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Abstract — In this paper the theoretical expression of the accuracy
of a previously introduced vector digital spectrum analyzer, based
on a random asynchronous sampling sirategy whose bandwidth
limitation is due uniguely to the bandwidth of the Sample/Hold
circuit, has been deduced and compared with the simulated re-
suits. In order to avoid the influence of the conventional time ori-
gin and of the measuring instant on the result the ratio between
each spectral component of the signal an its fundamental one
elevated to the same order of the considered harmonic is intro-
duced. It is shown that the asymptotic mean value of this new pa-
rameter Is independent from the measurement occasion if the
number of samples is sufficiently great; besides it is characterized
by a bias which depends on the approximation of the estimated
Sundamental frequency of the signal with respect to its true value.
At last a procedure to estimate the fundamental frequency is pro-
posed.

1. INTRODUCTION

Recently we introduced a new vector spectrum analyzer
[1] based on a random sampling strategy previously used for
the realization of both a digital power meter [2,3] and a
power spectrum analyzer [4,5]. To this end it is necessary to
recall that, according to the Fourier series, a generic spectral
component X, of a periodic signal x{¢):

x(t)= ZX el (1

g=-M
where f, =1/T, is the fundamental frequency and M the

practically finite maximum order of harmomcs can be de-

duced by the well known relationship:
+H/2

X, L _[x e P gy ()]

IL-nn2
For the digital implementation of this equation, the integral
can be approximated by using a sequence of 2N +1 samples
of the periodic signal and the estimate X . of & generic spec-
tral component can be expressed as follows:

S sl e 3)

X TaN+1 [l

where p, is a positive integer (greater than N ) which marks
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the centred value of the sequence of 2N +1 samples, fl a
suitable estimate of f, and f, a generic sampling instant.
The adopted random sampling strategy is defined as:
t,={i+Y,)T, +7 “
where T represents an “average” sampling rate, ¥, a set of
independent random variables with a probability density
function uniformly distributed between —1/2 and +1/2, 1
the unknown delay between the signal time origin and the
sampling time generator. Therefore the estimator x , be-

comes a random variable and, by substituting eqns.1 and 4
into eqn.3, it can be expressed as follows:

X =h X ejZM[fx'.?xlﬁ-Poﬂ)_i_ %h qujlﬂ[qﬁ—n];lf‘fpn‘f.) (5}
n nn n qn

g=—M
g=n
where:
1 & j2x(q/‘,-n]’,Xi+Y }r
h =——>Ye ottt 6
® 2N +1,;N ®

This equation is valid alse for g=n. We can also observe
that &,

with respect to the random variables {

e Yot et
+ fg{h L, epslai-ailessi) e
qn q

g=-M
q*n

where (see eqn.7 in [1]):
Efs,, }= sincllar, —f: 2n +1)7, ) ®)

is a real quantity, independent of p, since the random vari-

is independent from 7. The expected value of X u

Y, +,} results:

ables { b +,} have a common distribution for any p, and ,
and coincides with the Fourier Transform of a continuous
rectangular window of length (2N +1). By referring to the
last expression of eqn.7 we observe the mean value of the
estimate of X, is characterized by the following errors: a) an

amplitude error due to Eff,}; b) a phase error due to

n(f] *}]X‘r+ PoT,); ©) an error due to the influence of the
other spectral compenents into the sum. Because egn.8 is not



periodic, the aliasing effect is not present in this random
sampling strategy and consequently the last error is due
uniquely to the leakage effect
The expected value of f(,, is conditioned to particular
values of the delay 7 and the centred point p, of the sam-
pled values. By interpreting as random variables both ¢ and
Py » the unknown delay 7 (eqn.4) can be assumed as a con-
tinuous variable uniformly distributed in a generic time-
interval T' and the centred value p, a discrete variable uni-
formly distributed in a generic discrete interval (—m,+m).
The random variables 7,p, and {¥;} are mutually inde-

pendent. In order to avoid the influence of the conventignal
time origin on the instrument performance and of the meas-
uring instant, the asymptotic behaviour can be obtained by
imposing that the quantities 7" and/or m are sufficiently
large and theoretically tending to infinity. Obviously, when
the period 7| is known, the asymptotic behaviour can be ob-

