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Abstract

English version

This work describes the development of a new Coerpliided system (CAD) for the
detection of nodules in CT scans of the lung, egiptp Computer Vision and Pattern
Recognition techniques. The system consists oéthreps: pre-processing, filtering and
False Positive Reduction (FPR). The pre-processstep is dedicated to lung
segmentation, and it is mainly based on Gray Lélistogram Thresholding, Seeded
Region Growing and Mathematical Morphology. Theosecand third steps are aimed
at detecting nodule-like signals — the filteringpst and at separating these signals into
true and false nodules - the FPR step. The mairactaistics of the CAD system are: 1)
an original and iterative use of the Fast Radl#rfi able to detect signals with circular
symmetry in CT images; 2) the novel use of a filiased on the Scale-Space theory,
able to locate circular signals of a given sizeth#) logical AND of the previous two
filters. The iterative application of the Fast Radilter approximately eliminates one
third of the 2D False Positives with respect to tise of a single Fast Radial filter,
whilst the Scale-Space based filter cuts 10% to 0%e 2D False Positives found by
the Fast Radial algorithm. The next steps of thetesy are: 4) a procedure to group
signals across adjacent slices, to obtain collestiof two dimensional signals
corresponding to single 3D candidate nodules, bg thue or false ones; 5) a coarse
FPR phase, based on length across slices, volumieinahination of 3D candidate
nodules, and 6) the fine FPR phase, based on thervésed classifier Support Vector
Machine (SVM), fed with Gray Level features extemttfrom Regions Of Interest
located around each signal, whose size and pogiawe been determined by means of
the Scale-Space based filter. The system has régmoeising results, being able to
detect 80% of nodules with 34 FP/Patient, or 65%noflules with 6 FP/Patient,

estimated with a Cross-Validation procedure overnddlules of 17 patients, with



diameter between 3 and 10 mm, and with slice tleskn5 mm and reconstruction
increment 3 mm.
Final note:

The work described here is both experimental amginal. We started off with
just a simple and vague problem - find a way t@denodules in lung CT scans — and
realized a fully automated CAD system. Moreover,hage written the thesis with an
educational purpose in mind: we have tried to shmvpathway that has taken us from
the initial problem formulation to the final CAD rgon, putting special emphasis on
the different critical points tackled during thesearch. This choice has led us to skim
rapidly over the theoretical aspects of the alreadil-known aspects of the employed

techniques and to concentrate on the original isew techniques.

Versioneitaliana

Il lavoro riguarda lo sviluppo di un nuovo sisteanatomatico di analisi (CAD:
Computer Aided Detection) di immagini TAC del polngoper la ricerca di noduli,
possibile segnale dello sviluppo di un tumore. Tsidema € basato su tecniche di
Image Processing e Pattern Recognition. Il sistemastituito da 3 parti principali: pre-
processing, filtering e False Positive ReductioRRIl: Il pre-processing € costituito
essenzialmente dall'algoritmo di segmentazionepdénoni, ed € basato su tecniche di
Gray Level Histogram Thresholding, Seeded Regiorowdrgy e Mathematical
Morphology. La seconda e la terza parte sono indedécate a trovare i segnali simili a
noduli — la seconda — e a separare questi segnadiri noduli e falsi noduli — la terza e
ultima. | punti salienti del CAD sono dati da: Iadattamento e l'uso iterativo,
originale, di un filtro per la rivelazione di sedire simmetria circolare (Fast Radial); 2)
'uso originale di un secondo filtro in grado didimiduare segnali circolari di
dimensioni ben definite attraverso un effetto dionanza (approccio di tipo Scale
Space); 3) I'AND logico dei suddetti filtri. L'ufi¢zo iterato del filtro Fast Radial riduce
approssimativamente di un terzo il numero dei skedfadsi Positivi trovati dal sistema,
in confronto al numero dei segnali falsi trovatlimzando il filtro una sola volta, mentre
il filtro di tipo Scale Space riduce il numero dealsi Positivi trovati dal filtro Fast
Radial di circa il 10% + 20%. | punti successivi desstema sono: 4) un metodo per
raggruppare i segnali che in immagini TAC contiguérovano in posizioni vicine, in

modo che ogni gruppo contenga tutte e sole le innmdgun candidato nodulo; 5) una



prima fase di riduzione dei segnali Falsi Posithv@sata su caratteristiche dei
raggruppamenti di segnali ottenute dal filtro ghotiScale Space; 6) una seconda ed
ultima fase di riduzione dei segnali Falsi Posjtivasata sul classificatore SVM e su
feature di tipo Grey Level ricavate da riquadritoais attorno ai segnali in base alle
caratteristiche della risonanza fra l'oggetto efiliro Scale Space. Il sistema ha
raggiunto risultati promettenti: 80% di noduli ria@ con 34 Falsi Positivi per Paziente,
oppure 65% con 6 FP/Paziente. Tali risultati sdat sttenuti da una procedura di tipo
Cross-Validation su un insieme di 34 noduli di detra compreso fra 3 e 10 mm,
appartenenti a 17 pazienti, in esami TAC ricostai® mm di spessore, con 3 mm di
reconstruction increment.

Una nota finale.

Questa tesi e la descrizione di un lavoro speriatiergd originale: partendo da
un problema molto semplice e generale, quello dbalare un metodo per trovare
noduli in TAC del polmone, siamo arrivati ad avaresistema CAD completo. Inoltre
abbiamo scelto una modalita di scrittura che ssguiguanto piu possibile, un intento
didattico: abbiamo cercato di esporre problemilezoni del percorso che ha portato
dalla iniziale formulazione della questione deligelazione di noduli alla versione
finale del sistema CAD. Questa scelta ci ha portatomettere la descrizione degli
aspetti teorici di quegli algoritmi gia ben conasgiin favore dei nuovi e del loro

utilizzo originale.



Chapter 1

Lung cancer overview and lung CAD motivation

1.1 Some statistics about lung cancer
Lung cancer is the leading cause of cancer death#&/astern Countries. In

Europe in 2004 there were 1.711.000 cancer delatingy cancer deaths were almost
20% of them (341.800), followed by coloreq203 700), stomach (137 900) and breast
(129 900) [Boyle05]. In Italy there are about 3®880.000 new cases per year, and the
incidence is increasing in women [AIRCO06].

Tobacco is considered responsible approximately8mrmpercent of all cases,
while radon exposure for another several perceaavid smokers have a much higher
risk of dying of lung cancer, about 10 times thiahon-smokers [AACRO05]. Asbestos,
pollution and genetic predisposition are other ingoa risk factors.

Only about 10+15% of all people who develop lungas survive for 5 years,
on average, but individual prognosis depends onettient of disease at the time of
diagnosis. Accurate staging, assessing the extérlbaal and distant disease, is
necessary to determine resectability and overatigmosis. Lung cancer staging
encompasses 4 stages, from | to IV, with increagmayity. The survival rate is about
67% if the cancer is detected at stage |, whenrglatively small (no more than 30 mm
in diameter), and drops down to less than 1% fagestlV, when metastases have

already developed.
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1.2 The question of lung screening
The high survival rate of stage | would lead to ttwnclusion that early

detection and treatment would result in a dramaticease in survival. Unfortunately,
lung cancer is usually detected late in the cowfséhe disease, due to the lack of
symptoms in its early stages. This is the reasoylwig screening programs have been
investigated since the ‘70s, aimed at detectingnpulry nodules: they are small
lesions which can be calcified or not, almost sjga¢in shape or with irregular borders
(see Figures at the end of the chapter). The nodefi@ition for thoracic CT of the
Fleischer's Society is “a round opacity, at leasiderately well margined and no
greater than 3 cm in maximum diameter” [Austin98pproximately 40% of lung
nodules are malignant, that is, are cancerous:réisé is usually associated with
infections. Because malignancy depends on mangrigcsuch as patient age, nodule
shape, doubling time, presence of calcification IH¥HPO06], after the initial nodule
detection further exams are necessary to obtaiagmdsis.

The first kinds of screening protocols were basedcbest X-ray (CXR) and
sputum cytology, but it resulted that they wereatigely insensitive in the detection of
small Stage | lung cancers, so they didn’t passchhical practice. More recently, lung
CT has demonstrated to be far superior to X-ragletecting small and potentially
curable nodules [Henschke99]: new generation nhigkisspiral CT scanners can
reconstruct images corresponding to a slice thiskred less than a millimetre, hence
are able to clearly visualize objects which are ome in size [Kalendar00]. At present,
only Japan has introduced lung screening in puigialth care: low-dose spiral CT is
annually performed for all smokers aged at leastT#is program has made the 5-year
survival rate increase to 58% [Koike99]. In the @B8d in Europe no lung cancer
screening is currently recommended, but this posis being re-examined [Bechtel03],
and the debate is far from being over: for examfibe, Patz and co-workers, who
compared patients mortality in a low-dose CT sdregrgroup and in a CXR and
sputum screening group, screening utility still eems unproven [Patz04]; Swensen and
co-workers [Swensen05] say that “our preliminagutes do not suppothis possibility
(of reducing mortality), and may raise concerns that False Positive teesamnd
overdiagnosis could actually result in more harmntlyood”; even, Brenner and co-
workers [Brenner04] report an estimated 5% increadang cancer incidence among
frequently screened smokers. Another important lprolio be addressed in the debate
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Is the specificity of lung CT exams: it is reportiat about 20% of suspected nodules
reveal to be other mimicking entities or artifafiisasmus00]. Moreover, there is a
lower size limit for clinically important nodulessome authors suggest that non-
calcified nodules less than 5 mm [Henschke04] ard [BellomiO4] in diameter only

justify repetition of annual screening, not immeeiaork-up.

1.3 Motivation for CAD systems
Besides from the debate about the necessity fay &aneening, there are two

important facts concerning lung CT analysis thatafrgreat importance:

1. alarge inter-reader variability has been reporitadicating the necessity to have

at least two or, better, four reads per CT scabD@103];
2. due to the developments in CT technology, the amobtimata to be visually
inspected by the radiologist is becoming overwhe{mni

Both reasons suggest that lung CT CAD systems heitlome major tools in clinical
practice in a few years, even if lung cancer sargewill not. The problem of reader
variability and oversight in mammography, where CADalready a well-developed
clinical tool, is similar to that in lung CT, anlet use of CAD has been demonstrated to
be very useful for early detection of breast candaryway, mammography is the first
medical field in which CAD has been applied: inestimeighbour fields, such as colon
and lung CT inspection, CAD is still in its infan@nd much work needs to be done. At
present, there are some recently published studiesving an improvement in
radiologists’ performance when using CAD: Li and-workers [LiO5b] report an
increase from 52% to 68% in the average sensitofity group of 14 radiologists in the
detection of 17 cancers; Rubin and co-workers [RQBj claim an average increase
from 50% of single reading to 76% when using tl@&kD system (SNO-CAD) at a
threshold allowing 3 False Positive detections pagrent (FP/Patient) on a set of 195
nodules at least 3 mm in diameter; Lee and colleaglee05] compared the detection
rates of four radiologists with and without a CAfB®m (ImageCheckBICT LN-1000
by R2 Technology, Inc.) on a group of 78 nodulethmrange 4+15.4 mm in diameter,
and concluded that “the CAD system can assist lagigis in detecting pulmonary
nodules (...), but with a potential increase in tHeslse Positive rates” and add that
“further technological improvements are necesser\ygrder to increase its sensitivity

and specificity”.
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1.4 I'ssues concerning CAD systems

Other then improvements, also general guidelines @GAD assessment,

development and use are necessary. Some of theanréeently been specified by Gur

and colleagues [Gur05]:

1.

Cases used for system development and assessnuerd e pathologically

verified;

Results should be reported in a standardized maandrthe better way should
be the detection rate with a certain number of &&lssitives per Patient: at
present FPs are reported in different units, am rtrakes difficult to compare

different CAD systems.

Other issues are reported in [Goo05], where thkaadays that it should be important

to

take into account other underlying diseases intliloeax, which could mislead
the CAD system,;

adjust nodule target range in accordance with tdsk:example, relevant
nodules are in the range 4+20 mm, because larges ane not missed by
radiologists, and smaller ones are wusually constlemot relevant
[Henschke04][BellomiO4]. Besides, malignancy rarelgcurs in nodules less
than 5 mm in diameter, but the probability chanigeselationship to patient’s
clinical history;

distinguish different types of nodules, i.e. solmhrtly solid, and non-solid
nodules, which present different clinical significas;

characterize nodule malignancy level;

5. integrate CAD systems into Picture Archiving andn@aunication Systems

(PACS).

Another important issue is what a radiologist cdass a reasonable amount of

False Positives per Patient of a CAD system. Sihglean readers can go down to 0.1

FP/Patient with detection rates ranging from 40%169©%, depending on nodule

subtleness, and no CAD system is at present baledg to this low number of FPs with

a detection rate superior to 50% (see next chéptean overview of present day CAD

systems). The ideal CAD should be able to imprawadn performances at no or very

low cost, and to do that its FP rate should be kepg low - in order not to deceive the
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human reader- and this low level should be nofrtan that of radiologists themselves,
which is the situation in mammography CAD [Camp#&ith

1.5 Summary
Lung cancer is the leading cause of cancer deathbkei Western world, and

many efforts are being undertaken by the scientbonmunity to improve survival
chances of patients. Early lung nodule detectiamortant in this battle, and CT is at
present the best medical tool for early nodule di&te, even if the debate about lung
screening is still open. Anyway, because technokdlgmprovements of CT have made
image inspection a very demanding task for radistsgand because of the inherently
inter-reader high variability, it is inevitable th@AD systems for lung analysis will be
unavoidable tools in medical practice in a few gerom now. Before that time,
however, many improvements are necessary, as shHmpwisome issues recently

highlighted in the scientific community.

1.5 Some examples of lung nodulesin CT images
The following figures show some CT images with neduwhose position have

been marked by radiologists with yellow circles.

Figure 1: nodulewith regular border
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Figure 2: large nodule close to parenchyma

Figure 3: nodulewith irregular border
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Figure4: large nodule with irregular border

Figure5: another nodule with regular shape
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Chapter 2

CAD systems in literature

Apparently, the first paper about an automatedesydior the detection of nodules in
CT scans of the lung dates back to 1989 [Preteux88jce then, a number of
approaches have been proposed, especially in rgeans, and yet the field can be
considered in its youth, with many opportunities development still waiting to be

explored. It should be noted, anyway, that the detegack of large public databases is
one of the reasons that has not facilitated thekwvabrresearchers, especially of those
that don’t have the opportunity to interact witlinidians. Moreover, such databases
would very easily allow to compare different alglomns on a common basis. Only
recently has such a database, the Lung Image BmaBansortium (LIDC), been

proposed and its collection begun [Armato04]: & time of writing it comprises just

than 23 cases.

2.1 Overview of most relevant systems and methodsin CAD literature
The system presented in [Armato99a] and [-99b]aseld on a multiple Grey

Level (GL) thresholding of the lung volume: at eabtineshold, a pixel-connectivity
scheme is applied to identify contiguous three-disn@nal objects satisfying a volume
criterion. After that, a Linear Discriminant Analys(LDA) classifier is used to
distinguish between nodules and non-nodules, repted as vectors of two and three
dimensional geometric and GL features of the caatdichodule. The lung volume is
previously segmented with a GL histogram thresmgidapproach, refined with a

rolling-ball algorithm. The authors reported an m@e sensitivity of 70% with an
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average of 3 False Positive (FP) objects per seativ a database of 187 nodules
coming from 17 patients, using a Leave-One-Out ()Qocedure (diameters of

nodules from 3.1 to 27.8 mm). The slice thicknesd® mm, as the reconstruction
interval. The system, with the major modificatiortroduced by adding a rule-based
scheme for a better reduction of candidates paaidssification, is applied to a larger
database in [Armato00], whilst in [Armato01] a caripon between scans from low-
dose helical CT, with 5 mm slice thickness and 5 mewonstruction interval, and

standard-dose helical CT, with 10 mm slice thicknaad reconstruction interval, is

presented, showing similar performances of theegysbn both databases: 71%
sensitivity with 1.2-1.5 FPs per section (Noduledraa sizes are 6.5 mm and 5.0 mm in
the two groups respectively). [Armato02] shows mapriovement in performances on
low-dose helical CT scans with 10 mm slice thiclenasd reconstruction interval: 80%
sensitivity and 1.0 FPs per slice.

An interesting algorithm for the Reduction of FFSPR) is presented in
[SuzukiO3]: it is named Multi-MTANN (Massive Tramg Artificial Neural Network)
and is based on a Neural Network filtering approlcbwn as Neural Filtering. It is
applied to the CAD scheme named before, on a 10thickness and reconstruction
interval low-dose database. This kind of NeuraleFils trained to associate to an input
image of a candidate nodule an output image reptiegethe distribution for the
likelihood of being a nodule. A Gaussian distribatiprobability is used for nodules,
and a constant zero value distribution is usednfmmn-nodules. It shows very good
performances on a validation set of 58 nodules:nédules are retained whilst the
number of FPs falls approximately from 1 to 0.2 glaze (the overall sensitivity of the
system is 80%, the number of FPs per patient clsainga 27.4 to 4.8).

