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Abstract 

English version 

This work describes the development of a new Computer Aided system (CAD) for the 

detection of nodules in CT scans of the lung, employing Computer Vision and Pattern 

Recognition techniques. The system consists of three steps: pre-processing, filtering and 

False Positive Reduction (FPR). The pre-processing step is dedicated to lung 

segmentation, and it is mainly based on Gray Level Histogram Thresholding, Seeded 

Region Growing and Mathematical Morphology. The second and third steps are aimed 

at detecting nodule-like signals – the filtering step - and at separating these signals into 

true and false nodules - the FPR step. The main characteristics of the CAD system are: 1) 

an original and iterative use of the Fast Radial filter, able to detect signals with circular 

symmetry in CT images; 2) the novel use of a filter based on the Scale-Space theory, 

able to locate circular signals of a given size; 3) the logical AND of the previous two 

filters. The iterative application of the Fast Radial filter approximately eliminates one 

third of the 2D False Positives with respect to the use of a single Fast Radial filter, 

whilst the Scale-Space based filter cuts 10% to 20% of the 2D False Positives found by 

the Fast Radial algorithm. The next steps of the system are: 4) a procedure to group 

signals across adjacent slices, to obtain collections of two dimensional signals 

corresponding to single 3D candidate nodules, be they true or false ones; 5) a coarse 

FPR phase, based on length across slices, volume and inclination of 3D candidate 

nodules, and 6) the fine FPR phase, based on the supervised classifier Support Vector 

Machine (SVM), fed with Gray Level features extracted from Regions Of Interest 

located around each signal, whose size and position have been determined by means of 

the Scale-Space based filter. The system has reached promising results, being able to 

detect 80% of nodules with 34 FP/Patient, or 65% of nodules with 6 FP/Patient, 

estimated with a Cross-Validation procedure over 34 nodules of 17 patients, with 
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diameter between 3 and 10 mm, and with slice thickness 5 mm and reconstruction 

increment 3 mm. 

Final note: 

The work described here is both experimental and original. We started off with 

just a simple and vague problem - find a way to detect nodules in lung CT scans – and 

realized a fully automated CAD system. Moreover, we have written the thesis with an 

educational purpose in mind: we have tried to show the pathway that has taken us from 

the initial problem formulation to the final CAD version, putting special emphasis on 

the different critical points tackled during the research. This choice has led us to skim 

rapidly over the theoretical aspects of the already well-known aspects of the employed 

techniques and to concentrate on the original use of new techniques. 

 

Versione italiana 

Il lavoro riguarda lo sviluppo di un nuovo sistema automatico di analisi (CAD: 

Computer Aided Detection) di immagini TAC del polmone per la ricerca di noduli, 

possibile segnale dello sviluppo di un tumore. Tale sistema è basato su tecniche di 

Image Processing e Pattern Recognition. Il sistema è costituito da 3 parti principali: pre-

processing, filtering e False Positive Reduction (FPR). Il pre-processing è costituito 

essenzialmente dall’algoritmo di segmentazione dei polmoni, ed è basato su tecniche di 

Gray Level Histogram Thresholding, Seeded Region Growing e Mathematical 

Morphology. La seconda e la terza parte sono invece dedicate a trovare i segnali simili a 

noduli – la seconda – e a separare questi segnali in veri noduli e falsi noduli – la terza e 

ultima. I punti salienti del CAD sono dati da: 1) l’adattamento e l’uso iterativo, 

originale, di un filtro per la rivelazione di segnali a simmetria circolare (Fast Radial); 2) 

l’uso originale di un secondo filtro in grado di individuare segnali circolari di 

dimensioni ben definite attraverso un effetto di risonanza (approccio di tipo Scale 

Space); 3) l’AND logico dei suddetti filtri. L’utilizzo iterato del filtro Fast Radial riduce 

approssimativamente di un terzo il numero dei segnali Falsi Positivi trovati dal sistema, 

in confronto al numero dei segnali falsi trovati utilizzando il filtro una sola volta, mentre 

il filtro di tipo Scale Space riduce il numero dei Falsi Positivi trovati dal filtro Fast 

Radial di circa il 10% ÷ 20%. I punti successivi del sistema sono: 4) un metodo per 

raggruppare i segnali che in immagini TAC contigue si trovano in posizioni vicine, in 

modo che ogni gruppo contenga tutte e sole le immagini di un candidato nodulo; 5) una 
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prima fase di riduzione dei segnali Falsi Positivi basata su caratteristiche dei 

raggruppamenti di segnali ottenute dal filtro di tipo Scale Space; 6) una seconda ed 

ultima fase di riduzione dei segnali Falsi Positivi, basata sul classificatore SVM e su 

feature di tipo Grey Level ricavate da riquadri costruiti attorno ai segnali in base alle 

caratteristiche della risonanza fra l’oggetto e il filtro Scale Space. Il sistema ha 

raggiunto risultati promettenti: 80% di noduli rivelati con 34 Falsi Positivi per Paziente, 

oppure 65% con 6 FP/Paziente. Tali risultati sono stati ottenuti da una procedura di tipo 

Cross-Validation su un insieme di 34 noduli di diametro compreso fra 3 e 10 mm, 

appartenenti a 17 pazienti, in esami TAC ricostruiti a 5 mm di spessore, con 3 mm di 

reconstruction increment. 