The

asymptotic expected value of X , also with respect to these

last quantities is expressed as in eqn.1l in [1]. From this
equation we deduce that the asymptotic expected value is
null. In order to overcome this cumbersome and also to avoid

the phase error n(fl —ler+p°T,)
the ratio p, defined as follows [1]:

tained also if the time-interval 7" coincides with 7).

we proposed to introduce

it can be shown that, on the hypothesis of a leakage effect
sufficiently low, it results (see eqn.8):

X, E{hm,} X, sinc(nA)

Eip is = 10

"*{p"} X" B} X7 sine”(A) {10
where:

A:(fl-leZNH)T, (11

From eqn.10 we observe that there is uniquely a relative am-
plitude error equal to sinc{nA)/sinc”{A)— 1. This error is null
only if the condition A=0, i.e. f, = f,, is satisfied; when

this condition is only approximately verified, it is necessary
to evaluate the relative amplitude error. To this end each term

of the function sinc(nA)/sinc"{A) must be developed in
Taylor series around the value A=0. It can be shown that:

| (ana)
Ef3, }s 6 - X (14) (12)
1) l_”(“A)2 (Xl)n
6
where:
£ = —nfn—1) L (13)

6
represents the relative amplitude error on the hypothesis that
it is sufficiently low. For a prefixed value of £, when the
order nof the estimated spectral component increases, the
frequency of the signal must be estimated with greatest accu-

5 __X n racy.
o= (,\“’ )' forn>1 ® It can be shown that the asymptotic variance can be ex-
1
It allows to nor-
malize for each 1 1 o

Var{p, }=

rn the expected

|X
2N +1 | E*{,} q:z_:M{|X|

value E{f(,,} B
wi{t; }respccl fo z{ }
E v . 2 E hrm ) H
1 +n g 1 q=z—:M [l : ] (

Eh
_2 __‘_i;_ [E{h(n I)n l){l_
11

+ Z X Xq —n+l +
q=-M XnXl

g#*n

XX

: E
gt g—n+l 0
_ B nf1-

X, X, ]{ { X l){

Ji-rt zw+1)q};u[{—}‘]2w{hw}-

g#n

X,
E2{r,, )+ (2 +1) D [l
g=-M 1

E, {h,, }Eo{hl.}}

EoWt(_1)n-1)

S

]

(14)

Eo{h(n—l)(n—l)}

o Eothy- v }] +E JEl, v 2N+ 1)}]

II. ACCURACY ANALYSIS

The ratio 2, , defined by eqn.9, represents the new output
of the instrument. By evaluating the asymptotic mean of J, ,

pressed as follows (eqn. A31):

Taking into account eqns.8 and 11 and recalling that |nAI

must be sufficiently small in order to reduce the relative am-
plitude error (eqn.10), we can write:

Elr,, f=sincllg - n}2N +1)£,T,] for g#n
E{hml }=sinc[ral=1

(15)
(16)
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Eofh,, Jzsincllg—n)£T,] for g#n (17)
A
E =si =
ofPun } smc[u YT I-J (18)

Obviously the previous approximations are acceptable for
estimating the variance; indeed, for the evaluation of the am-
plitude error the effect of #A must be taken in more signifi-
cant account. By substituting into eqn.14 we obtain the final
result:

which depend on the relative amplitude of the other spectral
components.

Figure 1 shows the shape of the theoretical expression of
er{p,,} (eqn.19) X =1, N =50 and M =3 respectively for

n=2 (a) and n=3 (b). It is interesting to observe that the
second term into eqn.19 predominates and tends to the value
n?(M -1)/(2N +1).