In the paper [LeeOl] the authors describe a Genglgorithm Template
Matching (GATM) scheme. They consider the detectmnlung nodules as an
optimization problem, and use the GA to determireetairget position of the candidate
nodule in the image, and to select an adequatelaganimage from several reference
patterns to consider for the template matching atpmr. After that, a simple FP
Reduction (FPR) step is performed by calculatingl ahresholding 13 features
(geometrical and CT values based ones). The hdlitalata set is made of 20 patients
with 98 nodules, and the slices are reconstructeklD anm interval. The results are a

sensitivity of 72% and about 30 FPs per case. Wmnfately, it is not clear if a CV

10
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procedure was considered for the setting of parmmefThe authors report also a
persistent difficulty in detecting low-contrast nibels, as well as those situated in the
apex and in the lung base.

The system presented in [Gurcan02] detects camdigadules by means of a
weightedk-means clustering technique, after an initial stdqere lung regions are as
well segmented within the thorax bykaneans clustering technique applied to the pixel
GL values. In the detection step the lung areauisdiwided into suspicious and
background zones, using a feature vector for thighted k-means clustering coming
from the original image and a median-filtered ohlee suspicious areas are then further
analyzed: first there are two rule-based FPR stepgloiting geometrical features in
two- and three-dimensions respectively, and thenetlis a LDA classifier, employing
geometrical and GL feature vectors. The overallltescoming from a LOO procedure
on a 34 patient database of 63 nodules with meameter of 8.9 mm and minimum and
maximum of 2.0 and 25.0 mm respectively, with ditkeickness of 5, 3 and 2.5 mm,
are 84% sensitivity and 1.74 FPs per slice. Itnieresting to note that the authors
explicitly state that “rule-based systems usuadigkl the generalization property and
should be carefully used in computer vision appiice”; however, they say that they
attempted to use relatively lax criteria, in ordet to be too specific to the used data set,
and that these criteria come from radiologists’ exignce, hence are expected to be
quite well founded. They conclude that further worka larger data set is necessary to
evaluate the robustness of the rule.

An interesting algorithm based on anatomical kndgk of the lungs is
described in [Brown03]: a parametric model of tmatamy of the chest is stored in a
semantic network, and it is used to guide segmentat performed by means of
attenuation thresholding, region growing and matheral morphology - and labelling
of regions in the lungs. Each node in the netwanksests of an anatomical name and a
set of features, whilst the arcs represent stratt@lationships and features between
anatomical objects. The node features are: X-regnaation range in Hounsfield Unit
(HU), relative location (“part of”,"inside”), volum, and shape. The system is applied to
the detection of nodules (diameter3 mm) and micronodules (diameter3 mm) in
thin-section CT images, with 0.5 — 1.0 mm recorgdion interval. The reported results
on a group of 57 nodules (average diameter 6.3 amd) 22 micronodules (average
diameter 2.2 mm) are 100% and 70% sensitivity retspy, with 15 FPs per patient. It

11
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must be noted that only a section of 20 mm longmaldextent is considered per patient.
Another reported result is the improvement in tleefgrmances of radiologists, when
assisted by the system, from 91% to 95% on nodids51% to 74% on micronodules,
with an invariant FPs number of 0.3 per case.

In the paper [Yamamoto96] the authors propose a Gyddem based on a filter
with high sensitivity but low specificity, called aviable N-Quoit, a type of
mathematical morphology filter, able to detect 098% of nodules, together with 400
FPs per patient, which is too a high number. Irkffuw03] this method is given an FPR
step, consisting of two different algorithms: thestf is a Tophat by Partial
Reconstruction filter, used to distinguish bloodsals, and the second is a method that
recognizes objects by performing a 3D template hiatc operation, using artificial
templates coming from a ray tracing method appleedodules blood vessels. These
two methods together reduce the number of FPp&r atient (98% reduction), losing
only 2 nodules in a set of 37 patients. The totahber of nodules of the set is not
known. Moreover, it is not clear if the algorithmttsng was performed on the same set
of the reported results.

The paper [Wiemker02] shows a detection systemiegpd high resolution CT
data of 1 mm slice thickness, with reconstructimenval between 0.5 and 1 mm. In this
system, a 2D filter able to identify structures i&amto circles or half-circles is applied
to binary mask images, which are the result lungmsntation pre-processing. The
algorithm is very careful in dealing with nodulegaahed to the pleura. A three-
dimensional shape analysis carried out on binamgstiold images is the core of the
FPR step. A particular relevance is given by thia@ns to the usefulness of the average
Hounsfield value in rejecting FPs. The direct métion of the Hounsfield values is due
to the absence of the partial volume effect, fgecis greater than 1 mm, in this case.
The reported results are 95 % sensitivity and 4£4 per patient, on a database of 203
nodules larger than 2 mm in diameter. It is noaclé this set is the same used for the
setting of the algorithm parameters.

The core of the CAD system given in [Kaucic03] isnathematical model that
describes the formation of the CT image of the lbgdaking into account the physics
of the scanner and the anatomy of the chest. Duhegprocess of detection of the
structures within the lungs, a Bayesian statisticahework is employed to select the

model that provides the most probable interpretadiothe data. The probability of each

12
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model is calculated from image intensities, geomefeatures and neighbourhood
properties. Results on a 2.5 mm collimation lowed@S database of 50 cases with 43
nodules are 70% detection rate and 8.3 FPs per BAasaverage improvement of 3.9%
in the detection rate in a group of 3 radiologistalso reported. From the paper it is not
clear if the test set was different from the onedut® set the algorithm parameters.

Ge and co-workers have introduced a method foe faésitive reduction based
on a Linear Discriminant Classifier employing faat drawn from 3D gradient field
and 3D ellipsoid fitting [Ge05]. Purpose of the djemt features is to discriminate
objects with approximately radial GL distributionrofn objects with highly
asymmetrical distributions. Fitting parametershad 8D ellipsoids are also given to the
classifier. Reported results of a Leave-One-Ouiepatscheme are: 80% sensitivity,
over a group of 111 nodules with size 3+30 mm, WitB4 FP/slice. The database
consisted of 82 CT scan (3551 slices) from 56 p#djawith slice thickness 1.0+2.5 mm,
so a figure of 14.7 FP/scan (or 21.6 FP/Patiemt)ozainferred.

A filter with the ability to selectively enhancetdand lines is shown in [Li03]: it
is based on the properties of the Hessian matrictoté and lines, taken as models of
nodules and vessels, which are the targets ofttiy 9erformed on two- and three-
dimensional thoracic CT images. This is probably finist attempt to create a pre-
processing filter with both good sensitivity anceeificity for the targeted object. The
method has been reported to be effective for nodaleancement and false positive
reduction [LiO5a].

Paik and co-workers [Paik04] describe a new typapgroach to lung nodules
and colonic polyps detection in helical CT basedhenSurface Normal Overlap (SNO)
algorithm. They propose to use SNO as the firgt sfea larger detection scheme, in
conjunction with a subsequent FPR phase. SNO damtestbased on the calculation of
a scoring for objects which have survived the paepssing and segmentation phase.
This scoring is proportional to the number of scefamormals that pass through or near
the object. Convex objects with dominant curvatal@g two directions, like nodule
and polyps, tend to have larger scoring than vessdiich have a dominant curvature
along one direction only. The authors optimized dhgorithm on simulated CT data,
and reported promising results on a set of 8 CThscénteresting results are also
described in [Rubin05], where a SNO-CAD has beeadus compare performances of
radiologists with and without lung CAD.

13
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In the paper [Armato03], the authors compare tiselte obtained by the CAD
system explained in [Armato99a] on two databasew with patient projection
reconstructed with the “standard” algorithm, an@ thther with the same patient
projection data reconstructed with the “lung” aifon. The comparison demonstrates
similar levels of performance, which makes the autilaim for an encouraging degree

of robustness of their system.

2.2 Conclusions
Probably not much more than a couple of dozen @ragrhes have been

proposed in the last 15 years to realize a CADesydor lung nodule detection in CT
scans, so we can say that most of the work stdlego be done: since its beginning,
the CAD community has been mainly focused on systemmammography, which are
just becoming clinical tools after many years ofelepment, and it is only now really
turning on lung, so we can expect an explosioneskarch in the next 5 years. At
present there is only one commercial system auaildbnageChecker® by R2
Technology, Inc.), and many others are being dg@eslo The lack of a public and
common database, necessary for validation and awsopa has really dampened the
work of researchers in this field, but the recemilpposed LIDC database should

overcome this crucial problem.
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Pre-processing

Pre-processing is usually a very important ste@AD systems, though a very general
and vague subject, which depends on the pecudisritf the system and of the tackled
problem: in this CAD it comprises the transformatiof images from the DICOM

format, which is the general standard used in nieelito store digital data, into Gray
Level images, and the segmentation of the inner gfathe lungs, to be subsequently

analysed by the CAD core.

3.1 Processing DICOM images
The Digital Imaging and Communications in Medic{itdCOM) standard was

created by the National Electrical Manufacturerssdesation (NEMA) to aid the
distribution and viewing of medical images, suchG3s scans, MRI, and Ultrasound
[DICOMO6]. Part 10 of the standard describes a fidemat for the distribution of
images. All lung CT scans used in our studies raetéy in this format.

A single DICOM file contains both a header (whidbres information about
patient, type of scan, image dimensions, etc), el as all of the image data. In our
case image data is saved as 16bit/pixel signedesaldror different reasons
(compression, etc) lung CT image data stored in@NCfiles are in raw format and
have no particular meaning (units of measure), déetwc evaluate a CT scan a
guantitative scale exists that describes relatitenaations: the Hounsfield scale. This
scale assigns water an attenuation value (Houddilelts, or HU) of zero. The range of

CT numbers is 2,000 HU wide although some modeanrsers have a greater range of
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HU up to 4,000. Each number represents a shadeagfwith +1,000 (white) and —
1,000 (black) at either end of spectrum (see Taple

BONE +400 +1,000
SOFT TISSUE +40 +80
WATER 0

FAT -60 -100
LUNG -400 —600
AIR -1,000

Table 1: Hounsfield Scale of CT numbers.

To convert raw CT data into Hounsfield Units a #inéransformation is applied: HU =
Raw Pixel Value * Rescale Slope + Rescale IntercEps transform is applied to each
pixel. The values for Rescale Slope and Rescakrdept are stored in the DICOM
image header.

Another pixel value transformation is needed ineord work with CT images:
Window Level and Window Width Transform. Whilst thhange of CT numbers
recognized by the computer is 2,000, the human aayeot accurately distinguish
between 2,000 different shades of gray. Therefor@low the observer to interpret the
image, only a limited number of HU are displayedugeful gray scale is achieved by
setting the Window Level and Window Width on thenputer console to a suitable
range of Hounsfield Units, depending on the tiseamg studied. The term Window
Level represents the central Hounsfield Unit of tak numbers within the Window
Width. The Window Width covers the HU of all thessues of interest which are
displayed as various shades of gray. Tissues withh@mbers outside this range are
displayed as either black or white. For examplegnvperforming a CT examination of
the chest, a WW of 350 and WL of +40 are choseimtage the mediastinum (soft
tissue), whilst an optimal WW of 1500 and WL of 868re used to assess the lung

fields (mostly air): see Figure 1 below.
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Figure 1: These two images are of the same sectiagwed at different window settings. (Left) A
window level of +40 with a window width of 350 revals structures within the mediastinum but no
lung parenchyma can be seen. (Right) The window lel/is —.600 with a window width of 1500
Hounsfield units. This enables details of the lungarenchyma to be seen, at the expense of the

mediastinum.

3.2 Segmentation algorithm: motivation
Nodules are located within the lungs, in an are&hvis usually no more than

half of the area of the CT slice: this means thiait @f processing time can be saved if
the searching algorithms only run on this innert.psforeover, the number of False
Positives found in a segmented image is dramagitalVer than that found in the same
image without segmentation, because no signal atliebe found outside of the lungs.
Indeed, lung segmentation is a common pre-proagssigp of many CAD systems
[Armato99a][Gurcan02] and in general of lung imaganalysis systems
[HuO1][Brown97]. Given the large size of CT datasehanually segmenting the lungs
is tedious and prone to inter observer variatidigt is why we implemented and tested

a fully automatic segmentation algorithm for lung§ @lume data.

3.3 Overview of segmentation algorithm
Our segmentation algorithm is composed of five nm&tgps. First a smoothing

algorithm is applied to the CT stack to reduce @oihen the lung region is extracted
from the CT images by adaptive Gray Level thresingldAfterwards trachea region is

eliminated from initial CT slices. The left and liiglungs are then separated to permit
finer processing on each lung separately. Finadlynclude nodules attached to the lung
wall the lung contour is smoothed. The overall segtation process is described in

Figure 2 together with the type of data involveagath processing step.
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Grray-lewel l

Smoothing Cravlevel Thresholding
Binary
r
LeftRight lung Binary Trachea

separ ation E litritati on

Binary
b

Contowr smooothing Binarvy Final mask

Figure 2: Overall segmentation algorithm. Arrows slow direction of data flow.

3.4 I mage smoothing

In this step a smoothing algorithm is applied idesrto reduce noise and prepare
images for segmentation. Because order-statistitaysf are known i) to provide
excellent noise-reduction capabilities and ii) tdaraduce less blurring than linear
smoothing filters of the same size [Gonzalez02][#d], we used a median filter. We
tested 3x3 box, 5x5 box, 7x7 box median filtersaiiples are given in Figures 3-6. We
have chosen to use the 3x3 box median filter becdaudeans images very well and at

the same time it has a good edge-preserving abllitger boxes have too heavy a

blurring effect on object borders and details.

It must be noted that smoothing is performed ormdy $egmentation: the
detection system, described in the subsequent etsapts applied on the original,

unsmoothed, images.
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7
99,

Figure 3: original image.

Figure 4: result of 3x3 median filter applicationon image of Figure 3: noise has been very well
suppressed, but edges have been preserved.
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Figure 5: result of 5x5 median filter applicationon image of Figure 3: blurring begins to be
evident, many details have been lost.

Figure 6: result of 7x7 median filter application o image of Figure 3: blurring is heavy.
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3.5 Histogram thresholding
During this step the actual binary masks for theglarea are determined. Binary

masks are generated from input gray-level CT daiaguan iterative thresholding

algorithm [Ridler78], a better method than the amtional thresholding algorithm, in

which the threshold is simply chosen as the mininbhgtween the two maxima of the
GL histogram (see Figure 7 below) [Castleman96]e Thage histogram is initially

divided into two parts using a starting threshoddue, which can be for example half
the maximum of the dynamic range of the currentgenar the conventional threshold
value just described. Afterwards, the sample médheogray values associated with the
foreground pixels and the sample mean of the gralpes associated with the
background pixels are computed, and a new threshalde is determined as the
average of these two sample means. The procespested until the threshold value

does not change any more (the algorithm has bemmegto converge by its author).

10000 - —
9000 - —

s000l Threshold

7000 - -1

6000 |

5000

4000 Dark regions

Bright regions

3000 -

2000 -

1000 -

|||III||||+

0.8 0.9 1

Figure 7: example of Grey Level histogram of a CTlge (GL values have been normalized between
0.0 and 1.0). The histogram clearly shows that mosf the pixels of the image belong to either a
dark region (the background), or a bright region (the foreground). The threshold can be used to

divide these two zones in the image (histogram thskolding).

Because lung walls and ribs in CT scans are bnightan any other lung region,
further processing is necessary to obtain mask&giong only lung parenchyma. After

thresholding, morphological binary opening [Soi8¢9s applied to each mask to
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remove very small regions (a few pixels), usualsed by noise. The structuring
element is a disk of radius 3. Then binary masksiaverted and structures that are
lighter than their surroundings and that are cotatedo the image border are
suppressed. Finally holes inside the lung regienfided. All these steps can be seen in

Figure 8.

Figure 8: Thresholding step is made up of smallerqecessing sub-steps: (from left to right, top to
bottom) Single slice before thresholding, Binary msk after thresholding, Binary mask after
morphological opening, Binary mask after inversionBinary mask after border regions elimination
and hole filling, Final masked image.

3.6 Trachea elimination

Initial lung segmentation based on gray-level thoéding tends to include the
trachea. To ensure that this structure does ndtibate to the segmented lung regions,
trachea is eliminated from the segmented thoraxomeghrough Seeded Region
Growing (SRG) algorithm. (SRG has also been usedairstage of the CAD
development. For some more information on it anticat notes see paragraph 7 and
12, chapter 4 and paragraph 5, chapter 5) Seedspfan trachea segmentation are
automatically identified in the superior CT sectipbecause the trachea is always the
only segmented object in these slices. Seeded Rd&giowing is used to expand the
identified seed points into the corresponding teachegions. Region growing ceases
when an area-based criterion is satisfied. Seedtpare identified in subsequent
sections based on the center-of-mass location efsdgmented trachea region in the

previous section. The result of trachea eliminaitap can be seen in Figure 9.
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Figure 9: Lung segmentation before (left) and afte(right) trachea elimination.