Una nota finale. 

Questa tesi è la descrizione di un lavoro sperimentale ed originale: partendo da 

un problema molto semplice e generale, quello di elaborare un metodo per trovare 

noduli in TAC del polmone, siamo arrivati ad avere un sistema CAD completo. Inoltre 

abbiamo scelto una modalità di scrittura che seguisse, quanto più possibile, un intento 

didattico: abbiamo cercato di esporre problemi e soluzioni del percorso che ha portato 

dalla iniziale formulazione della questione della rivelazione di noduli alla versione 

finale del sistema CAD. Questa scelta ci ha portato a omettere la descrizione degli 

aspetti teorici di quegli algoritmi già ben conosciuti, in favore dei nuovi e del loro 

utilizzo originale. 



 

Chapter 1 

Lung cancer overview and lung CAD motivation 

1.1 Some statistics about lung cancer 
Lung cancer is the leading cause of cancer deaths in Western Countries. In 

Europe in 2004 there were 1.711.000 cancer deaths. Lung cancer deaths were almost 

20% of them (341.800), followed by colorectal (203 700), stomach (137 900) and breast 

(129 900) [Boyle05]. In Italy there are about 35.000÷40.000 new cases per year, and the 

incidence is increasing in women [AIRC06]. 

Tobacco is considered responsible approximately for 85 percent of all cases, 

while radon exposure for another several percent. Heavy smokers have a much higher 

risk of dying of lung cancer, about 10 times that of non-smokers [AACR05]. Asbestos, 

pollution and genetic predisposition are other important risk factors. 

Only about 10÷15% of all people who develop lung cancer survive for 5 years, 

on average, but individual prognosis depends on the extent of disease at the time of 

diagnosis. Accurate staging, assessing the extent of local and distant disease, is 

necessary to determine resectability and overall prognosis. Lung cancer staging 

encompasses 4 stages, from I to IV, with increasing gravity. The survival rate is about 

67% if the cancer is detected at stage I, when it is relatively small (no more than 30 mm 

in diameter), and drops down to less than 1% for stage IV, when metastases have 

already developed. 
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1.2 The question of lung screening 
The high survival rate of stage I would lead to the conclusion that early 

detection and treatment would result in a dramatic increase in survival. Unfortunately, 

lung cancer is usually detected late in the course of the disease, due to the lack of 

symptoms in its early stages. This is the reason why lung screening programs have been 

investigated since the ‘70s, aimed at detecting pulmonary nodules: they are small 

lesions which can be calcified or not, almost spherical in shape or with irregular borders 

(see Figures at the end of the chapter). The nodule definition for thoracic CT of the 

Fleischer’s Society is “a round opacity, at least moderately well margined and no 

greater than 3 cm in maximum diameter” [Austin96]. Approximately 40% of lung 

nodules are malignant, that is, are cancerous: the rest is usually associated with 

infections. Because malignancy depends on many factors, such as patient age, nodule 

shape, doubling time, presence of calcification [NLHEP06], after the initial nodule 

detection further exams are necessary to obtain a diagnosis. 

The first kinds of screening protocols were based on chest X-ray (CXR) and 

sputum cytology, but it resulted that they were relatively insensitive in the detection of 

small Stage I lung cancers, so they didn’t pass into clinical practice. More recently, lung 

CT has demonstrated to be far superior to X-ray in detecting small and potentially 

curable nodules [Henschke99]: new generation multislice spiral CT scanners can 

reconstruct images corresponding to a slice thickness of less than a millimetre, hence 

are able to clearly visualize objects which are one mm in size [Kalendar00]. At present, 

only Japan has introduced lung screening in public health care: low-dose spiral CT is 

annually performed for all smokers aged at least 45. This program has made the 5-year 

survival rate increase to 58% [Koike99]. In the US and in Europe no lung cancer 

screening is currently recommended, but this position is being re-examined [Bechtel03], 

and the debate is far from being over: for example, for Patz and co-workers, who 

compared patients mortality in a low-dose CT screening group and in a CXR and 

sputum screening group, screening utility still remains unproven [Patz04]; Swensen and 

co-workers [Swensen05] say that “our preliminary results do not support this possibility 

(of reducing mortality), and may raise concerns that False Positive results and 

overdiagnosis could actually result in more harm than good”; even, Brenner and co-

workers [Brenner04] report an estimated 5% increase in lung cancer incidence among 

frequently screened smokers. Another important problem to be addressed in the debate 
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is the specificity of lung CT exams: it is reported that about 20% of suspected nodules 

reveal to be other mimicking entities or artifacts [Erasmus00]. Moreover, there is a 

lower size limit for clinically important nodules: some authors suggest that non-

calcified nodules less than 5 mm [Henschke04] or 4 mm [Bellomi04] in diameter only 

justify repetition of annual screening, not immediate work-up. 

1.3 Motivation for CAD systems 
Besides from the debate about the necessity for lung screening, there are two 

important facts concerning lung CT analysis that are of great importance: 

1. a large inter-reader variability has been reported, indicating the necessity to have 

at least two or, better, four reads per CT scan [LIDC03]; 

2. due to the developments in CT technology, the amount of data to be visually 

inspected by the radiologist is becoming overwhelming. 