- I +M qu'
- {p"}_2N+l ggl[lX‘n
e 3 [Pl 1]
il RS
-n % XqX;~n+l X;Xq-n-fl
P X X, X, X,

J [l—sincz((q;n)flTJ)+(2N+1)sinc2((q—n)(2N+l)f,T,)]
] b~ sinc?({g - 1)£,7, )+ N + 1sine? (g - 1)2N +1)7,T,)] (19)

J[l —sinc*((g - n)£,T, )+ (2N + 1)sinc?((g - n)2N +1)£,T, )]

From this equation we deduce that the variance of the esti-
mated ratio p, decreases with a quantity which is inversely
proportional to (2N +1}, i.e. the number of samples of the
window, while in the equally spaced one decreases with the
square of it [3]; this quantity is multiplied by different terms
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Fig. 1 —Shape of the theoretical expression
of Var{p,} as a function of 1T,
—

469

IIL SIMULATED RESULTS

An estimate of the expected value of the ratio p, of eqn.9
can be deduced by the following expression:
~ra 1 N+m 1 R 1 W el
ip =2 ¥ 23 Ly v en
Po=N+ RIOW O
Pt

S 4y, ), +r, ol

i=po—N

(20)

Pyt

[ 2 Hli+y, )+ ]e-Jz,a.[(H,,,;M]}
f=pg-N

where y, is generic value of the random variable 7, , uni-

irr

formly distributed in the interval between zero an one, 7, is
a generic value of the random variable 7, uniformly distrib-
uted in a generic interval, for example between ~T' and
+7". In order to obtain the asymptotic value of this estimate,

we can assume T '=f, because it is necessary to select

f, = f, in order to have an amplitude error of the ratio A,
sufficiently small. From eqn.20 we deduce that the value of
N must be selected sufficiently great in order to obtain a
small asymptotic variance of the ratio /. and not too great in
order to have also a smail amplitude error of the same ratio;
for example we can impose N =10*.

An estimate of the variance of the ratio 2, of eqn.9 can
be deduced by considering the last expression of eqn.Al4:

varlp, }=8{p,5:}-B(p, Jelo )= Ep. LT 21y



To this end, by recalling eqn.18, we can deduce firstly the
estimate of the expecled value of the product p,_j; :
1 N+m

E{p, pn} Z Z (2N +1)%).
-N+l R
"“Z i+, )T, +7, il )

. i=py-N
PatN
£
i=po—&
PatN

Z x‘ [(‘i'+yl"r )T; + T kJZM]‘l (s el

=g ~N

. Path L n
[ 3 x4y, )T, + 7, Pl s
i=py=N

By introducing this equation intc eqn.2l and by recalling
eqn.20 we obtain the final expression of the estimate of the
variance. In order to consider the asymptoiic properties of
this variance, we must also in this case increase the value of
m till its value becomes a constant.

: _ 22)
[(1+y )T +T k‘ﬁ’!ﬁ[(”*}’w}ﬁ*f\«ljl

CONCLUSION

A vector spectrum analyzer based on a random asynchro-
nous sampling strategy whose bandwidth limitation is due
uniquely to bandwidth of the S/H circuit is described. In or-
der to obtain a measurement result independent of the meas-
urement occasion, the ratio between each spectral component
and the fundamental one is introduced. It has been shown that
the mean value of this new parameter is independent from the
measurement occasion if the number of samples is suffi-
ciently large and it can be considered an unbiased estimate of
the generic spectral component if the frequency of the fun-
damental frequency is sufficiently near to its true value. To
this end a procedure for a software “locking” of this fre-
quency is proposed.