3.7 Left-Right lung separation
The presence of a single large segmented regianyirsection indicates that the

two lung regions are “fused” at the anterior jaion. Distinction between left and right
lungs is often required for more detailed analySisnsequently, the single lung region
Is separated into two regions by eliminating pixaleng the anterior junction line. The
separation into left and right lung is carried ontthe “accumulated” image obtained by
summing all binary masks obtained so far along #axis. The Grey Level
“accumulated” image thus obtained is thresholdethgussuccessfully increasing
threshold values until the resulting binary imagmtains two distinct lung regions.
Results from these steps can be seen in Figure 10.

Figure 10: Left/Right Lung separation. Lungs attacled at the anterior junction (left figure) are
separated into left and right lung (centre and righ figures).

3.8 Contour smoothing
In some cases, pulmonary nodules are adjacentetpldura and have similar

densities. Therefore, when Grey Level thresholdieg is applied, concave depressions
appear at the nodule location in the lung maslartter to obtain the correct extraction
of the pulmonary parenchyma and not to loose thduleo this depression must be
rebuilt. Figure 11 shows examples of an image wittodule adjacent to the pleura and

its mask with the depression resulting from apmytime previously described steps. The
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pulmonary parenchyma is reconstructed through nubdogircal binary closing with a
disk structuring element of radius equal to theiusdf the biggest nodule we are
looking for (20 mm in diameter: see also chaptgvatagraph 4). Results from this step

can be seen in the two images at the bottom ofr&igyl.

Figure 11: Application of contour smoothing. Original image (top, left); Concave depression at

nodule location in the outer border, and large depession due to a bright area close to the inner

border (top, right); Rebuilt depressions in binary mask (bottom, left); Final masked image of the
lungs (bottom, right).

3.9 Summary

Pre-processing of the CAD system described in tthesis includes
transformation of CT data from DICOM to Gray Lewslages and lung segmentation.
Segmentation is a 5-step process mainly based orHiStogram thresholding and
morphological filtering; trachea elimination andtland right lungs separations are
accomplished through SRG and ath hoc “accumulation” process respectively. The
image is median-filtered before the whole 5 steqress, in order to eliminate as much

as possible the effect of noise. The segmentatigorithm described here is simple
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though effective. Nonetheless, many possible imgmaents could be tested in future:
for example, different and more advanced smoothitags, contour tracing algorithms,

etc.
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First attempt to build a CAD system

It is a rule of life, when facing a problem, afsgudying what other researchers have
already found, to try to solve it by oneself, amdtér is to forget a little bit their results.
This was no exception. To get in touch with thebbem, it was decided to start with a
simple system, and then to analyze its behaviodrtarmpros and cons, and use them as

a guide to develop a new, and hopefully better, G&Btem.

4.1 Database
The database (DB) considered in this chapter (DB@pns composed of 22

patients with 34 nodules, with diameters betwednmm and 17.4 mm (average 10
mm), and the average number of slices per pasesh.i All the scans come from a Low
Dose Spiral CT (GE HiSpeed CT/i), with parametéd kVp, 40 mA, slice thickness:

10 mm, reconstruction increment: 5 mm, slice dinmams 512 x 512 pixels (0.67 +

0.74 mm/pixel). All the image values have beendfammed into 8 bit code, i.e. 256
Grey Levels. The database comes from IEO, Istifutmopeo di Oncologia, Milan, Italy,

where a team of radiologists detected and markedddules.

4.2 General idea about the developing CAD
The general idea of the CAD algorithm to be devetbpt this stage was the

following: after the segmentation of the inner pafrthe lungs, consider a procedure to
locate the candidate nodules in each CT slice, tdadculate some geometric features

and use them to train a classifier, hopefully dbléiscriminate between true and false
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2D signals, that is, true nodules and false nodudlesach CT image, then mark the
surviving objects on the CT image, to be subsedyérgpected by radiologists. This is
a 2D method, that is, it analyzes the CT scans éntagimage and does not take into

account any relationship between signals in consecimages.

4.3 Nodule enhancing filter: the Matching Filter
Because lung nodules in CT images are most ofitne Ibright objects, nearly

circular in shape, situated in a noisy but darlaeskiground, together with other bright
objects, the simplest of the shape detector, thechtag Filter (MF), was chosen as
signal detector [Castleman96]. The MF (aka MatcBetector) is an algorithm which
allows to calculate the correlation between a gjgf@ example an imagé(x,y)
containing objects and regions, and a templateakignspatially smaller imad#x,y),
whose presence in the image we want to locatbelktis a match, the correlation of the
two functions will be at its maximum whehefinds a correspondence inBy properly
thresholding the correlation image, these peakdoaned and the template-like signals
located. As a nodule template it was chosen a ssaglare image with varying side
lengths: 3, 5, 7, 9 and 11 pixels. The Grey Lewadli@s were arranged in order to mimic
a typical nodule profile, almost circular in shapee Table 1 as an example.

135| 150| 150| 150 135
150| 150| 155| 150 150
150| 155| 155| 155| 150
150| 150| 155| 150 150
135| 150| 150| 150 135

Table 1: 5 by 5 noduletemplate, Grey Level values (8-bit)
It should be noted that a different intensity oé tiliter values, with the same

relative ratio, it is of no relevance with respextthe enhanced shapes, affecting only
the tuning of the threshold at which signals areected. If the GL values of the filter
are left unchanged during the processing, onlythineshold must be optimized. The
values in Table 1, at about 3/5 of the maximum ®ére chosen for convenience. The
chosen filter was 5 by 5 pixels in size. It wasrfdundeed that the smaller the template
the finer the signal localization and the smalter $ize of the enhanced objects: a 3 by 3
template is too sensitive to noisy objects, andog 7 one, or wider, leaves the filtered
image too much blurred, a fact that makes difficalchoose a proper threshold. The
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choice was done by looking at the quality of tHeerfed images for the subsequent

thresholding step.

4.4 Optimizing the Matching Filter threshold
Optimizing the threshold is a very important stapthe detection process. A

high threshold would give less signals, with grela&nce to loose true signals; a low
threshold, on the contrary, would give too manyalg, most of which false ones, or,
even worse, many signals would be merged toge#i®er Figures 4, 5, 6 at the end of
the chapter). In order to set the optimal threshibie histogram of the correlation image

was analyzed (see Figure 1 as an example).

w10t MF filtered CT slice histogram

2581

151

05F

Figure 1. example of GL histogram of a MF processed CT dice. The peak at zeroisnot taken into
account for the subsequent processing.

It can be noted that only one peak is always ptgtes zero GL peak on the left
is ignored), and, moreover, its corresponding Gluevas always lower than that of the
nodules that might be in the image, and the ragiveen these two values can vary
between 1 and 10. This was verified on a small@wipge of nodules of the database. It
was then decided to set the optimal thresholderfaHowing way:

threshold = peak_GL + numdelta * delta value
wherenumdelta is a parameter to be optimized on the databaskjeta value = (255
— peak _GL)/255*delta_number, that is, the difference between the peak GL dmed t

maximum GL divided into a predefined number of padéita number, set to 10 in this
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case, normalized by the maximum GL, 255 in the chs€ebit images. It is clear at this
point that the threshold varies with the image adiog to the position of the GL peak,
but the relationship between this peak and thesttuld is determined by theimdelta
parameter, to be established by means of a validatatabase and never changed for

images of the same databasamdelta was set to 1.65.

4.5 Some cleaning
The thresholded image, now a binary one, was theoegsed with an erosion

filter [Castleman96] of side 3 by 3 pixels (see [Ead), with the aim to:

1. Eliminate objects with area of 1 or 2 pixels

2. Clean large objects borders, very irregular in shap

3. Part very large and elongated objects into smahermore manageable ones.
0/1(0
1111
0/1(0

Table 2: erosion filter, diamond shaped
In a typical image, the number of objects after ¢hesion decreases from 50/150 to

15/70, and most of the deleted signals are 1 axélgin area. The filter was set 3 by 3
because a “heavier” erosion by a larger filter wiolidve deleted too many pixels. The
diamond shape proved to delete less objects thausghare one, so it was chosen for

precaution.

4.6 Area bounds
The subsequent processing consists in an aredtidesy: because nodules are

limited in size, and because most of the remaisiggals smaller than 3 pixels are false
signals, all the objects with area larger than MAR&A and smaller than MINAREA
are deleted. MAXAREA was set to 430 pixels, fagiarthan the area of the larger of
the nodules at this point of processing, which waiasut 250 pixels: unfortunately the
DB was too small to allow a normal Cross-Validatigmocedure, so it was decided to
proceed by setting the threshold-type parametershenwhole DB, but in a “light”
manner, that is, not too strict, so not to risk tnach an overfitting bias (see also
paragrapht.11 at the end of the chapter).

At this point, detected signals are given a posifiabel (they are considered

nodules) if their centre of mass is within a certilerance from the centre of mass of
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the nodules marked by the radiologist, otherwisg gfiven a negative label (it is a false
signal). Tolerance was set to 6 pixels, with Ewedid distance.

4.7 Finding borders of signals. the Seeded Region Growing algorithm
Now the problem was to find the exact borders @f tibjects. To do this, a

Seeded Region Growing (SRG) procedure was impleedefNlehnert97]. SRG is a
robust and rapid algorithm for objects segmentatiomtensity images that, taking as
input a number of seeds, either individual pixalgemions, is able to make the seeds
“grow” until the number of free pixel around theogmn region is zero, or a certain
stopping criterion is satisfied. For each seedelgirare examined around it and if, for
example, their GL value is within a certain tolararfrom the mean GL of the seed,
they are merged with the seed, otherwise are disdarThe merging criterion can be
updated or not at each step. The stopping critexamnbe introduced at will.

The SRG procedure was then used to make the sigmatidhad survived the
preceding detection steps grow. Pixels connectebdeseed were merged only if their
GL value was within 5% of the mean GL of the se®alnoticeable changes were found
over a number of objects in the range between 3§®&h of the mean GL. It was also
noted that objects growing too much were highlglykto be not nodules, but maybe
vessels or other lung structures. Thus, anothgypsig criterion was introduced: a
maximum number of iterations in the growing processany iteration all the pixels
which are neighbours of the seed region or of theady grown one are considered for
merging, and, if merged, their neighbours are puthe list of new neighbours to be
analyzed at the next iteration. When the numbaeteoétions for each region becomes
too big, it means that the object is growing tocclmuand can be stopped. By analyzing
the distribution of iterations in many patientsyas noted that:

1. most of the nodules grow thoroughly within 100atéwns;
2. the mean number of iterations in an image is tylyida000 — 10,000;
3. the maximum number of iterations can go up to 40,00

For this reasons the iteration number was bourid€o

4.8 Simple False Positive Reduction before Classification
At this stage of development, making the systemoner the entire DB gave the

following results: 28 of 34 nodules found with 5B Bignals, 16.3 2D False Positive

signals (FP) per image, on average. In order tdaargliminate some of the FP before
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using the classifier, some simple geometric charetics of the signals were
considered for analysis. These characteristics :vegea, major axis length, minor axis
length, ratio of major and minor axis lengths. Fegu 2 and 3 illustrate these
characteristics, comparing nodules and non-noddlesoptimize as much as possible
the thresholds on these values, half of the patieftthe database were randomly
chosen and analyzed: because the database is smaiter to avoid overfitting bias

not all the patients were considered at this stage.

Major / minor Axis Vs Area

3,50E+01

3,00E+01 +

*neg
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2,50E+01
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0,00E+00 T T T T T
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Figure2: Major/minor axislength ratio Vs Area. Blue: negative signals (FP), lilac: positive signals
(nodules).

Only thresholds on the simple characteristics wenesidered, and the chosen

values are the following ones:

1. area < 310 pixels;

2. Major axis length < 40 pixels;

3. minor axis length < 25 pixels;

4. ratio Major/minor axis length < 4.5pixels.
It can be noted that some of the two dimensiondutes get lost in this simple False
Positive Reduction (FPR) step, but this is inev@atvhen trying to diminish the overall

number of FP. However, there is some redundancy. ieere are indeed 51 2D true
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signals remaining of the 54 initial ones, and nohthe 28 found nodules are lost (Note
that a nodule is considered detected when at ¢geesof its corresponding 2D views has
been found). On the other hand, the simple FPR pteped to be very effective,

because about 35% of the FP signals are eliminaiad: there are only 10.6 FP per

image on average.

minor Vs Major Axis
5,00E+01

4,50E+01

Eneg
@ pos

4,00E+01

3,50E+01

3,00E+01

2,50E+01 +
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5,00E+00 -

0,00E+00 T T T T
0,00E+00 5,00E+01 1,00E+02 1,50E+02 2,00E+02 2,50E+02

Major Axis

Figure 3: Major axislength Vs minor axislength. Blue: negative signals (FP); lilac: positive signals
(nodules).

4.9 SVM based signals classification and results

At this point, with 51 2D positive signals and 14442D negative signals
coming from the first part of the detection algomit, a Support Vector Machine (SVM)
classifier [Vapnik95] was used to discriminate betw nodules and not-nodules. SVM
is a class of supervised learning algorithms fonlimear classification, regression,
distribution estimation, novelty detection and tdusg. It is deep-rooted in the
Statistical Learning Theory [Vapnik98] and at prasis considered the state-of-art in
the machine learning field: indeed, it exhibits maseful properties that are not shared,
together or at all, by other algorithms. Among thgsoperties are: 1) the training
process is made by solving a quadratic optimizagimvblem, hence no local minima
trapping is ever encountered; 2) the architect@ithe classifier is automatically set by
the solution of the optimization problem, which raakthe training very easy, and,
moreover, allows for a very low risk of poor gerization; 3) the generalization
capability is good even when a small number ohtrej samples are employed or when

the two classes are unbalanced to a high degreen(tmbem of training samples is
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considerecsmall whend, the sample space dimensionality, is not much lsemgédann
[Vapnik95], even if the seriousness of the situatdso depends on the absolute value
of d, due to thecurse of dimensionality [Haykin99]). These properties guarantee in
general a learning procedure simpler and fastem that given, for example, by a
conventional multilayer Artificial Neural NetworkANN), or by a Radial Basis
Function (RBF).

Perimeter, area, major axis length, minor axis length, equivalent diameter,
circularity, compactness, mean Grey Level and standard deviation of Grey Level are the
features calculated for each signal. Circularitg aompactness are defined as

object n same_area_circle_in_same_center _of _mass
object

circularity =

471* area

compactness = . 5
perimeter

. they are two ways to measure how much an objegpes

resembles a circle. Note that geometric featuresrasariant to rotation and translation
transformations, but not to scaling ones.

Because there are not enough data to set up aastaBdtimation, Validation
and Test procedure [Haykin99], a Cross Validati@V) algorithm [Efron83] was
instead employed, in particular, sratified 10-Fold CV procedure, putting an equal
number of samples of each class in 10 subsets,tfeamd training on the different
groupings of 9 subsets and testing on th® difbset each time, for 10 times. When the
number of samples is small, it is particularly impat to optimize the use of the
database. This goal implies that both tmmer (result of learning optimization
procedure) and theuter (result of learning supervisor decisions) paramsetd the
learning algorithm are optimized: the SVM algoritiemable to extract a great amount
of information from the training set, automaticaliged to optimize the inner parameters,
but the optimization of the outer parameters depamdthe global training procedure,
on the relationship between the training and thst sets, generally speaking. For
example, it is well-known that the Hold-Out methisdfar less efficient then the CV
[Kohavi95] for training any algorithm and giving a@stimate of its performances in
case of a small database. Efficiency can be medsurterms of reliability of results at
varying number of samples: a plot of this behavigives what is called &arning
curve [HastieOl]. The faster the plateau (or saturalewel) is reached, the more

efficient the algorithm is. When the number of sémpis very big, almost all
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algorithms show the same results, but when thembar is not very large, which is

what usually happens in the real world, efficiehegavily comes into play. The 10-Fold

CV algorithm is a very good one for giving an estien of the performances of a
learning algorithm in small database cases. Itlmamffected by bias and variance to
some reasonable degree, and it is considered ahe best choices [HastieO1].

Another possible trick that can be used in casesnwhe two classes are very
much unbalanced is to randomly decrease the nuofbeegative signals to a figure
always larger than the positive signals numbers Tlan improve the speed of training,
without affecting too much the final results, pring the class is not under-sampled.

The SVM parameters that were optimized with the @dcedure were: the
kernel, the Cost parameter C, the unbalancing pargtmeter €. Used kernels were
the Linear, the Polynomial of degree 2, 3 and ¢, RBF withy equal to 0.01, 0.05, 0.1,
0.5, 1.0, 2.0, 5.0, 10.0. The parameter C was givervalues 0.05, 0.1, 0.5, 1.0, 2.0, 4.0,
8.0, 10.0, 12.0, 15.0, 20.0, and the parametah€ value equal to the ratimmber of
positive signals/number of negative signals in the training subset. The parametéf,C
changing the cost of one class with respect tather in the training phase, moves the
final output decision line, which affects the lalggéen to objects [RiccardiO0]. The
number of negatives used in training was samplegDafi 00, 150, 200, 300, 400, 500,
600, 700, 800, 1000, 2000. The database underwehitening normalization process
[Duda00][Campanini04] which simply forces the saesplistribution to have zero
mean and unit standard deviation: this is necesearsyder to have a training procedure
where all the dimensions of the samples are gikersame weight, hence are treated for
their intrinsic discriminatory capability and noorf their original range values
[RiccardiOO][BazzaniO1].