Both reasons suggest that lung CT CAD systems will become major tools in clinical 

practice in a few years, even if lung cancer screening will not. The problem of reader 

variability and oversight in mammography, where CAD is already a well-developed 

clinical tool, is similar to that in lung CT, and the use of CAD has been demonstrated to 

be very useful for early detection of breast cancer. Anyway, mammography is the first 

medical field in which CAD has been applied: in other neighbour fields, such as colon 

and lung CT inspection, CAD is still in its infancy, and much work needs to be done. At 

present, there are some recently published studies showing an improvement in 

radiologists’ performance when using CAD: Li and co-workers [Li05b] report an 

increase from 52% to 68% in the average sensitivity of a group of 14 radiologists in the 

detection of 17 cancers; Rubin and co-workers [Rubin05] claim an average increase 

from 50% of single reading to 76% when using their CAD system (SNO-CAD) at a 

threshold allowing 3 False Positive detections per patient (FP/Patient) on a set of 195 

nodules at least 3 mm in diameter; Lee and colleagues [Lee05] compared the detection 

rates of four radiologists with and without a CAD system (ImageChecker® CT LN-1000 

by R2 Technology, Inc.) on a group of 78 nodules in the range 4÷15.4 mm in diameter, 

and concluded that “the CAD system can assist radiologists in detecting pulmonary 

nodules (…), but with a potential increase in their False Positive rates” and add that 

“further technological improvements are necessary, in order to increase its sensitivity 

and specificity”. 
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1.4 Issues concerning CAD systems 
Other then improvements, also general guidelines for CAD assessment, 

development and use are necessary. Some of them have recently been specified by Gur 

and colleagues [Gur05]: 

1. Cases used for system development and assessment should be pathologically 

verified; 

2. Results should be reported in a standardized manner, and the better way should 

be the detection rate with a certain number of False Positives per Patient: at 

present FPs are reported in different units, and this makes difficult to compare 

different CAD systems.  

Other issues are reported in [Goo05], where the author says that it should be important 

to 

1. take into account other underlying diseases in the thorax, which could mislead 

the CAD system; 

2. adjust nodule target range in accordance with task: for example, relevant 

nodules are in the range 4÷20 mm, because larger ones are not missed by 

radiologists, and smaller ones are usually considered not relevant 

[Henschke04][Bellomi04]. Besides, malignancy rarely occurs in nodules less 

than 5 mm in diameter, but the probability changes in relationship to patient’s 

clinical history; 

3. distinguish different types of nodules, i.e. solid, partly solid, and non-solid 

nodules, which present different clinical significances; 

4. characterize nodule malignancy level; 

5. integrate CAD systems into Picture Archiving and Communication Systems 

(PACS). 

Another important issue is what a radiologist considers a reasonable amount of 

False Positives per Patient of a CAD system. Single human readers can go down to 0.1 

FP/Patient with detection rates ranging from 40% to 100%, depending on nodule 

subtleness, and no CAD system is at present barely close to this low number of FPs with 

a detection rate superior to 50% (see next chapter for an overview of present day CAD 

systems). The ideal CAD should be able to improve human performances at no or very 

low cost, and to do that its FP rate should be kept very low - in order not to deceive the 
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human reader- and this low level should be not far from that of radiologists themselves, 

which is the situation in mammography CAD [Campanini06]. 

1.5 Summary 
Lung cancer is the leading cause of cancer deaths in the Western world, and 

many efforts are being undertaken by the scientific community to improve survival 

chances of patients. Early lung nodule detection is important in this battle, and CT is at 

present the best medical tool for early nodule detection, even if the debate about lung 

screening is still open. Anyway, because technological improvements of CT have made 

image inspection a very demanding task for radiologists, and because of the inherently 

inter-reader high variability, it is inevitable that CAD systems for lung analysis will be 

unavoidable tools in medical practice in a few years from now. Before that time, 

however, many improvements are necessary, as shown by some issues recently 

highlighted in the scientific community. 

1.5 Some examples of lung nodules in CT images 
The following figures show some CT images with nodules, whose position have 

been marked by radiologists with yellow circles.  

 

Figure 1: nodule with regular border 
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Figure 2: large nodule close to parenchyma  

 

 

Figure 3:  nodule with irregular border 
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Figure 4: large nodule with irregular border 

 

 

Figure 5: another nodule with regular shape 
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Chapter 2 

CAD systems in literature 

Apparently, the first paper about an automated system for the detection of nodules in 

CT scans of the lung dates back to 1989 [Preteux89]. Since then, a number of 

approaches have been proposed, especially in recent years, and yet the field can be 

considered in its youth, with many opportunities of development still waiting to be 

explored. It should be noted, anyway, that the complete lack of large public databases is 

one of the reasons that has not facilitated the work of researchers, especially of those 

that don’t have the opportunity to interact with clinicians. Moreover, such databases 

would very easily allow to compare different algorithms on a common basis. Only 

recently has such a database, the Lung Image Database Consortium (LIDC), been 

proposed and its collection begun [Armato04]: at the time of writing it comprises just 

than 23 cases. 

