast 
difference compared to current 802.11b Wi-Fi standard 
which provides up to only 11Mbps using Direct 
Sequence Spread Spectrum (DSSS) and Complementary 
Code Keying (CCK) modulation.   

Significant improvements in this PA linearity-vs-
efficiency trade-off have been realized in this respect 
with Agilent’s proprietary 0.5um GaAs e-pHEMT 
process [1].  This paper demonstrates that with this 
technology and optimum device biasing and matching, a 
high-linearity, high-efficiency PA (power amplifier) can 
be designed without resorting to fancy linearization 
techniques. We describe a WLAN PA that achieves 30% 
efficiency with a linear output power of 18.5dBm for a 
54Mbps OFDM-modulated signal using a single 3.3V 
supply. The PA includes shutdown circuitry as well as 
on-chip RF power detection functionality. The chip 
occupies an area of 1.25mm x 0.525mm. 
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II. GAAS E-PHEMT CHARACTERISTICS

ical output power vs input power curves for a 
T are shown in Fig. 1 below for different bias 
ions. Notice both gain expansion and gain 
ession are possible, depending on the bias used. By 
icious combination of gain expansion and 
ession in a multi-stage amplifier it is possible to 
ize the maximum output power while maintaining 
al bias currents in a Class A-B amplifier. This is 
plished via optimizing pHEMT bias currents and 
ance matching circuitry on- and off–chip. 

 Gain for different bias currents of a 800um e-pHEMT

III. THE DIE-LEVEL AMPLIFIER DESIGN

ure 2 shows the circuit of the amplifier. For 
, the bias circuits are not shown. A single shunt 

or provides input match by resonating with the 
apacitance of the 1st stage device (Q1). Inter-stage 

 is accomplished by means of a drain inductor at 
d a series inductor-capacitor between Q1 and Q2. 
n inductor and output shunt capacitor at Q2, and 
ated output bond wires and surface-mount 
tors form the output match. Figures 3 and 4 below 
he topologies for the bias circuits and power 
r respectively. 
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Fig. 2. Die level schematic of the amplifier 

Fig. 3. Bias circuit                    Fig. 4. Power Detector
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compensating current source which tracks the changes in 

each o
at the 
[2]. B
approp
output
close t
way, t
while 
of the 
proces
proces
power
import
attaina

The p
pHEM
output
Fig.13

Fig. 6
co

R
R1

R
R2

HP_FET
Q1

HP_FET
Q2

Det out

RFinBias

C
C1

C
C3

HP_FET
Q3

HP_FET
Q1

C
C2

R
R3

Diode
DIODE1

R
R1

HP_FET
Q2

R
R2
f the devices over temperature so that the voltages 
gates of the amplifying devices remain constant 
y selecting the bias currents and device sizes 
riately, it is possible to achieve flat gain versus 
 power characteristics for very high output powers 
o minimal back-off of the power amplifier. In this 
he PA can operate in minimal bias class-B mode 
attaining the linearity required. The actual values 
bias currents and device sizes are dependent on the 
s characteristics. The enhancement-mode pHEMT 
s used showed high linearity across a wide input 
, supply voltage and bias current range. This is 
ant to determine the maximum power output 
ble for a given quiescent bias and efficiency.

ower detector is made up of a diode-connected 
T with current mirror bias as shown in Fig. 4. The 
 is almost linear with input power in dBm (see also 
.) 

Fig. 5. Die level layout 

.  Simulation schematic of the amplifier with matching 
mponents, transmission lines and package parasitics.
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Figure 5 shows the layout of the die in Agilent’s 
proprietary 0.5um enhancement-mode GaAs-AlGaAs 
pHEMT process. The die measures 1.25mm x 0.525mm.  