A summary of results are given in Table 3: for ekemel, only the best ones

are shown.
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Kernel Kernel C Negativesnumber | Hit Positives | Hit Negatives
parameter intraining
Linear - 10+20 > 2000 (13%) (85.4+0.2)%  (80.1+0.1)P6
Poly 2 0.5+2 > 1000 (6.5%) (82.3+0.3)%  (79.2+0.2)%%
RBF 0.5 0.05+1 > 1000 (6.5%) (80.4+0.4)06  (80.7+®%n2

Table 3: summary of CV resultsof SVM classifier trained on the 51 positive signals and 15,444
negative signals.

Performance percentages and errors are calculaedhean and standard
deviation of the mean of 100 Monte Carlo runs:aekerun a random redistribution of
samples is executed before the CV is performedudhdhis procedure cannot give an
estimate of the variance of the CV procedure [Ki®@&lyEfron83], nonetheless it can
provide us with an estimate of the variance in tta#abase at hand, hence can
approximately tell us how far the system is frora fliateau in the learning curve. The
small errors show that the system has almost relatigesaturation level in the learning
curve, at least for what concerns the given daghass indeed not possible to check if
this is true also with respect to the positives aadatives global distribution, because
this distribution is unknown.

The Linear kernel shows the best results, the nurobenegatives used for
training can be a small percentage of the totalbvemof 15,444, the value of the cost
parameter C can be chosen in a small range. Thsiftést shows very good results, as it
is able to correctly find about 85% of positivesai population of only 51 samples, and

80% of negatives, in a population of more than @8,0

4.10 Overall system results
Now it is possible to give an estimate of the ollgvarformances of this first

CAD system. The number of detected nodules befoeeSVM classifier was 28/34

(0.8235), with 10.6 False Positives per Image (RBge): these figures, combined with
the SVM classifier results, lead to 0.8235 * 0.858.7033 nodule fraction, and 10.6*
0.199 = 2.1 FP/Image. In other words, approximaf@@ of nodules have been
detected, together with about 2 false signals pErsi{ite. It must be noted that the
redundancy of 2D nodule signals with respect ta3dh@odules has not been considered,
so 70% could be considered a lower limit. The fifigdire of system performances is
then 70% of nodules @ 2.1 FP/Image. These resaiive considered comparable with
those of a similar system developed by Armato amavorkers [Armato99a], even if

our system shows a larger variability because ®fthaller database.
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4.11 Final note on parameters optimization and results
A final note about parameters optimization procedwand results of this work is

necessary. Due to the small database at disposaly wf the parameters of the CAD
system, apart from the SVM classifier, have noteasgdne a complete validation

procedure, that is, have not been tested on arpémdient validation set. They have
been chosen according to their behaviour on a sulfsthe database, as much as
possible a well subsampled one, and in a very ceatee manner: they could have left
less false signals than what they actually did,vieeitdecided to stay far from the limits.

This cautiousness should help avoiding as muchoasilgle the overfitting risk that is

always present when using small databases, eveghhbis not possible to give a final

figure of the overall performance error of the systwithout a complete validation

procedure. However, an estimate of the error cagiven using the binomial proportion

interval estimation [Berger95][Brown02]: considayir24 found nodules over 34, at
95% Confidence Interval the error is approximatetg nodules.

Anyway, it must be stressed that the goal of tlaid pf the research was primarily to
get in touch with the problem, to obtain an estenatt the behaviour of a very simple

approach to nodule detection.

4.12 Critical analysis of the system
A critical analysis of the CAD system leads to thiéowing notes:

1. the well known drawbacks of the MF have been \alifin this work, in
particular: 1) high GL pixel regions are enhancedreif their shapes do not
match with the template, 2) the enhanced signapread over an area wider
than the signal itself [Ra094]. As a consequent system finds three kinds of
FP: nodule-like, bright zones close to the bordecular vessels (see Figure 7 at
the end of the chapter);

2. the geometric features have some positive progertiey are translation and
rotation invariant, and a negative property: theprgly depend on the object
border, which in turn depends on the SRG algoritbimfortunately, the SRG
algorithm can be unstable, especially when the see@ry small [Adams94].
Moreover, the geometric features do not take irdcoant the context of the

signal, and its texture;
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3. the detection algorithm is 2D-only, and this is o limitation: more
discriminative information could be found considerihe relationships between
signals across scans;

4. a final limitation is due to the kind of data, iargicular their thickness, limited
to 10 mm: this means that nodules smaller than @0Dare detected with much
difficulty.

4.13 Conclusions
This first system has provided us with a lot obmmhation which hopefully will

be helpful in developing a more advanced CAD systenparticular we know that we
have to: i) find a filter with high sensitivignd high specificity to circular signals of the
size corresponding to nodules, ii) take into actdbhe 3D behaviour of the detected
signals across slices, iii) find classificationtteas which are good for discriminating
positive and false signals and, as much as possibtedependent on the unstable SRG
algorithm, iv) base the analysis on a large dawltasnposed of CT scans with slices
thinner than 10 mm, in order to be able to detegnads in the size range clinically
relevant (4+20 mm, see paragraph 1, chapter 4).

4.14 Some examples of processed images
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Figure 4: example of CT dicewith a nodule marked by radiologists (red circle).

Figure5: dlice of Figure 4 after MF filtering and thresholding. The threshold istoo low, hence
many lar ge zones ar e enhanced.
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Figure6: dlice of Figure 4 after MF filtering and thresholding. Threshold is high, hence a small
number of objects have survived.

Figure 7. examples of objects detected by the CAD system. Together with a nodule (blue and red
squares, object A), 4 false nodules have been found (only red squares, objectsB, C, D, E). Object C
isan example of a nodule-like false signal, aswell as B and E, object D isone of the false signalsdue

to the enhancement given by the MF to high Grey Level zones close to the segmentation border.
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Figure 8: another example of detected objects.

Figure 9: another dlicewith more examples of detected objects.
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A new CAD, part I: finding nodules in slices

The observations about the weaknesses of the Médl@A8D described in the previous
chapter constituted the basis for developing a raad,improved, CAD system. In this
chapter, in particular, we will focus on a diffeteand more specific method to find
nodule-like signals in (2D) CT slices.

5.1 The Fast Radial transform
Since most nodules in CT images usually show aigu@silar shape, and the

few of them more irregular look nonetheless likenpact bright “stains” in a darker
background, a filter able to enhance bright zonth wadial symmetry would be a
natural choice. A very interesting filter for radsymmetry has recently been presented
by Loy and Zelinsky [LoyO3]. the Fast Radial Symmetransform (FR). This
transform has been shown to provide equal or smppérformance when compared to
contemporary techniques such has Reisfield’'s Gépeda Symmetry Transform
[Reisfield95], Di Gesu and Valenti’'s Discrete SynirgeTransform [Di Gesu95],
Kovesi’'s symmetry from Local Phase [Kovesi97].

The FR transform determines the contribution eattelpp makes to the
symmetry of pixels around it, at an integer disea(radius) oin pixels from the above
mentioned central pixep: the value of the transform at radius indicates the
contribution to radial symmetry of the pixels lyimga circle around it at distanoe At
each radiusn an orientation image @ and amagnitude projection image JMare

generated by examining the gradientat each poinfp. The pointp influences a
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positive-affectegboint p., which is the point the gradient is pointing tadaanegative-
affectedpointp., the point the gradient is pointing away from (5egure 1).

pH__]
-
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®

B
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|

\
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Figure 1: positive-affected and negative-affectedqgints by gradient g(p) at point p. Radius n = 3.
The projection images are initially zero, and &entbuilt in this way:

O, (P, (P)) =0, (p.(p)) +1
O,(P-(P)) =0, (p-(P)) -1,
M. (P, (P) =M, (p. (P)) +|a(P)].
M, (P-(P)) =M, (p_(P)) —|a(p)].

Afterwards, the radial symmetry contribution atitech is calculated as, = F, * A,

O, (p
K

n

Kk

n

whereF, (p) = M”(p){ )} and O, (p) ={0,(p) if O, (p)<k. .k, otherwise}. A,

is a two-dimensional Gaussian used to spread tieence of affected pixels as a
function of radium, k, is a scaling factor used to normaligig andO,, across different

radii, anda is the parameter that controls the radial stresn@he full transform is then

defined asS = %Z S, , and its positive and negative values correspesgactively to

bright and dark radially symmetric regions.

5.2 Comparison between Fast Radial and Matching Filter
FR parametek, was set as suggested by authors. To find the aptimadius

range some CT images with and without nodules \waedyzed: it was found that-9
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can enhance many falses, together with nodulediiects, then it was decided to use
together radius values equal to 3, 5, 7, 9 piagproximately corresponding to nodule
sizes in the range 4+10 mm. This does not affexididtection of larger nodules, whose
bulks are always enhanced, but it can save fromctiagy too many large false signals.
The strictness parametemwas set to 2: a larger value asks for too stricutar objects,
so many irregular nodules are lost, whereas valgent specific enough, and finds too
many falses. This is also the value for parametarggested by authors.

The FR filter was initially compared with the MF dhe whole database
DB10mm: results are given in Table 1.

filter MF optimal THR FRTHRO0.4 FRTHR 0.48 FRTHR 0.52
Hit- nodules 28/34 31/34 30/34 29/34
Hit — 2D signals 51 63 58 56

FP/Slice  before
cuts 16,3 16,6 12,5 10,9

Table 1: results of comparison between MF and FR oBB10mm.Hit nodules refers to individual
nodules,hit 2D signalsto 2D signals that compose a nodule. Clearly, thHeR algorithm is a better
detector than the MF algorithm.

For the MF it was considered the optimal threshatle (THR) described in
chapter 4, while for FR were analyzed thresholdmff.3 to 0.6, with 0.02 increments.
These tests have clearly shown that FR is better MF for the analyzed task. At the
rate of about 16 FP/image, FR is able to find 63skhals instead of the 51 of MF
(approximately 25% increase), whereas at the fal®-el1 FP/image, the increase is 5
signals, but without any FPR step, like that désatiin paragraph 8, chapter 4, for MF.
Hence, not only less FPs are detected with the same better, True Positives
detection rate with respect to the MF, but also FReis easier to be optimized: the
filtered image is simply thresholded without theddor other manipulations, necessary
instead after the MF algorithm processing (seegraphs 4, 5 and 6 in chapter 4). The
variations on the nodule detection rates are rgtifstant because their number is too

small.

5.3 A new database
A new database has been used in the rest of this (RB5mm): it is composed

of 13 patients with 34 nodules, with diameters leetw2.7 mm and 9.7 mm (22 nodules
are larger than 4.0 mm and 34 than 3.0 mm), plysmtéents without nodules. The
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average number of slices per patient is 105. Aldbans come from a Low Dose Spiral
CT (GE HiSpeed CT/i), with parameters: 140 kVp,rBA. Slice thickness is 5 mm,
reconstruction increment is 3 mm, slice dimensiares512 x 512 pixels (0.67 + 0.74
mm/pixel), and reconstruction filter aheng, andstandard The database comes from
IEO, Istituto Europeo di Oncologia, Milan, Italyhere a team of radiologists detected
and marked the nodules. Tolerance was set to @spiweh Euclidean distance.

5.4 A dlightly modified Fast Radial transform and other versions of the Fast
Radial algorithm

A slightly modified version of the FR algorithm [KesiO5b] is introduced here.
In this version, the matrix imagé4, andO, are not zeroed at the beginning of eaeh
value radius loop: the consequence is that morghwés given to small search radii in
the full transformS when more than one radius is considered. By parfay many
comparisons between the original FR, the slighthdified FR, theorientation-based
FR (ORBA) [Loy03] and thenoise-loweredFR algorithms (NLO) [Loy03], we have
found thatthe slightly modified FR leads to the best resuitis nodule detection, hence
it has been chosen for the CAD.

In the noise-loweredFR, gradients smaller than a pre-defined thresRBoite
ignored, because more corrupted by noise. In dhentation-basedFR, it is the
magnitude projection image J¥hat is ignored, together with small gradients. \&ted
these algorithms on the DB5mm database, with theenmarametef equal to 0, 0.05,
0.1, 0.15, 0,20. Always has the above-mentionedifredd=R algorithm given the best
performances: witl§ >= 0.15 both ORBA and NLO didn’'t get over 55 2Ddate hits
with 35 FP/image (FR: 88 hits), and wjih<= 0.10 both reached 80 hits at no less than
45 FP/image (FR: 89 hits at 38 FP/image). From plist, the modified FR has been

employed, and simply referred to as Fast Radial.

5.5 First problem on path: instability of SRG
At this point of work, we had to face a big questabout how to proceed. We

started by performing several tests in order tdyaeathe impact of seed area on SRG
and consequently on the calculation of geometrigtuiees of nodule-like signals
detected by the FR algorithm after thresholding. $eank to a different extent the
detected signals before starting SRG, and then amdpthe ratio between major and

minor axes length of grown signals. It must be ddteat some erosion, or shrinking, is
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necessary before making the signals grow, becausa ihappen that the signal masks
in the binary thresholded image are larger thagimmal signals. We found th#te shape
of positive signals becomes less and less reguihr imcreasing degree of shrinking
for example, the maximum ratio of axes goes froinv@en just one pixel is eroded, to
4.4 when shrinking leaves just one pixel. This veha is due to the instability of the
SRG algorithm at the diminishing seed area [AdarhsB4is instability affects the
determination of the borders of the objects, whaie fundamental to calculate
geometric features to be used for object classifinaif borders are unstable, geometric
features are unreliable and classification resafts unreliable. Unfortunately, this is
only the first kind of problem introduced by theirp@RG-geometric features: indeed,
there is another problem. When it comes to consdfewobjects in CT slices, that is,
follow 2D signals in consecutive slices and grobpm together to characterize 3D
nodules as collections of 2D signals, it might reapphat SRG grown 2D objects are
hard to put together, due to the strange shape ¢hayacquire during the growing
process — growing too much or too less — whichiristly related to the given seed and
the stopping conditions chosen. Furthermore, objeah grow one into another, adding
more troubles, if possible. For example, when pgems that very strange 2D objects,
extremely irregular in shape, need to be groupedsacslices, what do we have to
consider as coordinates of the objects, to be coed@aWould it be enough to take the
centre of mass? After this operation, to what extgould the 3D object shape be

reliable and ready for further processing? Thereigasy answer to these questions.

5.6 A possible solution
The most pleasant choice would probably be to gebft any kind of shape

algorithms, hence of geometric features: this,uim,t means that we have to find an
alternative way to determine the general shapéebbjects, and a very effective way
to extract information from their texture. Well, waeight be lucky. We actually know
we don’t really need to use geometric featuresabse we have access to many
classification algorithms based on different kind$ features, such as the
multiresolution analysis methods — wavelets, rask]dasottiO5], etc —or the Support
Vector Regression (SVR) Filtering [Angelini05], tame but a few, that have already
proved to be very effective as classification feasu So, one part of our problem could
have been solved. In fact, a different problemearisom this prospected solution: all
these methods are based on the determination ob@empRegion of Interest (ROI)
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around the object to be analyzed. In other words,have to know the dimensional
extent of the signal, in order to tailor the be€IRaround it. Apparently, the SRG
comes again into play, with all its drawbacks. \\elly apparently, in the end. It
turned out that the problem of a tailored ROI canvery well, and very appealingly,
solved by a Scale Space based Approach (SSA) [herd®3].

5.7 Scale Space
Scale Space representation was introduced by Wifditkin83] and

Koenderink [Koenderink84], and provides a good fearark for dealing with image

structures at different scales. Scale Space ofnaage | (x,y) can be defined as a
function L(x, y,o ) produced by the convolution of a variable-scalessanG(x,y,o )
with the image:

L(X,y,0) =G(x,y,0)* 1(X,y)
1

G(x,y,0) =
(x,y,0) py—

exp{— (x* + y2)/202]

Unfortunately, the original approach does not asklrhe problem of how to select
appropriate scale for further analysis, as statgdLindeberg [Lindeberg93], who

proposed an heuristic principle to deal with thisljbem: “a scale level at which some,
possibly non-linear, combination of normalized datives assumes a local maximum
can be treated as reflecting the characteristigynof a corresponding structure in the
datd’. The basic idea of the principle stems from tleddviour of normalized Gaussian
derivatives of sinusoidal signals: it can be shawat the scale (sigma) at which a
normalized derivative assumes its maximum is priogoal to the wavelength of the

signal. Normalized (dimensionless) coordinates deéned as¢ = x/o , hence the

normalized derivative operator i9;; =dd,. The Normalized Laplacian (NL) thus

becomeso??. According to the principle, Scale Space extrerpaints that are local
extrema both in scale and space - of the NL reflecharacteristic length of the objects
in the image. In particular, it turns out that tiatio between the scale levels at which
the maxima of analysed objects, similar in shapedifferent in size, are attained, is
roughly equal to the ratio between the sizes obthjects.