2.1 Overview of most relevant systems and methods in CAD literature 
The system presented in [Armato99a] and [-99b] is based on a multiple Grey 

Level (GL) thresholding of the lung volume: at each threshold, a pixel-connectivity 

scheme is applied to identify contiguous three-dimensional objects satisfying a volume 

criterion. After that, a Linear Discriminant Analysis (LDA) classifier is used to 

distinguish between nodules and non-nodules, represented as vectors of two and three 

dimensional geometric and GL features of the candidate nodule. The lung volume is 

previously segmented with a GL histogram thresholding approach, refined with a 

rolling-ball algorithm. The authors reported an overall sensitivity of 70% with an 
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average of 3 False Positive (FP) objects per section on a database of 187 nodules 

coming from 17 patients, using a Leave-One-Out (LOO) procedure (diameters of 

nodules from 3.1 to 27.8 mm). The slice thickness is 10 mm, as the reconstruction 

interval. The system, with the major modification introduced by adding a rule-based 

scheme for a better reduction of candidates prior to classification, is applied to a larger 

database in [Armato00], whilst in [Armato01] a comparison between scans from low-

dose helical CT, with 5 mm slice thickness and 5 mm reconstruction interval, and 

standard-dose helical CT, with 10 mm slice thickness and reconstruction interval, is 

presented, showing similar performances of the system on both databases: 71% 

sensitivity with 1.2-1.5 FPs per section (Nodule median sizes are 6.5 mm and 5.0 mm in 

the two groups respectively). [Armato02] shows an improvement in performances on 

low-dose helical CT scans with 10 mm slice thickness and reconstruction interval: 80% 

sensitivity and 1.0 FPs per slice.  

An interesting algorithm for the Reduction of FPs (FPR) is presented in 

[Suzuki03]: it is named Multi-MTANN (Massive Training Artificial Neural Network) 

and is based on a Neural Network filtering approach known as Neural Filtering. It is 

applied to the CAD scheme named before, on a 10 mm thickness and reconstruction 

interval low-dose database. This kind of Neural Filter is trained to associate to an input 

image of a candidate nodule an output image representing the distribution for the 

likelihood of being a nodule. A Gaussian distribution probability is used for nodules, 

and a constant zero value distribution is used for non-nodules. It shows very good 

performances on a validation set of 58 nodules: 57 nodules are retained whilst the 

number of FPs falls approximately from 1 to 0.2 per slice (the overall sensitivity of the 

system is 80%, the number of FPs per patient changes from 27.4 to 4.8). 

In the paper [Lee01] the authors describe a Genetic Algorithm Template 

Matching (GATM) scheme. They consider the detection of lung nodules as an 

optimization problem, and use the GA to determine the target position of the candidate 

nodule in the image, and to select an adequate template image from several reference 

patterns to consider for the template matching operation. After that, a simple FP 

Reduction (FPR) step is performed by calculating and thresholding 13 features 

(geometrical and CT values based ones). The helical CT data set is made of 20 patients 

with 98 nodules, and the slices are reconstructed at 10 mm interval. The results are a 

sensitivity of 72% and about 30 FPs per case. Unfortunately, it is not clear if a CV 



CAD systems in literature 

 11 

procedure was considered for the setting of parameters. The authors report also a 

persistent difficulty in detecting low-contrast nodules, as well as those situated in the 

apex and in the lung base. 

The system presented in [Gurcan02] detects candidate nodules by means of a 

weighted k-means clustering technique, after an initial step where lung regions are as 

well segmented within the thorax by a k-means clustering technique applied to the pixel 

GL values. In the detection step the lung area is subdivided into suspicious and 

background zones, using a feature vector for the weighted k-means clustering coming 

from the original image and a median-filtered one. The suspicious areas are then further 

analyzed: first there are two rule-based FPR steps, exploiting geometrical features in 

two- and three-dimensions respectively, and then there is a LDA classifier, employing 

geometrical and GL feature vectors. The overall results, coming from a LOO procedure 

on a 34 patient database of 63 nodules with mean diameter of 8.9 mm and minimum and 

maximum of 2.0 and 25.0 mm respectively, with slices thickness of 5, 3 and 2.5 mm, 

are 84% sensitivity and 1.74 FPs per slice. It is interesting to note that the authors 

explicitly state that “rule-based systems usually lack the generalization property and 

should be carefully used in computer vision applications”; however, they say that they 

attempted to use relatively lax criteria, in order not to be too specific to the used data set, 

and that these criteria come from radiologists’ experience, hence are expected to be 

quite well founded. They conclude that further work on a larger data set is necessary to 

evaluate the robustness of the rule. 

An interesting algorithm based on anatomical knowledge of the lungs is 

described in [Brown03]: a parametric model of the anatomy of the chest is stored in a 

semantic network, and it is used to guide segmentation - performed by means of 

attenuation thresholding, region growing and mathematical morphology - and labelling 

of regions in the lungs. Each node in the network consists of an anatomical name and a 

set of features, whilst the arcs represent structural relationships and features between 

anatomical objects. The node features are: X-ray attenuation range in Hounsfield Unit 

(HU), relative location (“part of”,”inside”), volume, and shape. The system is applied to 

the detection of nodules (diameter ≥ 3 mm) and micronodules (diameter ≤ 3 mm) in 

thin-section CT images, with 0.5 – 1.0 mm reconstruction interval. The reported results 

on a group of 57 nodules (average diameter 6.3 mm) and 22 micronodules (average 

diameter 2.2 mm) are 100% and 70% sensitivity respectively, with 15 FPs per patient. It 
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must be noted that only a section of 20 mm longitudinal extent is considered per patient. 