IV. THE MODULE AND PACKAGING DESIGN

The Agilent Technologies Advanced Design System 
(ADS) simulator was used extensively to predict and 
optimize the performance when the die is packaged in a 
COB module. The simulation schematic was carefully 
constructed to include all the board traces, wirebond 
pads, component pads, vias and module solder pads. 
Agilent’s Root Model [3] was used for the active 
devices. The simulation schematic is shown in Fig. 6 and 
the swept power, gain and current results are shown in 
Fig.7. Using the same values as that obtained from 
simulation, good correlation was noted for gain and 
power (within 1dB). For the current drain, good 
correlation was obtained in the trend beyond the 18dBm 
power output level, but not in the low level (linear) 
region. Nevertheless, the simulation exercise was very 
important in determining the matching topology and 
component values, thus reducing cycle time 
tremendously.  The printed circuit board (PCB) layout is 
shown in Fig. 8.  

Fig. 7. Simulation results. 

Fig. 8. PCB layout of the amplifier showing MMIC, 
transmission lines and matching components. 

Fig. 9. Module mounted on evaluation board
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 module PCB is a 0.015” thick Getek® material 
 dielectric constant of 3.9. The dimensions are 
.1mm3.  (Note: The module is actually bigger than 
ed to be as it was designed to accommodate two 

s, but only one of the circuits is discussed here). 
oice of COB over other packaging options such as 
 leadless chip carrier (PLCC) or ceramic LCC is so 
e matching surface mount components can be 
ted, and for cost reasons. Figure 9 shows the final 
ulated COB module mounted on a polyimide 
tion board. 

V. MEASURED PERFORMANCE

odule was measured for its performance using 
rd techniques. For EVM measurements the OFDM 
source is an Agilent ESG 4438C Vector Signal 

ator, and the analysis is performed by an Agilent 
A Performance Spectrum Analyzer (PSA) 
XA/AU option K70) in conjunction with Agilent 
A Vector Signal Analyzer (VSA) 70MHz IF 
e.  The supply voltage is 3.3V. 

s:

ncy:            2.452GHz 
            20.6dB  

urrent:            25.5dBm/203mA 
EVM,Pout/Current/PAE: 18.5dBm/70mA/30% 
EVM,Pout/Current/PAE: 17.4dBm/64mA/26% 

             24dBm 
 /4th harmonics:           34/44/68dBc 
eturn Loss:           -19dB 

t Return Loss:             -8dB 

s 10 and 11 show the swept-power measurements 
 module. In Fig. 10, notice the flat gain, close to 
up to a very high output power level (22dBm).  
ape of the  curves mirror that obtained through 
tion (see Fig.7). 

10. Swept power measurement of the PA module 
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Fig. 11.  EVM and current vs Pout plot of the PA module 

Figure 11 show typical EVM and current vs Pout curves.  
Typically, at 3% EVM, the Pout is 17.0 to 18dBm. 
At 5% EVM, the Pout is 18.5 to 19.5dBm with a 70 to 
80mA current drain. Figure 12 below shows the 
modulated signal measured using the WLAN analyzer. 
Finally, the power detector output versus power is shown 
in Fig. 13 which shows a high degree of linearity. 

Fig. 12.  Plot of PA module output at Pout=+18dBm 
@EVM=3% with 802.11g 54Mbps 64-QAM OFDM 
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Fig. 13.  Plot of detector output vs output power

VI. CONCLUSION

 design and measured performance of a high-
ty, high-efficiency power amplifier at 2.45GHz 
ying Agilent’s proprietary GaAs e-pHEMT 
tion technology has been presented. The power 
ier was designed primarily for the IEEE 802.11g 
 standard employing OFDM modulation at 
s.  With internal matching, an easy-to-use module 

een realized giving 21dB gain with a 2-stage 
gy. An unprecedented efficiency of 30% at a linear 
 of 18.5dBm, at 5% EVM, has been demonstrated. 
level of performance holds good potential for 
t-constrained products like WLAN NIC cards, and 
ss-enabled Personal Digital Assistants (PDA). 
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