This approach is basically the core of the SIFToalgm [Lowe04], even if it
employs Difference of Gaussians (DOG) filters iasteof the Normalized Laplacian:

they can be shown to be equivalent, by using tfiesiibn equation:
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_0G T G(x,y,ka) -G(x,y,0)
oo ko-o

o1°G
which gives:G(x,y, ko) -G(x,y,o) O(k -1)o’0°G, that is, the Difference of two
Gaussian filters with sigma equal @ and o is approximately equivalent to a
Normalized Laplacian multiplied byk{1), wherek is integer. Above all, DOG are faster

in execution than NL.

5.8 Preliminary tests with Scale Space
We performed some experiments with the SSA, usoth BIL and DOG filters,

and analyzed the relationship between the sigmaewvafl local maxima and the sizes of
simple bright objects, like circles, squares ardamgles, in a dark background. In the
case of the DOG approach, the algorithm initialymputes the correlation of the
original image with a Gaussian filter with increggisigma (the implementation is
actually done by iteratively filtering the alreadijtered image: this is due to the
property that repeating a Gaussian filtering is iemjant to filtering once with a
Gaussian whose sigma is the Euclidean sum of tleestgmas), then, the difference
images are determined. In the equivalent NL apgrosinply the convolution between
the image and the NL filters are computed. Aftes thart, the algorithm looks for local
extrema in local windows of size 3x3 or 5x5 pixelsross 3 or 5 images of the scale
space sequence. The factor k is defined so that R, with m integer [Lowe04]. We
chose m = 5.
An interesting fact emerged from these tests onrnt@ages (see also Figure 2):

1. A local maximum is found in the centre of circlesradiusr, and its sigma

. r
ISO=—1—=

7

2. Local maxima also are found in the centre of smuazed quasi-square
rectangles, with a sigma equal to the minimum eftthio sides, halved by two
(equal to the sigma of the square inscribed ircttede of point 1).

3. Rectangles and Bars show the most irregular bebaviacal extrema are found
close to the short side of rectangles, along thgahals of the squares inscribed
in them with side length equal to the short sidehef rectangle or less. These
virtual squares have one, or at most two, angles in conwiibnthe processed

rectangle, and their positions correspond to dffierresonance scales. Small
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virtual squares resonances are also found in theecoof real squares and also
along the border of more irregular objeqgtartial border resonange providing

the correct sigma is employed in filtering.

a—

v

square rectangle circle

Figure 2: explication of i) local maximum found inthe centre of a circle (right), ii) local maximum
found in a square (left), and iii) some of the mulple local maxima found in a rectangle along the
diagonals of the inscribed squares with side equat most to the short side of the rectangle (middle)

Point 1) is very interesting for nodule detectidnmeans that a circular bright object of

. . . . . r
a certain radius could be detected with a proper sigma, a sigmé& shato = —

J2
(resonance sigma More in general, it means that not only a camstalative ratio
between objects of different sizes and their sigalaes exist, but also that an absolute
relationship between the size of an object andsipma resonance value can be found,
at least for simple objects. Point 3) will becomgortant in the discussion about the
FPs detected by the system in chapter 7.

These observations formed the basis for the solutdhe problem of finding a
proper and easy way to estimate the size of a epduthout employing the SRG
algorithm, as we shall soon see.

Subsequently we tested the SSA on some CT imagésnedules and falses,
and we found out that:

1. circular and quasi-circular objects are detectedhieySSA: the local maximum

is positioned in the centre of the object, it isially alone, and corresponds to a

single resonance sigma;

2. less regular objects are still detected, but mben tone maximum is found
within a certain tolerance from the object centeexch maximum usually
corresponds to a portion of the object where decicould be individuated, and

can have its own resonance sigma value;
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3. relative brightness of the signal with respect e tackground is not of
fundamental importance: same results can be fauddferent conditions;

4. the radii of the detected signals, as measuredhenQT images, are well

approximated by the formula = L :

J2

5. anodule is missed only if its resonance sigmaitobthe filter range;

6. if the whole image is processed the number of dedetalse signals is much
larger than that of FR (250 instead of 10+50), their characteristics are
different, because only almost circular objects fatend: indeed, the SSA has
proved to be much more specific to circular shapeas the FR, but also less
specific to bright objects, as said above (seetg®iof this list), which gives
most of its falses;

After these findings, it was decided to test theA S®d the FR filters inogical AND
combination for nodule detection. This proved toabgood choice, but, before looking

at the results, another question must be addressed.

5.9 Second problem on path and a promising solution
The other question iss it possible to find a way to transform the imagerder

to further enhance the nodule-like signals? To fadransformation with higher
specificity to nodulest™deed, there are many nodules that show low GQuega and
which are therefore less enhanced, by the FR fitkean larger but less circular noise
spots with higher GL values: would it be possildeehhance the former more than the
latter? We know that every GL transformation is tasgeted to object shape, hence is
useless, because similar GL values are transformtégk same manner. A good choice
would be a shape dependent transform. Well, weadjré&know a transform with this
property. It is the FR transform! Actually, a FRefing of a FR filtered image (PR as
the next paragraph will show, has proved to be \effgctive for nodule-like signal
detection. It is a non linear transformation of theage which takes into account the
local circularity: it can really happen that ciraulobjects are enhanced more than

brighter non-circular ones. Results are given below

5.10 Putting all together
In Table 2 are compared results of FR and &fRthe database DB5mm, before

and after the logical AND with the SSA filter.
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filter FRO.1 FR0.16 FR0.19 FR20.47 FR20.65 FR20.79
Nodule hit 34/34 34/34 33/34 34/34 34/34 34/34
Signal hit 92 91 89 92 91 90
FP/slice 85,4 51,2 38,4 53,2 37,4 29,3
FP/slice after
SSA 67 43,3 33,3 45,3 32,8 26,2
Decrease 22,00% 15,00% 13,00% 15,00% 12,00% 11,00%

Table 2: comparison of the detection results betwaeeFR and FR?, before and after the logical AND
with the Scale Space filter. The resonance sigmange corresponded to 2.4+20.0 mm nodule
diameter range.

The three more significant threshold values forhbBR and FR are shown.
Clearly, FR is better than FR: with the same number of 3D 2Rchodule signal hit,
the average number of False Positive/slice is nowkr, both before and after the SSA
filtering (from 25% to 40% before, and from 22% 38% after, depending on the
threshold value). It must be noted that these trana are highly significant because the
number of false signals is huge and, even if thalar of 3D and 2D nodule signals is
much smaller, nonetheless the comparison has bedarmed between the highest
threshold values giving the same results. The nundbe2D nodule signals is a
monotone function, decreasing with increasing thokls and are the general
behaviours of these curves that have been comp@nexiresult shows that the first FR
really acts as a nonlinear and shape-dependentr@hsformation, which can improve
the detection rate of the FR filteBecause FRis never worse than FR, we can always
safely use it.

If we now analyze the effect of the logical AND wetn FR-based filtering and
SSA filtering, we notice that there is a reductionthe number of detected FP of
approximately 10 — 20%, depending on the absohreshold value: the effect of SSA
decreases with increasing FR threshold. The resenalgmas in the searched range
corresponded to nodule diameters from 2.4 mm t0 &in. The lower limit is slightly
smaller than the suggested value 4 mm (see chhpparagraph 4) for two reasons: the
first is that there are many nodules in the datalsasaller than 4 mm, and the second is

that nodules might be composed of sub-signals, ethem resonating with its own
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smaller sigma. Besides, it must be noted that, @vére maximum nodule diameter in
the database is about 10 mm, the maximum searaheeeter was 20 mm, in order to
have a good estimate of the number of falses amtday the algorithm in the usual

detection range. The comparison FR?ERsynthesized in Figure 3.

FR"2 Vs FR, after SSA
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Figure 3: plot of absolute number of detected 2D rdule signals for FR and FR Vs FP/slice, after
logical AND with SSA. Threshold values go from 0.3% 1.01 for FR, and from 0.1 to 0.22 for FR.
Searched nodule range is 2.4+20.0 mm. The superityriof FR? is evident.

5.11 Brief summary of Scale Space Approach useful properties
It is now the time to summarize the many good prtdge of SSA, in order to

determine its impact on the detection algorithm:
1. SSA can decrease the number of false signals ddtdy FR or FR of a
considerable amount, depending on initial falseslmer and detection threshold;

2. SSA can give an estimate of the size of the dedeatdule, through the

relationshipr = L ;
J2
3. SSA is very effective in controlling the searchedinle diameter, whose bounds
can be exactly set;
4. SSA can effectively locate the nodule, becausecetstre corresponds to the
position of the local maximum in the scale space.
Points 2 and 4 give an answer to the questionrams@aragraph 5 of this chapter, and

together with point 3, allow us to get rid of thRG algorithm, because there is no more
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need to calculate the borders of the signals. Poista very welcome surprise, which
strengthens the power of the Scale Space Approach.

5.12 Conclusions
The work described in this chapter has providedmib a new method for

detecting 2D nodule signals in CT slices. This rmdthbased on the Fast Radial
transform used twice and on the Scale Space apprbas proved i) to have higher
sensitivity and specificity, with respect to the telang Filter method, and ii) to have
many interesting properties, which will become imaot in the next future. As we
have already seen, the SSA gives us the opporttmigbandon the Seeded Region
Growing algorithm for the estimation of nodule sizend borders, which is a critical
point of the FPR part of the CAD system. Furthelidegion of the method will be
necessary in future, employing larger databases.
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A new CAD, part Il: matching signals through slices; coarse False
Positive Reduction (FPR-1)

Nodule-like 2D signals found in CT images needéaiatched together to characterize
3D signals to their full extent. This operation,tofeng signals through slices, can also
help to delete a great amount of false signalschvig a fundamental step of any CAD

systems, because most of the initially detectedadsgdo not correspond to true nodules.

6.1 Grouping 2D signalsinto 3D objects
Each two dimensional signal detected by previoepssbf the CAD system is

stored as a collection of features (spatial coatgi® of signal, number and type of
resonance sigmas), together with some extra-infoomaconcerning its “identity”
(patient and slice number) and, only during thedagion procedure, label (positive if
signal corresponds to a nodule, negative if not)c& more than a single resonance
sigma can be found within true nodule positionremkee, with more than a single value
(see Figure 1 below), two kinds of spatial coortksawhich are given by resonance
sigma positions, are considered: normal averagesama-weighted average. For the
same reason, maximum, minimum, mean and varianoces/af resonance sigmas for
each nodule-like signal are collected. It was deticiot to memorize all the single
sigma values because both it would have requestedntuch memory and, most
important, this great amount of information neeaal¢ synthesized to be subsequently

utilized.
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After setting a matching tolerance (7 pixels foe ffresent database, DB5mm),
which need not to be the same as that alreadydenesi to determine the objects label
(see chapters 4 and 5), 2D signals are matchedsaslices by simply comparing their
coordinates. Beginning from the first signal in firet slice, each signal is linked with
each signal in the next slice, provided their spgbositions are within the chosen

tolerance.

R3

Rl

Figure 1: examples of noduleswith irregular shapesand correspondent multiple resonance radii
determined by sigma-resonance. L eft: 3 different centres given by 3 different resonance sigmas
within the same object; right: 4 centres given by 2 resonance radii within the same object.

The spatial position each signal has to be mateh#dis that of the last added
2D signal, not the one of the signal at the tophef chain: indeed, whilst nodules are
generally found in the same position in successiices because they are sphere-shaped,
vessels, which form a large subsample of falsesyesi@wonsiderably across slices.
Three-dimensional linking is stopped when no cqoeslence is found in the last
analyzed slice. It is also permitted to link signaiich stay in not successive slices, to
manage those cases in which theregaps in the detected nodule sequence. It must be
noted that object labels are not taken into accaluming 2D signals linking, only

relative positions.

6.2 Results of 3D grouping on database DB5mm
At the end of the linking part of the algorithm, \Wwave groups of 2D signals

corresponding to objects which develop acrossslicghe CT scan of the patients. In
the table below (Table 1) are shown some resultthisf 3D linking process on the
database DB5mm, at different detection threshoR$HR (average sigma-weighted

coordinates of signals has been considered).

56



A new CAD, part I

FRTHR Gap 3DPos. 3DNeg. 2D Pos. 2D Neg. Positive Negative

singletons singletons

051 1 34/34 33019 91 75476 2 18756
051 0 34/34 38866 91 75476 2 24285
0.65 1 34/34 27164 91 58773 2 16364
0.65 0 34/34 31048 91 58773 2 20264
0.79 1 34/34 22181 90 46955 3 13957
0.79 0 34/34 24757 90 46955 3 16693

Table 1: results of 3D-linking process on database DB5mm (34 nodules, 17 patients, 105 slices per
patient on average), at different FRTHR thresholds. Gap 0 correspondsto no gapsin the dice
sequence, Gap 1to 1 dlice gap. Singletons are signalsnot linked with any other signal. It iseasy to
see that the percentage of negative singleton isvery large, whilst that of positive singletonsisvery
small.

It is clearly seen that, irrespective to the detgcthreshold FRTHR, singleton
signals, that is, signals not matched to othersstitoite the largest part of falses, and
only a very small part of positives. Indeed, onlpdsitive singletons have been found
in a group of 34 nodules (about 6%), whilst a petage of singletons varying
approximately from 55 to 65% is present in the ende of negative 3D signals. This
will be very important for the False Positive Retilue (FPR) step. On the other side,
there are an average number of almost 3 2D sigralsiodule, and 5 or 6 2D signals
per false positive. Another important observatisrthat Gap 1 can reduce the absolute
number of 3D falses found by Gap O of a percentaegging from 10 to 20%. At the
same time, anyway, the percentage of singletorredaced by the same or a grater
amount, which means that the FPR impact of singeis lowered, hence it is not clear,
at this stage of development, which value is bdt&tween Gap 1 and 0. It is interesting
to note that no hybrid 3D objects, that is, objetsposed of negative and positive 2D
signals, resulted at the end of the grouping psaces

6.3 3D objects features
To further characterize the 2D signal groups, wleutated some 3D features.

These features aréength (in number of slices)inclination with respect to verticality
(axis parallel to CT reconstruction increment miefiof a linear fitting through centres

of 2D signals, andigma-volume (sum of the mean values of sigmas of each 2D kigha
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of the 3D object, normalized to pixels of 0.7 mikigures 2 and 3 below show some

combinations of these features.
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Figure 2: inclination (theta) in degrees Vslength of nodules (positives, blue), and not-nodules
(negatives, red).
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From the above figures we can see that:

1. maximum length of nodules is 5 slices, of false4/slices;

2. most of the falses are longer than 3 nodules;

3. maximum inclination of nodules is about 68° forexig 2 slices long. We could
also argue that average inclination gets smalldr imcreasing length of nodules:
indeed, nodules, being almost spherical in shageg®pected to be much less
inclined than falses like vessels. The high in¢lova of 2-slice nodules should
be due to the high variance which affects the limegression calculation: this
variance becomes less and less important whenhlengteases, unfortunately
this database is not very large, so we cannotataithis reasonable observation;

4. all but one nodules have a sigma-volume smaller #ta

6.4 False Positive Reduction, first part (FPR-1)
All the previous observations allow us to realizZirst, coarse but very effective,

False Positive Reduction (FPR-1). In fact, we cacidk to cut all the signals which are
too short or too long, those which are too mucHined, and those whose sigma-
volume is too large. In particular, too short metressignal is a singleton, and too long
is related to the maximum size of searched nodBlesause we are looking for nodules
smaller than 20 mm, we cuts objects longer thanli&ss (in this database the
overlapping amount between slices is 2 mm, hentequite reasonable for a 20 mm
long object to be no more than 7+8 slices in length this point it is important to note
that the database at hand is too small to allowas<zValidation procedure; hence we
are forced to choose all these FPR-1 parametdtsasthey are no stricter than what we
could reasonably estimate for the general distiobudf nodules we are looking for. In
other words, as we cannot validate these parame&terbkave to accept a larger amount
of false positives than what we could really eliatenby looking at this database alone.
This is the reason why we do not accept signalenmalined than 70°, when long 2 or
3 slices, 60° when long 4, 40° when long more thaand why we cut all signals with
sigma-volume larger than 40: in both cases, smtilesholds could have been set, but
with the risk to be too much fit to this limitedsttibution. The general prescription is to
apply lax criteria and to be not too much spedificthe dataset: other researchers have
adopted this approach [Gurcan02], when the lim#iee of databases could not allow

putting up a validation procedure.
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6.5 FPR-1 resultson DB5mm
Results of this FPR-1 procedure are shown in thie taelow (Table 2).