Another reported result is the improvement in the performances of radiologists, when 

assisted by the system, from 91% to 95% on nodules and 51% to 74% on micronodules, 

with an invariant FPs number of 0.3 per case. 

In the paper [Yamamoto96] the authors propose a CAD system based on a filter 

with high sensitivity but low specificity, called Variable N-Quoit, a type of 

mathematical morphology filter, able to detect over 95% of nodules, together with 400 

FPs per patient, which is too a high number. In [Fukano03] this method is given an FPR 

step, consisting of two different algorithms: the first is a Tophat by Partial 

Reconstruction filter, used to distinguish blood vessels, and the second is a method that 

recognizes objects by performing a 3D template matching operation, using artificial 

templates coming from a ray tracing method applied to nodules blood vessels. These 

two methods together reduce the number of FPs to 6 per patient (98% reduction), losing 

only 2 nodules in a set of 37 patients. The total number of nodules of the set is not 

known. Moreover, it is not clear if the algorithm setting was performed on the same set 

of the reported results. 

The paper [Wiemker02] shows a detection system applied to high resolution CT 

data of 1 mm slice thickness, with reconstruction interval between 0.5 and 1 mm. In this 

system, a 2D filter able to identify structures similar to circles or half-circles is applied 

to binary mask images, which are the result lung segmentation pre-processing. The 

algorithm is very careful in dealing with nodules attached to the pleura. A three-

dimensional shape analysis carried out on binary threshold images is the core of the 

FPR step. A particular relevance is given by the authors to the usefulness of the average 

Hounsfield value in rejecting FPs. The direct utilization of the Hounsfield values is due 

to the absence of the partial volume effect, for objects greater than 1 mm, in this case. 

The reported results are 95 % sensitivity and 4.4 FPs per patient, on a database of 203 

nodules larger than 2 mm in diameter. It is not clear if this set is the same used for the 

setting of the algorithm parameters. 

The core of the CAD system given in [Kaucic03] is a mathematical model that 

describes the formation of the CT image of the lung by taking into account the physics 

of the scanner and the anatomy of the chest. During the process of detection of the 

structures within the lungs, a Bayesian statistical framework is employed to select the 

model that provides the most probable interpretation of the data. The probability of each 
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model is calculated from image intensities, geometric features and neighbourhood 

properties. Results on a 2.5 mm collimation low-dose CT database of 50 cases with 43 

nodules are 70% detection rate and 8.3 FPs per case. An average improvement of 3.9% 

in the detection rate in a group of 3 radiologists is also reported. From the paper it is not 

clear if the test set was different from the one used to set the algorithm parameters. 

Ge and co-workers have introduced a method for false positive reduction based 

on a Linear Discriminant Classifier employing features drawn from 3D gradient field 

and 3D ellipsoid fitting [Ge05]. Purpose of the gradient features is to discriminate 

objects with approximately radial GL distribution from objects with highly 

asymmetrical distributions. Fitting parameters of the 3D ellipsoids are also given to the 

classifier. Reported results of a Leave-One-Out patient scheme are: 80% sensitivity, 

over a group of 111 nodules with size 3÷30 mm, with 0.34 FP/slice. The database 

consisted of 82 CT scan (3551 slices) from 56 patients, with slice thickness 1.0÷2.5 mm, 

so a figure of 14.7 FP/scan (or 21.6 FP/Patient) can be inferred. 

A filter with the ability to selectively enhance dot and lines is shown in [Li03]: it 

is based on the properties of the Hessian matrix of dots and lines, taken as models of 

nodules and vessels, which are the targets of the study performed on two- and three-

dimensional thoracic CT images. This is probably the first attempt to create a pre-

processing filter with both good sensitivity and specificity for the targeted object. The 

method has been reported to be effective for nodule enhancement and false positive 

reduction [Li05a]. 

Paik and co-workers [Paik04] describe a new type of approach to lung nodules 

and colonic polyps detection in helical CT based on the Surface Normal Overlap (SNO) 

algorithm. They propose to use SNO as the first step of a larger detection scheme, in 

conjunction with a subsequent FPR phase. SNO detection is based on the calculation of 

a scoring for objects which have survived the pre-processing and segmentation phase. 

This scoring is proportional to the number of surface normals that pass through or near 

the object. Convex objects with dominant curvature along two directions, like nodule 

and polyps, tend to have larger scoring than vessels, which have a dominant curvature 

along one direction only. The authors optimized the algorithm on simulated CT data, 

and reported promising results on a set of 8 CT scans. Interesting results are also 

described in [Rubin05], where a SNO-CAD has been used to compare performances of 

radiologists with and without lung CAD. 
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In the paper [Armato03], the authors compare the results obtained by the CAD 

system explained in [Armato99a] on two databases: one with patient projection 

reconstructed with the “standard” algorithm, and the other with the same patient 

projection data reconstructed with the “lung” algorithm. The comparison demonstrates 

similar levels of performance, which makes the author claim for an encouraging degree 

of robustness of their system. 