APPENDIX

In order to separate the terms with g=#n and ¢g#n in j,

defined by eqn.9 we introduce the parameter g, defined as
follows:

X,
g, = Z ePrla-nlilern, )h (AD)
~. X,
q#n
where h, is given by eqn.6. This parameter takes into ac-

count the leakage effect, i.e. the effect of the other spectral

components in the estimate of the n* one. Consequently, by

recalling eqn.5, eqn.9 can be rewritten as follows:
s _ Xy hyntg,

p =22 (A2)
X, [hn +g1T'

In order to evaluate the expected value of the parameter g,
we have:

Eg,}= Z #E{?Jzne ey eelanin |

e=—M
q#n

This equation takes into account the independence among
7, p, and {Y,} Because both the unknown delay ¢ has been
assumed random, uoniformly distributed in a generic time-
interval T', and the centred value p, random, uniformly

(A3)

distribute in a generic discrete interval (—m,+m), we obtain:

T ]E{hq"eill(q-ﬂ)fpnf } (A4)

g=—M
q#*n

In order to avoid the influence on the instrument performance
both of the conventional time origin and of the measuring
instant, the quantity 7' must be sufficiently large and theo-
retically must tend to infinity, or, when the period 7, of the
periodic signal x{t) is known, by imposing simply T'=&T;,
with & a positive integer. From eqn.A4 we deduce that the
asymptotic mean is null for each p,:

Efe,}=0

Therefore asymptotically the leakage effect nulls.
In order to deduce the statistical parameters of the ratio

A, it is convenient to introduce the complex random etrors
of h, and h, with reference to their respective expected
values Ef_} and Efh,}; therefore B, of eqn.A2 can be
rewritten as follows:
5, Xy Bl 1+ ok, +g,
T X7 [Efny }+ by + g,
where the complex random error Ak, is defined as follows:
&y, = hyy ~Effy, } A7)
with E{ak,, }=0. By assuming the variability of the ampli-
tude error and the leakage effect sufficiently low so that at

(A3)

(A6)

the denominator of egqn.A6 the successive powers
{Ah, +g,)" with n 22 can be neglected, we obtain:
_ X, Efh,} ”Ngii:?
D (A8)

" X" E"{hu}].Q. Aby, + g,
=

Now, by multiplying numerator and denominator of this ratio
by the difference of the two denominator terms and, as usu-
ally, by neglecting the second order contributions of the er-
TOTS We can write:

. _ X, E,}
Pt —tml{1+4,) (A9)
X7 By}
where:
Ah, +g Ah +g
5n= nn Ho_ 11 1 (Alo)
E{hnu} E{hll}
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It is vseful to verify that &, =0 because, for n=1, eqn.9
becomes equal to one.
By considering the expected value of p,, we have:

E{p,}= i ;{?hu} (1+E{5)D (A11)
where:
ElS }= Ele,}  Elg} A1)

Bfh,,) " Efh,}
with E{g, } given by eqn.A4 and E{i} by eqn.8 with
g =n . From eqn.A5 we deduce that asymptotically E{é‘n}
nuils:

E{5,}=0 (A13)
Therefore the asymptotic expected value of J, results:
X, Ep
{p Je=ln th, } (Al4)

X7 B}

From this equation we deduce that asymptotically both the

leakage and the phase error have no effect on the estimate of

the parameter J, . Taking into account eqn.Al4, eqn.A9 can

be rewritten as follows:
b, =E{p, {1+6,)

In order to evaluate the variance of the estimator j,, it is

necessary to take into account that it is a complex guantity
and therefore defined as follows:

varlp, }= E{p, 57}~ E{p, JE{p; (a16)

By using the first expression of the variance, from eqns.A9

and All we deduce'
Efediba)-so ]

V{p}'

By taking into account eqn.A13, the asymptotic value of this

variance results:

{p} l 2,, Ez"{h }

By recalling eqn.A10 where Eff,, } is real (see eqn.8 for
q=n), we can write:

56 = {an,, +gn)(AhM+gn)

E* 4, |

B E{hM’}lE{hu}[(Ah"" +g, ) +80)+ (8], + g Nam, +,)]

(Al5)

Efh,
2 Eln {h

(A18)

(Mll +g1)(Ah11 +gl)
EXh, }

(A19)
In order to deduce the expected value of &,8, we must there-
fore evaluate the contributions of the successive terms of this

equation. To this end, in analogy to eqn.A7, in gencral we
impose:

Ah, =h, —Ef,, | (A20)
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where E{Ahq,, }— 0 . Besides, in analogy to eqn.A16 it results:

Efak, Ak }= Varfs, }= Ef 4 1- B2, (A21)
being E{hq,,} real. On the other hand, by recalling eqn.6 we

can evaluate the expected value conditioned to a particular
value of p,; that is:

Eft s, /7, }=
1 +smc [(qf1 nfl)T]Z

2N +1 2N +1)
= E{hqﬂ qn }
(A22)

where in the second passage we have taken into account the

independence between Y, ,; and ¥, .. for i#/', while in the

third passage we recalled eqn.8 in [1], and in the last passage
we point out that the conditioned expected value is independ-
ent from p0 Moreover we can write:

SID e

Tt (A23)
Bt
T EXp,} 2N +1

where in the last passage we have taken into account eqn. in

[1] and eqn.8; besides we have introduced the symbol E; to

indicate the expected value of eqn.8 when N =0:

Eofh,, = sincllaf, - 7))

By substituting into eqn.A22, we obtain:
Ef .40 )= o 1[ —En, v e, ] a2s)

Therefore, from eqn.A21 it follows:

)T,

P—

ol

i==N i —-N
i

—l 7,

E—

(2N+1

(A24)

Bl ah, b= —— - £, ] (A26)
which is a real quantlty.
Further, by recalling eqn. Al we have:
. +M M X
2.8, = eﬂﬂ(q FRTACT N )h h (A27)
q=-M g=-M X X
g#En  g'#n

As usually, we interpret the unknown delay 7 and the cen-
tred value p, as random variables. The expected value of
2,2, must therefore be evaluated with respect both to the .
random vector {¥,} and these random variables; it results:

E{gng"} M M X - qﬂ Jzn(q-q')flpn'f,}E{eﬁn(q—e')f.f}

(A28)
whose asymptotic value with respect to 7(T'—> e or

T'=kT, when 7 is known) is always null except for g=g¢'.
Therefore, by recalling eqn.A25 we have:

q=—M q =M
g q'#n



Bt} z} Lt b ov 0,

(A29)
By considering all the terms of eqn.A19 it can be shown that

the asymptotic mean value of &,8, results:
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{5 .} E{AhnnAh;n}+E{Sng;} E{MIIM;I}+E{‘313;} 2E{MMM;1}+ E{gné’.’l‘}"']_:‘:‘{gng:}__
Ty T T Bl £l ]
BN [T
n? [ +M |X | ? ) ‘ | *
Ez{h“} q;’[le (1 E {hql}) 2N+lq__M | | E {hql}

n Eo{hm, }Eo{hu}
i E{hnu }E{hu}lZE{h(n-lHn_l)(l B Eo h[n—l)(n—l) ]

XX,

g-n+l

N
Xq Xq—n-H

)

E’O {hw }ED {h'(qv-nﬂ).l

q=-M XnXl X;Xl
g#hn

[ }(E{h(n“l)(n—l){l -
(A30)

It is important to emphasize that the variance becomes null
for n=1 since, fromeqn.9, g, =1.

By substituting into eqn.A18 we obtain the final result:

5 |x,

M
=M

1
2N +1E* {n, }

Var{p, }=

E, {h(n—l](n-l)}

} g, Yoo -1 S

}J + &N + 0B, -y }]

2 2
. Eh,} | & o 1% 2 S |X9 Xl | 2
= 1-E ¥ ZN+1 -_— E
+n Ez(,u.l){h”} q:Z—M |X1In IXII ( (]{q[})"'( + ):; |Xl|n |X1| {hﬂl}

Efn,, }
E2n+l{h”}|X

2n

o{h,,, }Eo{h.l}]

o (m=1%r-1)

+M Xq X;vnﬂ X;Xq-,m E{h Q {hqu }EU {h(q 1)l
+ Z x Xs X‘X [p~1)n-1) 1- {h ]l
g:;M net n<t 0 (n—t}n-1)
(A31)
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