FRTHR Gap 3D 3D 2D 2D After FPR-1  After FPR-13D  Survived
Pos. Neg. Pos. Neg. 3D Pos. Neg. Neg.
0.51 1 34/34 33019 91 75476 32 9003 27.3%
0.51 0 34/34 38866 91 75476 32 9793 25.2%
0.65 1 34/34 27164 91 58773 32 6611 24.3%
0.65 0 34/34 31048 91 58773 32 7027 22.6%
0.79 1 34/34 22181 0 46955 31 5105 23%
0.79 0 34/34 24757 90 46955 31 5232 21.1%

Table 2: effect of FPR-1 on signals detected with threshold values FRTHR. The amount of removed
falsesis approximately from 70 to 80%, at the expense of only 2 or 3 nodules over 34.

From Table 2 it is easily seen that approximaté$o7to 80% of false nodules are
eliminated by this FPR-1 step, and at the same tiraeonly 2 or 3 nodules are lost,
over 34, because they are singletons. These ayegeed figures, and the fact that the
decrease in negatives is large, no matter the \@ltiee detection threshold FRTHR, is
a particularly good result; anyway, further validatis necessary to clearly understand
if heavier cuts could be done. Again, impact of @apmeter cannot be judged: values

0 and 1 seem to be quite equivalent, at this stage.

6.6 Conclusions
Matching of 2D signals across slices is a very irtgrd step of the CAD system,

because it allows to process signals in their 3erex The 3D characterization of
detected objects has proved to be particularly-augtied for the FPR step, which has
received a great benefit from the 3D linking praged as can be seen by comparing the
FPR results of the first CAD system described irafitar 4, in which, for example,
there is no impact at all of singletons. Of courgether validation on a larger and
independent database will be necessary to asseabsblute performances of this False
Positive Reduction step.

It must be stressed that the 3D linking procedunc the following FPR-1 step
are based on the use of the Scale Space Approachimal in Chapter 5. The linking
procedure makes use of the signal positions asteetéy the corresponding resonance
sigmas of the SSA, and one of the cuts of FPRHhs®d on resonance sigmas as well.
As already stated in Chapter 5, the possibilitgeétting rid of the SRG algorithm has

had a fundamental consequence on the developmetiieolgorithm, in terms of
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simplification and reliability. What needs now te tested is whether or not abandoning
the geometric features has been a good choice.
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A new CAD, part lll: fine False Positive Reduction (FPR-2)

As already stated, False Positive Reduction isnaldmental step of CAD systems of
any kind. In this particular case, FPR is in chasfieliscriminating true nodules from
false ones among all the signals detected by owstesy In fact, the system
performances depend both on the sensitivity andifsggy of the initial filtering part,
and on the discriminative ability of the FPR p&ite have previously seen, in chapters
5 and 6, that our system is composed of an infifi@ring part, deputed to detect
nodule-like signals in CT slices, and of a coarB& lpart, able to delete more than 70%
of the falses detected by the system. Unfortunatbly remaining amount of falses is
still very large, thus another FPR step is necgsiae for example chapter 4 of this
thesis and [Armato02], [SuzukiO3]). This step wié based on a Support Vector
Machine classifier, and will comprise two sub-step®e is the classification of each 2D
signal; the other is the final labelling of eaclogy of 2D signals, which have been
given the identity of a single 3D object througte imking process described in the
previous chapter. Eventually, only the 3D objeuatiged as nodules will be prompted to
the final CAD user.

7.1 Preparing for signals classification: choosirfgegions of Interest and
features

We wrote in paragraph 6 of chapter 5 that we doe'®d to use geometric
features for classification, because there are ndififgrent kinds of features that have

proven to be very effective for image classificatisuch as Gray Level values, wavelets,
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ranklets, etc. What is necessary to do, when usirggkind of features, is to find a
square area around the object to be classifiedigRegf Interest: ROI) and use the
features derived from this small image as feattoeshe classifier. We have chosen to
use as features in this work the Gray Level vabfabe ROI. This type of features has
been used with success to classify microcalcificesti and masses in CAD for
mammography [El-Naga02][MasottiO5], and could als® considered as the coarse
version of the Support Vector Regression Filtempgroach described in [Angelini05].
The only problem would be that of precisely deteing the size of the signal to be
classified, in order to crop a ROI which is adeguatthe object size. Indeed, the aim is
to obtain a ROI not too large or too small withpest to the signal, because the former
would make the signal to be “lost” in the backgrdutihe latter would focus only on the
signal, without consider its relationship with thackground. Balance is not easy to
reach. The SSA helps us in estimating the sizehefdignal detected in the slice,
through the relationship found in chapter 5, paaphr8, based on the resonance sigma

value: J:L. We could then set the ROI side proportional te tadiusr, by

NG

introducing the  formula, depending on the parameteextraside
ROlside=2* (1+ extrasidg* 2r , (see Figure 1).

nodule

Eﬁfﬁ (2D signal)

ROI

2rf 1 +extraside)

Figure 1: relationship between ROI side and noduleadius.

By taking into account previous experiences regaydie classification of ROIs
containing mass lesions [Angelini05], we alreadgwnthat the area of a lesion with
complex texture, as a mass is, needs to be notesrtiahn 17+22% of the total area of
the ROI. Since a nodule has a considerably lespleontexture than a mass, we made

the hypothesis that the background plays a coraitiemore important role for nodule
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classification than what it does for masses: thithe reason why we decided to start
with the valueextraside= 0.05, which makes the signal area be about 1B#eoROI
area, and then compare it with the values 0.12028.0.24 (17.5%).

Afterwards, all ROls are resized by means of anedr algorithm to a common
ROI size (parametdRESIZE indicating the ROI side length, in pixels), amern their
GL pixel values are put in form of a vector, by plynbuilding a single column vector
made by the columns of the ROI matrix. These vectwe the feature vectors for the
SVM classifier. Classification of each ROI is thestf step of FPR-2: after that, each
group of 2D signals, corresponding to a 3D nodikle-tignal initially detected by the
system, is given a final label, positive if it isdged a nodule, negative if not. The
RESIZE parameter was chosen among the values 11, 15,239, respectively
corresponding to vectors of length 121, 225, 3&B. 3%We must note in fact that it is
important not to reduce too much the side lengththef ROIs, because valuable
information could be lost during the process, s the resized ROI would be useless
for classification purposes. On the other side,muest remember that the risk referred
to asthe curse of dimensionalitig always present in learning algorithms, when the
number of training vectors is close or smaller thdre classification space
dimensionality [Haykin99], even if we know that SVisl much less prone to this risk
than all other learning algorithms [Vapnik95][Campa04]. In conclusion, because the
smallest ROI size detected by the algorithm wagpikéls, and because the number of
positive 2D training vectors is less than 100, weided to choose the above values for
the parameteRESIZE

7.2 Classifying 2D signals: 7-Fold Cross Validati@nd 90° rotations of ROIs
Consider now the classification of 2D signals. Bseathe database DB5mm is

a small one, a Cross-Validation procedure was densd for training and for
performance estimation. The set of survived 3D agnfor FRTHR = 0.65, is
composed of 32 nodules and approximately 7,000edalsorresponding to 89 2D
positive signals and 16,999 (Gap 1) or 17,394 (Gpmegative ones. This FRTHR
value was chosen because it seemed a good comprbeiaeen nodules and falses
numbers: as already noticed, a larger databasebwiliecessary to choose the optimal
value of parameters. Unfortunately, of the 13 pésiewith nodules, 2 contain 17
nodules of the total number of 32, hence a Leave-Out procedure was not possible,
and 7-Fold CV was chosen instead: this is a goadetoff between the necessity to
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have balanced sub-groups in the CV, that is, withilar numbers of positive and
negative signals, and the prescription of CV exgee, saying that the number of sub-
groups should be closer to 10+20 [Kohavi95]. Thmatlents without nodules were used
to make the number of signals as balanced as pessiboss the sub-groups. Before
proceeding with the CV, all the data vectors undstwa whitening procedure,
“pixelwise”: the distribution of each pixel, beirgdimension of the feature space, was
individually normalized to zero mean and unit stdddeviation (see also chapter 4,
paragraph 9). We tried a polynomial kernel for SMMth low degree (2, 3), that is
know to always guarantee good performances with éwerfitting risk, at a low
computational cost [CampaniniO4].

Further, to increase the number of positive sigrald, at the same time, to
introduce somerotational invariancein the classifier generalization capability, all
positive ROIs in each training procedure were emta® times by 90° and the new
correspondent vectors added to the training. Witis bperation, the number of
positives in training is multiplied by 4 (from 88 856). Moreover, this procedure was
also introduced into ROIs classification, by coesidg the 4 labels of the 4 90° rotated
views of each ROI. Different thresholds can befaethis labelling procedure: 2, 3 or 4
positive labels can be required to give the firadipve label to the ROI.

7.3 Labelling 3D objects
Consider now the labelling of 3D objects. Theirdsbmust depend on the

individual labels of each of their 2D signals. léwook at these 2D signals, we notice
that not all have the sanggiality, that is, some of them really resemble a nodulelew
others do not, especially those at the beginnind) anthe end of the 3D object (see
Figure 2 below).
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b.3

Figure 2: examples of two 2D nodules sequences rdla to two different 3D nodules. Differences in
quality are evident: the last signal of sequenca is much noisier than the first two ones; the first
signal of sequencé is very small and difficult to spot.

This can be easily explained: the first and last2@hals usually come from
slices which have cut the nodule in its top or tmott so that in the slice it has been
reconstructed together with some of the lung tigsestioned over its top or under its
bottom. This makes the nodule be very difficultsiee, and smaller in size than its
maximum extension. To try to overcome the fact toat and bottom low quality 2D
nodules present a high risk to be classified astneg signals, we decided to use not
strict procedure when labelling a 3D object: isigficient that only a fraction of its 2D
signals are classified as positive to give it aitpaslabel. This fraction must depend on
the 3D object length. This is a sort of Majority g (MV) algorithm [Kittler98].

7.4 7-Fold CV results — part |
In this section we shall see the first final resutf the CAD system. The

procedure of CV on the dataset of 356 2D positi@ed 16,999 2D negatives was
performed to optimize the following parametersheit respective rangesextraside=
0.05, 0.15, 0.24RESIZE= 11, 15, 19, 23 pixelsiap = 1, 0 slices; SVM kernel:
polynomial with degree 2, 3. Because we found that all t@nihg processes
terminated with complete separability of the twassles, both the SVibst parameter
C and the SVMunbalancing parameter ‘C= (number of negatives)/(number of
positives) were useless, hence were no more caeside

The MV algorithm was used with these settings: aoBi2ct is given a positive
label if at least one signal is positive, in cadge long up to 4 signals, and if at least two
signals are positives, in case it is longer thaslides (remember that the maximum

allowed signal length in the database DB5mm isi&s). From the histograms in
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chapter 6, we know that the 3D positive objectthia database are all long less then 5
slices, except one. The average length is 2.8sslioe positives and 3 for negatives
objects, even if the maximum length of negatived8sslices. It is clear that, for this
database, the behaviour of the algorithm on objeat®nger than 4 slices is what really
matters for what concerns performances on true laegdon the other side, as already
stated in the previous chapter, we tried to ob#airestimate of the FP rate of the CAD
system for nodules in the range 3+20 mm: this & rdason why we tried to use lax
criteria in the FPR-1 phase and in this labellitgige as well, by not eliminating all
signals longer than 5 slices. We initially compatieel above MV settings with a strict
labelling procedure, requiring all 2D signals to [esitive to give the 3D object a
positive label, but, as the weak labelling resblkéow will show, this was really too
strong a requirement.
In the table below (Table 1) are shown the bestltesf the 7-Fold CV

procedure.
Gap | 2D 2D neg. 3D pos|{ 3D pos| 3D neg FP/Pat. -| SVs SVs
pos. average | overall average number: | number:
average positives | negatives
1 33-37| 350-390 | 23/32 23/34 320-350 19.4 ~260/330 ~750/13500
/89 /16999 /6611
0.40 | 0.022 0.719 0.676 0.05 75+80% 5.5%
0 35-37 | 350-400 | 23.7/32 23.7/134 320-360 19.9 idem idem
/89 /17394 /7027
0.40 | 0.022 0.74 0.699 0.05

Table 1: results of the 7-Fold CV éxtraside= 0.05, polynomialkernel with degree= 2), averaged
over RESIZE parameter values, for bothGap1 andGapO0. Theoverall column takes into account
the total number of nodules of the database. The send and the fourth rows report the fractional
number of positives and negatives. In the last twoolumns are shown the average number of
Support Vectors per class, with respect to the totamumber of training vectors in the 6 sub-groups
(the other one is used as test).

These results have been obtained with paramet@tegaside= 0.05; kernel =
polynomial, withdegree2; number of positive labels over 4 necessaryve g positive
label to a 2D signal (ROI): 2; MV parameters: aslel positive for objects long up to 4
slices, at least 2 for longer objects. Moreovegsthresults have been averaged over the
RESIZE parameter values, because no clear indicati@s obtained for an optimal
resizing value among the proposed four ones.

The other values aéxtrasidegave no better results, sometimes worse: appraglyna
equal or slightly lower 2D positive rates with ab@@+25 FP/Patient.
Polynomialkernel of degree3 gave approximately the same positive rates Wsb%
FP/Patient.
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As can be seen from Table 1, no differences cadiol@l in the performances Gfap 1
andGap0.

It is important to note that the performances @&f ¢hassifier over 2D signals are
not brilliant from an absolute point of view, besawnly 40% of positives are hit, but
are quite good from a relative point of view, besmwnly 2% of negatives receive a
wrong label. This means at the same time thalel)GL features and the ROls database
carry an amount of information useful to distindgutbe two classes; ii) this amount of
information might not be sufficient to improve therformances. At this point, it is not
possible to know whether the database or the feqtoeed first to be improved. From
previous experiences, we could argue that it isldbk of data that mostly affects the
performances.

In conclusion, this system configuration can finch@st 70% of nodules in the
database range 3+20 mm at a cost of about 20 F&Rato compare these figures with
those obtained by the system described in chapighdse results were 70% of nodules
with 2.1 FP/slice, we must consider that the totainber of 2D falses of the present
system is approximately 350+400, and that they Hzeen found in 17 patients with
105 slices on average each: this gives 0.2 FP/dllve present system, according to the
7-Fold CV results, is ten times better than theesys of chapter 4.

7.5 7-Fold CV results — part II: choosing positivésr training
It is now important to consider again what was date paragraph 7.3: not all

the 2D nodule ROIs have the sameality. Top and bottom ROIs present a lower
quality, when compared faner ROIs. Because CV is a procedure which considérs al
the samples in the database alternatively for itrgirand testing, this fact is very
important and leads to the observation that a bat@eaing dataset might be prepared,
by choosing only the high quality samples. In othards, the multiple learning
procedures of the CV should be performed with allempositive set, in which all the
ROIs must have been chosen according to theirtqtiaé aspect. This was done, and
54 ROIs were chosen among the initial 89 (resuliting set of 216 2D positives): about
40% of the detected positive signals were judgeddaality ones and not considered

for training (but were for test). Results are giwed able 2.
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Gap 2D 2D neg. 3D pos| 3D pos| 3D neg FP/Pat.- | SVs SVs
pos. average | overall average | number: | number:
average positives | negatives
1 28-31/| 170-200 | 21.3/32 21.3/34 | 150-180 | 9.6 ~150/185 500/13500
89 /16999 /6611
0.32 0.011 0.666 0.625 0.025 80% 4%
0 24-31 | 200 20.8/32 20.8/34 | 170 10.1 idem idem
/89 117394 17027
0.32 0.011 0.65 0.610 0.024

Table 2: results of 7-Fold CV éxtraside= 0.0.5, polynomiakernel with degree= 2) with chosen
positives in training, averaged ovelRESIZE parameter values, for bothGap1 andGap0. The
overall column takes into account the total number of nodies of the database. The second and the
fourth rows report the fractional number of positives and negatives. In the last two columns are
shown the average number of Support Vectors per cs, with respect to the total number of
training vectors in 6 sub-groups (the other one issed as test). Clearly, results are better than ttse
reported in Table 1.

Clearly, the system with chosen positives in tragmeaches better performances:
indeed, even if the absolute hit rate is lower, ERéPatient figure is halved! Moreover,
the total number of Support Vectors (SVs) is dexedato approximately 60+70% of
previous level (Table 1), even if the absolute namdf samples in the positive class is
now 60% of the initial one. This means that [Va@kthe two classes are now more
separable, or separable with less effort, whictunm means that the positive class is
now more dissimilar to the negative class. The fhett without the selection of
positives there were 2 times FP/Patient and ordgnall increase in correctly classified
positives, signifies that in the 89 positives datthere are many signals very close to
the other class: the decision to discard them vesdn right. Besides, this fact shows
that the information carried in the training datsdas of fundamental importance to
obtain good performances, and supports our observat paragraph 7.4, that enlarging
the database would be more important, at preseat trying different classification

features, whose results could, also, not easilypaoed on this small database.