2.2 Conclusions 
Probably not much more than a couple of dozen of approaches have been 

proposed in the last 15 years to realize a CAD system for lung nodule detection in CT 

scans, so we can say that most of the work still needs to be done: since its beginning, 

the CAD community has been mainly focused on systems for mammography, which are 

just becoming clinical tools after many years of development, and it is only now really 

turning on lung, so we can expect an explosion of research in the next 5 years. At 

present there is only one commercial system available (ImageChecker® by R2 

Technology, Inc.), and many others are being developed. The lack of a public and 

common database, necessary for validation and comparison, has really dampened the 

work of researchers in this field, but the recently proposed LIDC database should 

overcome this crucial problem.  



 

Chapter 3 

Pre-processing 

Pre-processing is usually a very important step of CAD systems, though a very general 

and vague subject, which depends on the peculiarities of the system and of the tackled 

problem: in this CAD it comprises the transformation of images from the DICOM 

format, which is the general standard used in medicine to store digital data, into Gray 

Level images, and the segmentation of the inner part of the lungs, to be subsequently 

analysed by the CAD core. 

3.1 Processing DICOM images 
The Digital Imaging and Communications in Medicine (DICOM) standard was 

created by the National Electrical Manufacturers Association (NEMA) to aid the 

distribution and viewing of medical images, such as CT scans, MRI, and Ultrasound 

[DICOM06]. Part 10 of the standard describes a file format for the distribution of 

images. All lung CT scans used in our studies are exactly in this format. 

A single DICOM file contains both a header (which stores information about 

patient, type of scan, image dimensions, etc), as well as all of the image data. In our 

case image data is saved as 16bit/pixel signed values. For different reasons 

(compression, etc) lung CT image data stored in DICOM files are in raw format and 

have no particular meaning (units of measure), hence to evaluate a CT scan a 

quantitative scale exists that describes relative attenuations: the Hounsfield scale. This 

scale assigns water an attenuation value (Hounsfield Units, or HU) of zero. The range of 

CT numbers is 2,000 HU wide although some modern scanners have a greater range of 
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HU up to 4,000. Each number represents a shade of gray with +1,000 (white) and –

1,000 (black) at either end of spectrum (see Table 1). 

BONE +400 +1,000 

SOFT TISSUE +40 +80 

WATER 0 

FAT -60 –100 

LUNG -400 –600 

AIR -1,000 

Table 1: Hounsfield Scale of CT numbers. 

To convert raw CT data into Hounsfield Units a linear transformation is applied: HU = 

Raw Pixel Value * Rescale Slope + Rescale Intercept. This transform is applied to each 

pixel. The values for Rescale Slope and Rescale Intercept are stored in the DICOM 

image header. 

Another pixel value transformation is needed in order to work with CT images: 

Window Level and Window Width Transform. Whilst the range of CT numbers 

recognized by the computer is 2,000, the human eye cannot accurately distinguish 

between 2,000 different shades of gray. Therefore to allow the observer to interpret the 

image, only a limited number of HU are displayed. A useful gray scale is achieved by 

setting the Window Level and Window Width on the computer console to a suitable 

range of Hounsfield Units, depending on the tissue being studied. The term Window 

Level represents the central Hounsfield Unit of all the numbers within the Window 

Width. The Window Width covers the HU of all the tissues of interest which are 

displayed as various shades of gray. Tissues with CT numbers outside this range are 

displayed as either black or white. For example, when performing a CT examination of 

the chest, a WW of 350 and WL of +40 are chosen to image the mediastinum (soft 

tissue), whilst an optimal WW of 1500 and WL of –600 are used to assess the lung 

fields (mostly air): see Figure 1 below. 
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Figure 1: These two images are of the same section, viewed at different window settings. (Left) A 
window level of +40 with a window width of 350 reveals structures within the mediastinum but no 

lung parenchyma can be seen. (Right) The window level is –600 with a window width of 1500 
Hounsfield units. This enables details of the lung parenchyma to be seen, at the expense of the 

mediastinum. 

3.2 Segmentation algorithm: motivation 
Nodules are located within the lungs, in an area which is usually no more than 

half of the area of the CT slice: this means that a lot of processing time can be saved if 

the searching algorithms only run on this inner part. Moreover, the number of False 

Positives found in a segmented image is dramatically lower than that found in the same 

image without segmentation, because no signals at all will be found outside of the lungs. 

Indeed, lung segmentation is a common pre-processing step of many CAD systems 

[Armato99a][Gurcan02] and in general of lung image analysis systems 

[Hu01][Brown97]. Given the large size of CT datasets, manually segmenting the lungs 

is tedious and prone to inter observer variations. That is why we implemented and tested 

a fully automatic segmentation algorithm for lung CT volume data.  

3.3 Overview of segmentation algorithm 
Our segmentation algorithm is composed of five main steps. First a smoothing 

algorithm is applied to the CT stack to reduce noise. Then the lung region is extracted 

from the CT images by adaptive Gray Level thresholding. Afterwards trachea region is 

eliminated from initial CT slices. The left and right lungs are then separated to permit 

finer processing on each lung separately. Finally, to include nodules attached to the lung 

wall the lung contour is smoothed. The overall segmentation process is described in 

Figure 2 together with the type of data involved in each processing step. 
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Figure 2: Overall segmentation algorithm. Arrows show direction of data flow. 

3.4 Image smoothing 
In this step a smoothing algorithm is applied in order to reduce noise and prepare 

images for segmentation. Because order-statistics filters are known i) to provide 

excellent noise-reduction capabilities and ii) to introduce less blurring than linear 

smoothing filters of the same size [Gonzalez02][Huang79], we used a median filter. We 

tested 3x3 box, 5x5 box, 7x7 box median filters. Examples are given in Figures 3-6. We 

have chosen to use the 3x3 box median filter because it cleans images very well and at 

the same time it has a good edge-preserving ability: larger boxes have too heavy a 

blurring effect on object borders and details. 

It must be noted that smoothing is performed only for segmentation: the 

detection system, described in the subsequent chapters, is applied on the original, 

unsmoothed, images. 
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Figure 3: original image. 

 

Figure 4: result of  3x3 median filter application on image of Figure 3: noise has been very well 
suppressed, but edges have been preserved. 
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Figure 5: result of  5x5 median filter application on image of Figure 3: blurring begins to be 
evident, many details have been lost. 

 

Figure 6: result of 7x7 median filter application on image of Figure 3: blurring is heavy. 



Pre-processing 

 21 

3.5 Histogram thresholding 
During this step the actual binary masks for the lung area are determined. Binary 

masks are generated from input gray-level CT data using an iterative thresholding 

algorithm [Ridler78], a better method than the conventional thresholding algorithm, in 

which the threshold is simply chosen as the minimum between the two maxima of the 

GL histogram (see Figure 7 below) [Castleman96]. The image histogram is initially 

divided into two parts using a starting threshold value, which can be for example half 

the maximum of the dynamic range of the current image, or the conventional threshold 

value just described. Afterwards, the sample mean of the gray values associated with the 

foreground pixels and the sample mean of the gray values associated with the 

background pixels are computed, and a new threshold value is determined as the 

average of these two sample means. The process is repeated until the threshold value 

does not change any more (the algorithm has been proved to converge by its author). 

 
Figure 7: example of Grey Level histogram of a CT slice (GL values have been normalized between 

0.0 and 1.0). The histogram clearly shows that most of the pixels of the image belong to either a 
dark region (the background), or a bright region (the foreground). The threshold can be used to 

divide these two zones in the image (histogram thresholding). 

Because lung walls and ribs in CT scans are brighter than any other lung region, 

further processing is necessary to obtain masks containing only lung parenchyma. After 

thresholding, morphological binary opening [Soille99] is applied to each mask to 
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remove very small regions (a few pixels), usually caused by noise. The structuring 

element is a disk of radius 3. Then binary masks are inverted and structures that are 

lighter than their surroundings and that are connected to the image border are 

suppressed. Finally holes inside the lung region are filled. All these steps can be seen in 

Figure 8. 

 

 
Figure 8: Thresholding step is made up of smaller processing sub-steps: (from left to right, top to 

bottom) Single slice before thresholding, Binary mask after thresholding, Binary mask after 
morphological opening, Binary mask after inversion, Binary mask after border regions elimination 

and hole filling, Final masked image. 

3.6 Trachea elimination 
Initial lung segmentation based on gray-level thresholding tends to include the 

trachea. To ensure that this structure does not contribute to the segmented lung regions, 

trachea is eliminated from the segmented thorax region through Seeded Region 

Growing (SRG) algorithm. (SRG has also been used in a stage of the CAD 

development. For some more information on it and critical notes see paragraph 7 and 

12, chapter 4 and paragraph 5, chapter 5) Seed points for trachea segmentation are 

automatically identified in the superior CT sections, because the trachea is always the 

only segmented object in these slices. Seeded Region Growing is used to expand the 

identified seed points into the corresponding trachea regions. Region growing ceases 

when an area-based criterion is satisfied. Seed points are identified in subsequent 

sections based on the center-of-mass location of the segmented trachea region in the 

previous section. The result of trachea elimination step can be seen in Figure 9.  
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Figure 9: Lung segmentation before (left) and after (right) trachea elimination. 

3.7 Left-Right lung separation 
The presence of a single large segmented region in any section indicates that the 

two lung regions are ‘‘fused’’ at the anterior junction. Distinction between left and right 

lungs is often required for more detailed analysis. Consequently, the single lung region 

is separated into two regions by eliminating pixels along the anterior junction line. The 

separation into left and right lung is carried out on the “accumulated” image obtained by 

summing all binary masks obtained so far along the z-axis. The Grey Level 

“accumulated” image thus obtained is thresholded using successfully increasing 

threshold values until the resulting binary image contains two distinct lung regions. 

Results from these steps can be seen in Figure 10. 

 

Figure 10: Left/Right Lung separation. Lungs attached at the anterior junction (left figure) are 
separated into left and right lung (centre and right figures). 

3.8 Contour smoothing 
In some cases, pulmonary nodules are adjacent to the pleura and have similar 

densities. Therefore, when Grey Level thresholding step is applied, concave depressions 

appear at the nodule location in the lung mask. In order to obtain the correct extraction 

of the pulmonary parenchyma and not to loose the nodule, this depression must be 

rebuilt. Figure 11 shows examples of an image with a nodule adjacent to the pleura and 

its mask with the depression resulting from applying the previously described steps. The 
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pulmonary parenchyma is reconstructed through morphological binary closing with a 

disk structuring element of radius equal to the radius of the biggest nodule we are 

looking for (20 mm in diameter: see also chapter 1, paragraph 4). Results from this step 

can be seen in the two images at the bottom of Figure 11. 