7.6 Introducing Multirotation in training
As a consequence of the previous result, we toefthtl the way to use at best

the information of the database. The natural wagdat was to force the procedure
considered in paragraph 7.2 for introducing rotalanvariance and increasing 4 times
the number of positive ROIs in training. This timee decided to add to the training set
more rotated versions of each ROI, before applyiregusual 90° rotation procedure.
Each ROl is rotated of 15°, 30°, 45°, 60° and H&fore being cut from the original
image (otherwise there would have been problem# iwhe image corners). The

procedure Nultirotation) gives 24 times the number of original positivedé used in
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training (54 x 6 x 4 = 1,296). The new Multirotatitraining procedure can also affect
the classification procedure of 2D signals. Twoianmt are hence possible: going on
with the usual 4-rotation labelling procedure, r tb use a Multirotation based one.

We tried both, beginning with the usual 4-rotatpyocedure.

7.7 7-Fold CV results — part lIl: effects of Multitation in training
In the table below (Table 3) are reported the tesaf the 7-Fold CV with

chosen positives, Multirotation procedure in traghiand usual 4-rotation procedure in
test. In the latter, two different thresholds weoasidered to give a positive label: at
least 2 over 4, or at least 3 over 4. Only Gap % w@nsidered, because results are

similar for both values 0 and 1.

With Multirotation
4- 2D 2D neg. | 3D pos] 3D pos. | 3D neg. FP/Pat.| SVs SVs
rotation pos. average| overall average | number: number:
threshold average positives | negatives
Atleast 2| 45-47| 380-410| 23.7/32 | 23.7/34| 320-345]| 19.8 ~380/1150; 650/13500
/89 /16999 /6611
0.52 | 0.022 0.74 0.697 0.04 33% 5%
At least 3| 36-40| 180-200| 22/32 22/34 155-165 | 9.5 idem idem
/89 /16999 /6611
0.45 | 0.011 0.68 0.65 0.04
Without Multirotation
Atleast 2 | 28-31| 170-200| 21.3/32 | 21.3/34| 150-180| 9.6 ~150/185 | 500/13500
/89 /16999 /6611
0.32 | 0.011 0.666 0.625 0.025 80% 4%

Table 3: comparisons between 7-Fold CV with and whout Multirotation in training, both
employing usual 4-rotation labelling in test, with“at least 2” and “at least 3” thresholds. The
introduction of Multirotation has increased the 2Dperformance rate but also the 2D FP rate, in the
case of “at least 2" labelling threshold. The labdihg threshold “at least 3" gives the best results.

From the table above it is easy to see that theildtdtion training is superior to
the previous 4-rotation training: indeed, it is sdpr from the point of view of the
number of 2D positive signals correctly classifiashd at the same time it finds the
same number of FPs as before, when the labellirggltiold is in the configuration “at
least 3”. This fact means that the classifier haarded better than before the
characteristics of the two classes, positives agatives, due to the gain in information
given by the Multirotation procedure, with whichethodule signals are “seen” by the
classifier during the training step from many otaions. The absolute numbers of SVs
have both increased: the positives almost 3 tirtiess negatives about 30%. This fact
indicates that a better positive class descriptias forced the learning algorithm to ask
for more information about the negative class. Hmvgthe fact that the two classes are

easily separated in the training phase, but abslglutot separated in the test one,
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together with the high difference between the pasiand negative class percentage
figures and the still larger absolute number ofateg SVs with respect to the positive
ones, denote that more information should be adde®gach a better separability. In

particular, the nodule class is certainly undeepnted in the training set.

7.8 Introducing Multirotation in test phase
The next step of the system development was theoduattion of the

Multirotation procedure in the 2D labelling phas®l views of the same ROI are
classified by the SVM algorithm to obtain the mpsbbable label between “nodule”
and “not-nodule”. In order to optimize the thregholf this parameter, we first of all
considered the following histograms (Figures 3 4ndhey show how many 2D signals
has received a certain fraction of positive latmeler the 24 (data shown fRESIZE=
11).

2D labelling fraction over 24 rotational views: positives
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Figure 3: this histogram shows how many 2D positiveignals have received a certain number of
positive labels, from 0 (column 1) to 24 (column 25
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2D labelling fraction over 24 rotational views: negatives
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Figure 4: this histogram shows how many 2D negativeignals have received a certain number of
positive labels, from 0 (column 1) to 24 (column25)

Figure 4 shows that the classifier is able to divpositive labels over 24 to
13,320 negative ROIs over 16,999 (78.4%): moreowmelly 593 negatives are given at
least 13 positive labels. These are the false igesithat will eventually contribute to
the FP/Patient rate of the system. Figure 5 shtnas25 ROIs over the initial 89 are
given 24 positive labels over 24 (28%), that 16rd8@ are given no positive labels at
all (18%), and that 53 over 89 are given at ledstpbsitive labels over 24. The
monotonically decreasing number of positive labgigen by the classifier to the
negative ROIs, together with the less regular Hotoat mirror behaviour of the
positives histogram, tell us that we have to amalywe performances coming from all
fractional values between 12 and 24 with the 7-Fo\d procedure, in order to obtain

the optimized system. Results are given below.

7.9 7-Fold CV results — part 1V: effects of Multitation in test and final FROC
curve

The next figures (Figures 5 and 6) show the eff#cvvarying the labelling
threshold from 12 to 24 over the positive and negaROls.
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absolute number of 2D positives over 89

Figure 5: absolute number (over 89) of correctly @ssified 2D positive signals at varying labelling

absolute number of 2D negatives over 16.999
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Correctly classified 2D positives at varying labelling threshold
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Wrongly classified 2D negatives at varying labelling threshold
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Figure 6: absolute number (over16,999) of wronglylassified 2D negative signals at varying
labelling threshold from 12 to 24. In the legend, fes N” stays for “ROI resized to N pixel”.
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The system behaviour seems in general to be natyarly dependent on the
resizing parameteRESIZB, except for the value RESIZE = 11, which presantrger
number of false positives for labelling thresholalues from 12 to 17, and a larger
number of true positives for threshold values eqoua2, 23, 24.

As already noted, the smallness of the databaseesnaikdifficult to clearly
determine some fine details of the system behayvibance we decided to simply
calculate its average behaviour over RESIZEparameter to derive an FROC (Free
Response Operating Characteristics) curve [Metz&6] summarize the system
performances. A FROC curve is a plot of True Pes#i(TP) rate, that is, fraction of
detected nodules Vs the average number of FP/Ratied is widely used in the CAD
community as a tool for a quick and effective repraation of systems performance. In
the table below (Table 4) we can find the perforoesnof the system averaged over the

resizing parameter.

2D labelling

threshold 12 13 15 17 19 20 21 22 23 24
(over 24)

2D pos 54,5| 58,5 47,75 4% 396 38,25 355 31,25 27,25 P05
2D neg 713 | 519,5 342,2% 24055 167,25 13675 10425 74,5,5Pp3 32

3D pos 27| 26,75 24,75 28 22,75 22,5 215 20 18 16
3D pos: fraction | 0,794| 0,787, 0,728 0,676 0,669 0,662 0,632 0,588290,50,471

3D neg 572 426 291  20¢ 14y 121 91 65 46 27
2D FP/slice 0,399| 0,291 0,192 0,135 0,094 0,077 0,058 0,042 3 pDOO18

3D FP/PAT 33,6| 250 17,17 121 8,6 7|1 5,3 3,8 26 1,6

Table 4: absolute and fractional numbers of positig and negative signals detected by the system at
varying labelling threshold. The database is formedby 89 2D positives, 16,999 2D negatives, 34 3D
nodules and 17 patients. Results are averaged oube 4 different values of theRESIZE parameter.
The number of 3D FP/Patient is calculated dividinghe number of 3D negatives by the number of
patients, whereas the number of 2D FP/slice by diding the number of 2D falses by the number of
patients times the average number of CT slices pgatient (105).

The average percentage of correctly classified @8itpes varies from 23% to
61%, with an average percentage of wrongly classiiD negatives varying between
0.2% and 4%. Correspondingly, 47% to 79% of nodalesdetected, with 1.6 to 33.6
FP/Patient (or 0.02 to 0.4 FP/slice).
These averaged results allow us to plot the FRQecof the system over 34 nodules
in 17 patients of the database DB5mm (see Figlnaav).
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FROC curve
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Figure 7: FROC curve of the CAD system for the DB5mn database. The24-rotationcurve refers to
Multirotation algorithm used in test, with labellin g threshold going from 12 to 24, whilst thel-
rotation curve refers to the usual 4-rotation algorithm, wih labelling threshold equal to 2 and 3. In
both Multirotation procedure was employed in training. Error bars correspond to the standard
deviation: 0.03.

The FROC curve shows different working points af gystem, depending on
the labelling threshold. The first important resafitMultirotation based test is in fact a
finer tuning of the system, with respect to theotation based test. Furthermore, with
the Multirotation procedure the system reachesb@D positive rates at fixed 2D or
3D negative rates, as can be seen by comparingg 8mnd 4. Errors bars in the FROC
curve, about 0.03 in absolute value, approximatelyesponding to 1 nodule, simply
refers to the standard deviation of the 4 diffe@ntves given by the 4 different values
of theRESIZEparameter. However, if we take into account thasé results have been
obtained from a Cross Validation procedure on allstadéabase of only 34 nodules, we
must conclude that larger errors might affect thesdormances, and that these errors
come from bad sampling of the database with redpetttereal, and unknown, nodule
distribution. Unfortunately, these effects can’tdieectly estimated. As an alternative,

we could consider again, as in chapter 4, the bialoproportion interval estimation
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[Berger95][Brown02]: at 95% Confidence Intervaletlerror is approximately 3+6
nodules (9+18%). Keeping in mind this figure, wetio® that these results are
comparable with those found in CAD literature, savhehich are reported in chapter 2:

consider for example [Armato02], [Lee01], [Gurcah02

7.10 False Positives analysis
By direct visual inspection, it is possible to nithat the set of FP signals can be

divided into three categories:

a. ROIls found at the outer border of the lung areareagenting normal lung tissue;

b. ROIs around large and non-circular bright zonesallg part of vessels;

c. ROIs around small circular vessels.
Whereas falses of typeare quite reasonable and constitute the largdsireup, the
other two types, though less common, being morgrditar to relevant nodules, should
be avoided as much as possible in order to redidicee@der distraction to a minimum.
This will be the goal of future work, anyway, itrche arguer that falses of classire
related to SSA and FRindeed, in our initial test with SSA we notedtthizere can be
resonance not only with whole objects (circles quases), but with parts of them
(partial border resonancesee chapter 5, paragraph 8). When the segmentpia
processing leaves some very bright pixels on thrddyoof the lung area, it can happen
that they are detected by the F&gorithm and, if in the same area a partial borde
resonance with lung tissue is found by the SSAn titee ROI will be considered for
further processing. The fact that the training pescis based on a small subgroup of the
real and unknown nodule distribution, and that sahthe used ROIs contain a very
small nodule surrounded by lung tissue, is probagdponsible for the detection of this
kind of FPs. Similarly, even type b amdof falses will probably be reduced by the
exploitation of a proper large database. The figuse the end of the chapter show
examples of nodules and of FRRESIZED= 19, labelling threshold = 15).

7.11 Conclusions
In this chapter we have seen the last part of tA® Gystem, the FPR-2 step,

based on Gray Level features and a Support Vectachiie classifier. Even if the
employed database is not large enough to perforimdependent test, the 7-Fold CV
procedure allowed us to clearly show that:

1. the GL features have good discriminative capaéditi
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2. the introduction of the Multirotation procedure tiaining makes the classifier
extract a great amount of information from the Hate, greater than the
previous 4-rotation procedure;

3. the introduction of the Multirotation proceduretire test phase gives the system
a larger number of working points, and better rssul

4. the kinds of falses made by the system can be efividto three subgroups, one
made of signals very similar to nodules, the ottves related to the system
structure.

As already noticed, all the results need to béhaurvalidated on larger databases, but it
must be remembered that, even if the nodules inlatebase DB5mm ranged from 3 to
10 mm, we searched nodules in the range 3+20 mnyrder to obtain a good
estimation of the FP/Patient figure of the systdtoreover, the parameters in the FPR-
1 phase were chosen to lae: not tailored to the positive distribution in thatabase,
but reasonable for the “real” positive distributioks a consequence, overfitting risk

should have been successfully kept low in this work

Figure 8: example of detected nodule (blue squaréruth; red square: CAD detection) (DB5mm,
patient 6-2-1-1, slice 37)
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Figure 9: example of detected nodule (DB5mm, pati¢®-1-1-1, slice 31)

Figure 10: example of FPs of typa (right) and b (left) (DB5mm, patient 6-1-1-1, slice 35)
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Figure 11: example of FP of type (DB5mm, patient 7-1-1-1, slice 28)

Figure 12: example of FP of type (DB5mm, patient 7-1-1-1, slice 58)
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Analysis of LIDC database

The Lung Image Database Consortium (LIDC) is a eoajve enterprise of the
National Cancer Institute (NCI) of the USA, aimdddaveloping an image database to
serve as an international resource for the devetoprand assessment of CAD systems
applied to the detection of lung nodules in CT sd@rmato04].
Authors declare that the database will include:

o CT images and related technical data;

0 nodule position and description;

o0 pathology information, when available.
Each CT scan will have been read by four radiotsgiso times, the first in blind mode,
the second with knowledge of others results, amceéxh nodule larger than 3 mm a
probabilistic description of contour will be proed, by taking into account results of
the four readings, in order to capture inter-reag@rability. Nodules smaller than 3

mm will only be described by their centroid.

8.1 Database at time of writing
At time of writing the database (DBLIDC) is compdsef 23 nodules in 23

partial CT scans, with an average number of 3&slmer patient, slice thickness 0.625
mm and reconstruction increment 0.625 mm. Eachema$12 by 512 pixels and each
pixel 0.703 mm in length. Minimum diameter of 2D dute signals is 1.4 mm,

maximum 58.9 mm. The nodule length in slice numbaomprised between 5 and 43

slices.
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By comparing DBLIDC with the database DB5mm, congabef slices of 5 mm
thickness and 3 mm reconstruction increment, éaisy to understand that this database
allows the detection of smaller nodules, and makessier as well: long objects are
classified by means of more points of view (thaR®©Is).

Unfortunately, as already happened with both theerotwo databases used in
this work, even this one is small, which means thatfiltering and FPR-1 parameters
have been chosen by means of reasonablenessacréted that FPR-2 has undergone a
Cross-Validation procedure, without independentidion. Noticeably, when the
database will be enlarged, a complete validatioocguiure will be necessary for

parameter optimization.

8.2 CAD processing |: detecting2D signals
Threshold values (FRTHR) between 0.40 and 1.90 hmeen tested on the

database, with tolerance for truth set, as usaab.@ pixels. Truth was simply nodule
centroid, taken from the probabilistic descriptigiven with each nodule. Searched
nodules range was, as before, 2.4+20.0 mm. Figubeldw shows the number of
FP/slice at varying FRTHR, both before and after$icale Space Approach filtering.

FP/slice Vs FRTHR

120

\ |—+—FPislice after SSA
100 \ |-=— FPislice before FR2 alone

60 -

FP/slice

40

20

0 0,2 0.4 0,6 0.8 1 12 14 16 18 2
FRTHR

Figure 1: FP/slice at varying FRTHR before and afte Scale Space filtering.
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Because there was no validation set for this dagldzeing the database itself too small,
we decided to increase the value of FRTHR untilahierage number of false positive
signals per slice was similar to that of the DB5mdatabase for FRTHR = 0.65, the
thresholding value considered in chapter 7. Thigiaghis due the consideration that
previous experience could be used as a guidelinadw, unexplored databases, when
no other landmarks are visible. With FRTHR = 1.88 number of FP/slice was

approximately 30, with 22 over 23 detected nodules)ce this value was chosen.

Parameteextrasidewas set as for database DB5mm: 0.05.

8.3 CAD processing I1: matching signals through slice and FPR-1
We grouped the 225 positive and 25,879 negativesigiDals across slices as

described in chapter 6, with a tolerance betweleessket to 7.75 pixels, afgapto 1.
Tolerance was slightly larger than before (7 pixblcause of the very irregular shapes
of many nodules in this database, which could tesuheavy nodule fragmentation
across slices: such fragmentation was reduced uongatched positive signals and 2
split nodules. Since paramet@ap was not critical in database DB5mm, value 1 was
chosen, being able to help reducing nodule fragatiemt In the end, the grouping
process resulted in 30 3D positive signals (6 uohet single signals, 24 non-singleton
objects) and 4,625 3D negative signals (1.746 stngk).

After grouping, we determined FPR-1 cuts. As witlitatbase DB5mm, cuts
were reasonably lax, in order to reduce to a mimmaverfitting risk in such a small
database. Figures 2 and 3 below show the distobsitof the featureghetg sigma-

volumeandlength
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Figure 2: inclination - theta - in degrees Vs lendt of nodules (positives, blue), and not-nodules

(negatives, red).
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Figure 3: length Vs sigma-volume of nodules (posites, blue), and not-nodules (negatives, red).

Minimum length of non-singleton nodules was 3, maxn 26, and maximum

length of negatives was 59. Maximum valuesigima-volumeor nodules was 77, but
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second maximum was 59, and all other values wederus0. Maximum value for theta
was 64° for 2-slice long nodules, 38° for 13-sli@eg nodules, and 6° for 26-slice long
nodules.
It was then decided to apply the following cuts:

1. Length singletons and objects longer than 40 nodules;

2. Theta

o0 more than 70° for length 2 objects;

more than 65° for length 3 objects;

more than 60° for length 4 objects;

o O O

more than 55° for length 5 objects;
o0 more than 50° for objects longer than 5;
3. Sigma-volumegreater than 80.
After the FPR-1 process, there remained 24 posgigrals (2 of them were parts of
other signals) and 2,132 negative signals (46%hefinitial set). The only lost nodule
was not detected by the ERIgorithm. No hybrid objects were found.

If we compare these figures with those of the DBS5iiaabase, we see that
after the present cuts a larger proportion of falsestill present: more than 40% instead
of approximately 25%. It is hard to say, withowaidation set, if it could be possible
to reduce this proportion and still reach a gootecen rate, so we decided not to
change the cuts nor the detection threshold FRTéVen if the initial aim to have a
FP/slice figure close to the DB5mm one has not lseisfied after the FPR-1 phase.
Our concerns were more focused on keeping ovedittisk as small as possible, than
obtaining a small but less reliable FPs number.

8.4 CAD processing I11: FPR-2
For what concerns the classification of 2D signale employed a Cross-

Validation procedure for training and performansgneation, in particular a 7-Fold one,
with 3 positives in the first 6 sub-sets, and 4ha last one. As before with DB5mm,
RESIZEwas 11, 15, 19 or 23 pixel§ap = 1 slices, SVM kernelpolynomia) with
degree 2. Not as before, the training processeasirtated with almost complete
separability of the two classes, so we nonethaliessded not to change SVEbst
parameter Gsetequal to 100, and the SVNhbalancing parameter ‘Cset equal to the

ratio number of negatives/ number of positireghe training set. A few errors on a total
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number of more than 10,000 vectors means thatawarig between the two classes is
negligible hence could be ignored.

For what concerns 3D objects labelling, since neslelan be long more than 20
slices, we decided to use the MV algorithm with siaene settings as in chapter 7, for
objects long up to 8 slices (a 3D object is givepoaitive label if at least 1 signal is
positive, in case it is long up to 4 signals, dnat least 2 signals are positives, in case it
is between 5 and 8 slices), with the addition ekthsettings for longer objects:

o 3 (4) signals for 8 < object length12;

o0 5 (6) signals for 12 < object lengthl6;

0 8 (10) signals for 16 < object lengtiR0;

o 10 (12) signals for 20 < object lengtiB0;

o 12 (15) signals for objects longer than 30.
Numbers between brackets are other values that Ib@en tested in different
combinations with those chosen during the CV precesd later discarded. The
minimum number of necessary positive 2D signalgite a positive label to a 3D
object varies then between 20% and 40% of the nuoftegnals in the object.

We tested the system with and without the Multitiota option. Results of the
7-Fold CV procedure with Multirotation only in trang are compared with those
without Multirotation in Table 1 below.

With Multirotation in training
4-rotation | 2D 2D neg. | 3D pos.| 3D pos. | 3D FP/Pat. | SVs SVs
threshold pos. average | overall | neg. | average | number: number:;
average positives negatives
At least 2 96-98| 2900- 18/22 18/23 700- | 30.8 ~1800/4000 ~2600/11500
/191 | 2970 720
/13426 /2132
0.51 0.22 0.82 0.78 0.33 45% 23%
At least 3 65-74| 1520- 15.2/22 | 15.2/23| 360-| 17.8 idem idem
/191 | 1680 430
/13426 /2132
0.45 0.12 0.69 0.66 0.19
Without Multirotation in training

Atleast2 | 46-54| 1328- 10.5/22 | 10.5/23| 364-| 16.6 ~530/650 ~1400/11500
/191 | 1450 393
/13426 /2132
0.26 0.10 0.477 0.456 0.173 81% 12% |

Table 1: comparisons between 7-Fold CV with and whtout Multirotation in training, both
employing usual 4-rotation labelling in test, with“at least 2” and “at least 3” thresholds. The
introduction of Multirotation has dramatically incr eased the 2D performance rate but also the 2D
FP rate, in the case of “at least 2” labelling threhold. SVs are considered for an average training
set of 6 subgroups of the total 7 ones.
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Analysis of LIDC database

The effect of Multirotation is a dramatic increaseboth positives detection rate and
FP/Patient. As already noticed with the DB5mm dasab with threshold set as “at least
3” there is almost the same FP/Patient figure dlsout Multirotation, but with a much
larger number of detected nodules. On the contrargpticeable difference with the
DB5mm database is the absolute number of falsdh, 210 and 3D: the percentage of
the initial number here is approximately 10 timkattof the previous database. The
large number of falses and the heavy effect of ihitition clearly show that the
number of nodules in the database DBLIDC is atitcal low level. The number of
SVs confirms this observation: almost half of pess and % of negatives are SVs in
Multirotation training, a situation very differeftom that with DB5mm database, where
33% of positives and only 5% of negatives were SVs.

Afterwards, Multirotation was considered for labedl The following
histograms (Figures 4 and 5) show the number ofsidals that have received a
positive label (data shown f&ESIZE= 11).

2D labelling fraction over 24 rotational views: positives

25

151

10 1

AR AR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 4: histogram shows how many 2D positive sigils have received a certain number of positive
labels, from O (column 1) to 24 (column 25).
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2D labelling fraction over 24 rotational view: negatives

2500

2000

1500 +

1000 +
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Figure 5: this histogram shows how many 2D negativeignals have received a certain number of
positive labels, from 0 (column 1) to 24 (column25)

The ideal shape of the histograms would be tha sihgle column on the far right for
the positive class and a single column on theefarfér the other class. On the contrary,
they both show shapes very different from the ideas, because the number of errors
of the SVM classifier is very large, much largeartton the DB5mm database: there are
87 2D positives that receive no more than 11 pasiabels over 24 (45% of 191), and
4,192 negatives that receive at least 12 posisibels (31% of 13,426). Besides, the two
classes are not entirely separable in trainingnelé an almost negligible degree (a
few vectors over thousands), and are highly noasdpe in the test phase. This
situation denotes that the two classes are notwehlyrepresented in the dataset, and in
particular it is the nodule class that is undemspnted. This was among our
expectations, because 23 nodules are a very smiaber, even to perform a Cross-
Validation procedure. Figure 6 and 7 below show effect of varying the labelling

threshold from 12 to 20 over the positive and negaROls (allRESIZEvalues).
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Correctly classified 2D positives at varying labelling threshold

absolute number of 2D positives over 191

0 5 10 15 20 25

labelling threshold

Figure 6: absolute number (over 191) of correctlylassified 2D positive signals at varying labelling
threshold from 12 to 24. In the legend, “res N” stgs for “ROI resized to N pixel”.

Wrongly classified 2D negatives at varying labelling threshold
4500
4000
3500
3000
2500
2000
1500

1000

absolute number of 2D negatives over
13.426

500

0 5 10 15 20 25

labelling threshold

Figure 7: absolute number (over 13,426) of wronglglassified 2D negative signals at varying
labelling threshold from 12 to 24. In the legend, fes N” stays for “ROI resized to N pixel
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As before with DB5mm, the system behaviour seemgeimeral to be not particularly
dependent on the resizing paramefRES$IZB, except for the value RESIZE = 11,
which presents a larger values of false positieeddbelling threshold values from 12
to 15, and a larger values of true positives foeghold value equal to 20. Labelling
thresholds over value 20 were not considered becailuthe already small performance
rates.

As already noted, the smallness of the databaseesndKficult to clearly
determine some fine details of the system behayibance we decided to simply
calculate its average behaviour over RieSIZEparameter to derive an FROC curve to
summarize the system performances. In the tablewbélable 2) we can find the

performances of the system averaged over the mgsgarameter.

2D labelling

threshold 12 13 15 17 19 20

(over 24)

2D pos 104,75 99 87,2% 77,2b 65/5 59,5

2D neg 3950 3121,79 227576 1633 1097,5 861,75
3D pos 19,5 18,5 16 13,7% 12,25 10,15

3D pos: fraction | 0,848 0,804 0,696 0598 0,533 0,467
3D neg 956,75 738,5 533 383 260|5 210

2D FP/slice 4,907 3,878 2,827 2,029 1,363 1,07

3D FP/PAT 40,1 32,1 23,15 16,626 11,325 9,1P5

Table 2: absolute and fractional numbers of positig and negative signals detected by the system at
varying labelling threshold. The database is formedby 191 2D positives, 13,426 2D negatives, 23 3D
nodules and 23 patients (or cases). Results are saged over the 4 different values of th&kESIZE
parameter. The number of 3D FP/Patient is calculai dividing the number of 3D negatives by the
number of patients, whereas the number of 2D FP/gle by dividing the number of 2D falses by the
number of patients times the average number of CTlises per patient (35).

The average percentage of correctly classified @Bitpes varies from 31% to 55%,
with an average percentage of wrongly classifiedn2iatives varying between 6.4%
and 29%. Correspondingly, 47% to 85% of nodules detected, with 9.1 to 40.1
FP/Patient (or 1 to 5 FP/slice).

These averaged results allow us to plot the FRQ@ecaf the system over 23
nodules in 23 patients of the database DBLIDC k3gare 8 below).
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FROC curve
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Figure 8: FROC curve of the CAD system for the DB5mm databasé he 24-rotation curve refers to
Multirotation algorithm used in test, with labellin g threshold going from 12 to 20, whilst thel-
rotation curve refers to the usual 4-rotation algorithm, wih labelling threshold equal to 2 and 3. In
both, Multirotation procedure was employed in training. Error bars correspond to the standard
deviation: 0.05.

Again, the FROC curve shows different working psiat the system, which depend on
the labelling threshold. As before, the 24-rotateemve allows a much finer tuning of
the system than done by the 4-rotation curve, évehis time, no clear difference in
results can be spot, due to the small size of ttabdse. With respect to the DB5mm
database results, overall detection performanaes@nparable, but the number of FPs
is generally larger: the FROC curve drops downefasthen the FP/Patient figures
dimishises. This reflects the fact that the SVMssier makes a larger percentage of
errors. In this case, the weakness of the smabdae plays a fundamental role.

In the same manner as before, errors bars in tH@G~Burve, about 0.05 in
absolute value, approximately corresponding to dufe simply refers to the standard
deviation of the 4 different curves correspondiagdtdifferent values of thRESIZE
parameter. If we take into account the small dat@baf only 23 nodules, we must
conclude that larger errors, all originated fromd tleampling of the database with
respect to theeal, and unknown, nodule distribution, might affecgh results, and that

these effects can’t be directly estimated. As &erative, we could consider again, as
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in chapter 4 and 7, the binomial proportion intéestimation [Berger95][Brown02]: at
95% Confidence Interval, the error is approximatet nodules (15+20%).

8.5 False Positives analysis
The same three types of FPs found in database DB&ramresent here. Some

examples of nodules and FPs are shown in the Bgatethe end of the chapter
(RESIZED= 19, labelling threshold = 15).

8.6 Conclusions
LIDC database will for sure prove to be a greabuese for the lung CAD

community: unfortunately, at time of writing it 8 small that only a partial validation
of CAD systems is feasible. Because our CAD systeeds to have many parameters
optimized by means of a usual Estimation-Validapoocedure, we initially considered
the DB5mm database as a guideline and decided tbesERTHR parameter in order to
have a similar FP/slice value, then we choose FRE{ thresholds as much reasonable
as possible, and finally we used a Cross-Validatpyocedure for training and
performance estimation of FPR-2 step. With a largmber of FP/Patient the overall
CAD performances are similar to those of the CADtlom DB5mm database, but are
worse when the FP/Patient rate moves towards ZEnes variation is due to a
performance decrease of both FPR-1 and FPR-2 st@psthe main reason is to be
considered the narrowness of the database, whiel dot allow proper parameters
estimation: with a large dataset parameters woelddbust and their impact clearly
estimated. Moreover, FPR-1 finds hard to elimirfalses also because of the use of
partial CT scans: very long objects are truncatetirmade similar in length to nodules.
Another important point is the quality and variety2D nodule views: even if in this
database, with respect to the DB5mm one, therenare 2D nodule signals, many of
them are very similar, because slices are very, gonwe can argue that the effective
number of training sample is reduced; besidesntdile class is wider, because there
are many spiculated nodules. It must be said tleabbso tried to choose high-quality
positive signals for the training phase as alreddge in chapter 7, by discarding
approximately 30 signals over 191, but there weyeappreciable differences in the
final results, so we didn't report the details. @maore, the critical point is the database

size.
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Figure 9: examples (blue square: truth; red squareCAD detection) of detected nodule and FPs.
The three falses close to the bottom border are ¢fpe a, whilst the two inside lung area are of type
c. (DBLIDC, patient 1, slice 23)

Figure 10: example of nodule and false (type) (DBLIDC, patient 5, slice 21)
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Figure 11: example of nodule and false (typk/c) (DBLIDC, patient 7, slice 15)

Figure 12: example of falses of type (DBLIDC, patient 5, slice 6)
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Figure 13: examples of a missed 2D nodule signalduof falses of type a (left) and c¢ (right)
(DBLIDC, patient 7, slice 22)
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Conclusions

In this work we have described a new method fordaeection of nodules in
lung CT scans. At present, our CAD is composed mfbro steps:
1. Pre-processing:
a. DICOM to GL image transformation;
b. Automatic lung segmentation;
2. 2D candidate nodule signals detection: Fast Radi&hst Radial filteringAND
Scale Space filtering;
3. Grouping of 2D signals into 3D objects across slice
4. False Positive Reduction , part 1 (coarse): siropts;

5. False Positive Reduction , part 2 (fine): SVM-baskdsification and labelling;

The segmentation part, which is completely autorna&duces the area to be
subsequently analyzed by the detection system, shksng the processing times of
subsequent steps and eliminating false positiveasig

The filtering approach is completely new: in partar, theiterative filtering
with the Fast Radial Filter is original, as welltag innovative and effective use of the
resonance given by the Normalized Laplacian of Sutale Space Approach. This
resonance has some very desirable properties:xiperimentally proved relationship
between circular objects’ size and the resonargraaivalue, the fine and easy control
of nodule size and position.
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The abandoning of the Seeded Region Growing algariand its unstable
results is another important consequence of the. 384 only weak point of SSA is a
border resonance effeqtaftial border resonance), which gives rise to a subgroup of
false positive signals, which will requiagl hoc treatment in future.

The simple and efficient FPR-1 phase is also padked on the SSA.

The FPR-2 phase employing Gray Level features an8\éM classifier is quite
promising, especially used in conjunction with Malti-rotation approach both during
training and during test phases. During the lattex,Multi-rotation approach results in
a finer tuning of the CAD working points (FROC cejv

A big difficulty we had to face during the CAD déepment was the lack of a
large database: a very common problem among the &&imunity that will hopefully
be resolved by the LIDC enterprise, unfortunatélya its beginning.

Taking into account lung CAD literature, we can Hest the work described in
this thesis has reached satisfactory results, caabfgto those of other larger research
groups; nonetheless, it is clear that much effodtiil necessary to bring this CAD to its
full development. Some of the possible future inweraents are, to name but a few: the
employment of different ROI features, an FPR-3 &i@ped on SVR-filtering, aad hoc
post-processing to get rid of some false positigeas, a different FPR-2 step based on
an ensemble of classifiers trained with differeosipves or false subgroups. Taking
into account the rapid technological advances of é@nstantly moving towards thinner
and thinner slices, 3D interpolation of signalsl wibbably become very interesting for

nodule detection.
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Glossary

ANN: Artificial Neural Network
CAD: Computer Aided Detection
CT: Computed Tomography

CV: Cross Validation

CXR: Chest X-Ray

DB: Data Base

DICOM: Digital Imaging and Communication in Medicine

DOG: Difference of Gaussians

FP: False Positive

FPF: False-Positive Fraction

FP/dlice: False Positive per slice

FPR: False-Positive Reduction

FR: Fast Radia

FR* Fast Radial of Fast Radial

FROC: Free Response Operating Characteristic
FRTHR: FR or FR? Threshold

GATM: Genetic Algorithm Template Matching
GE: General Electric

GL: Gray Leve

HU: Hounsfield Unit

IEQ: Istituto Europeo di Oncologia

LDA: Linear Discriminant Analysis

LIDC: Lung Image Database Consortium

LOO: Leave One Out

MF: Matching Filter

MTANN: Massive Training Artificial Neural Network
MV: Mgority Voting

NEMA: National Electrical Manufacturers Association
NL: Normalized Laplacian

NLO: Noise Lowered FR
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Glossary

ORBA: Orientation Based FR

PACS: Picture Archiving and Communication Systems
RBF: Radial Basis Function

ROC: Receiver Operating Characteristic
ROI: Region Of Interest

SRG: Seeded Region Growing

SSA: Scale Space Analysis

SV: Support Vector

SVC: Support Vector Clustering

SVM: Support Vector Machine

SVR: Support Vector Regression

TPF: True Positive Fraction

WL: Window Level

WW: Window Width
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