 

Figure 11: Application of contour smoothing. Original image (top, left); Concave depression at 
nodule location in the outer border, and large depression due to a bright area close to the inner 

border (top, right); Rebuilt depressions in binary mask (bottom, left); Final masked image of the 
lungs (bottom, right). 

3.9 Summary 
Pre-processing of the CAD system described in this thesis includes 

transformation of CT data from DICOM to Gray Level images and lung segmentation. 

Segmentation is a 5-step process mainly based on GL Histogram thresholding and 

morphological filtering; trachea elimination and left and right lungs separations are 

accomplished through SRG and an ad hoc “accumulation” process respectively. The 

image is median-filtered before the whole 5 step process, in order to eliminate as much 

as possible the effect of noise. The segmentation algorithm described here is simple 
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though effective. Nonetheless, many possible improvements could be tested in future: 

for example, different and more advanced smoothing filters, contour tracing algorithms, 

etc. 
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Chapter 4 

First attempt to build a CAD system 

It is a rule of life, when facing a problem, after studying what other researchers have 

already found, to try to solve it by oneself, and better is to forget a little bit their results. 

This was no exception. To get in touch with the problem, it was decided to start with a 

simple system, and then to analyze its behaviour and its pros and cons, and use them as 

a guide to develop a new, and hopefully better, CAD system. 

4.1 Database 
The database (DB) considered in this chapter (DB10mm) is composed of 22 

patients with 34 nodules, with diameters between 4.1 mm and 17.4 mm (average 10 

mm), and the average number of slices per patient is 65. All the scans come from a Low 

Dose Spiral CT (GE HiSpeed CT/i), with parameters: 140 kVp, 40 mA, slice thickness: 

10 mm, reconstruction increment: 5 mm, slice dimensions: 512 x 512 pixels (0.67 ÷ 

0.74 mm/pixel). All the image values have been transformed into 8 bit code, i.e. 256 

Grey Levels. The database comes from IEO, Istituto Europeo di Oncologia, Milan, Italy, 

where a team of radiologists detected and marked the nodules. 

4.2 General idea about the developing CAD 
The general idea of the CAD algorithm to be developed at this stage was the 

following: after the segmentation of the inner part of the lungs, consider a procedure to 

locate the candidate nodules in each CT slice, then calculate some geometric features 

and use them to train a classifier, hopefully able to discriminate between true and false 
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2D signals, that is, true nodules and false nodules in each CT image, then mark the 

surviving objects on the CT image, to be subsequently inspected by radiologists. This is 

a 2D method, that is, it analyzes the CT scans image by image and does not take into 

account any relationship between signals in consecutive images. 

4.3 Nodule enhancing filter: the Matching Filter 
Because lung nodules in CT images are most of the time bright objects, nearly 

circular in shape, situated in a noisy but darker background, together with other bright 

objects, the simplest of the shape detector, the Matching Filter (MF), was chosen as 

signal detector [Castleman96]. The MF (aka Matched Detector) is an algorithm which 

allows to calculate the correlation between a signal, for example an image f(x,y) 

containing objects and regions, and a template signal, a spatially smaller image h(x,y), 

whose presence in the image we want to locate. If there is a match, the correlation of the 

two functions will be at its maximum where h finds a correspondence in f. By properly 

thresholding the correlation image, these peaks are found and the template-like signals 

located. As a nodule template it was chosen a small square image with varying side 

lengths: 3, 5, 7, 9 and 11 pixels. The Grey Level values were arranged in order to mimic 

a typical nodule profile, almost circular in shape: see Table 1 as an example. 

135 150 150 150 135 

150 150 155 150 150 

150 155 155 155 150 

150 150 155 150 150 

135 150 150 150 135 

Table 1: 5 by 5 nodule template, Grey Level values (8-bit) 

It should be noted that a different intensity of the filter values, with the same 

relative ratio, it is of no relevance with respect to the enhanced shapes, affecting only 

the tuning of the threshold at which signals are detected. If the GL values of the filter 

are left unchanged during the processing, only the threshold must be optimized. The 

values in Table 1, at about 3/5 of the maximum GL, were chosen for convenience. The 

chosen filter was 5 by 5 pixels in size. It was found indeed that the smaller the template 

the finer the signal localization and the smaller the size of the enhanced objects: a 3 by 3 

template is too sensitive to noisy objects, and a 7 by 7 one, or wider, leaves the filtered 

image too much blurred, a fact that makes difficult to choose a proper threshold. The 
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choice was done by looking at the quality of the filtered images for the subsequent 

thresholding step. 

4.4 Optimizing the Matching Filter threshold 
Optimizing the threshold is a very important step in the detection process. A 

high threshold would give less signals, with great chance to loose true signals; a low 

threshold, on the contrary, would give too many signals, most of which false ones, or, 

even worse, many signals would be merged together (see Figures 4, 5, 6 at the end of 

the chapter). In order to set the optimal threshold, the histogram of the correlation image 

was analyzed (see Figure 1 as an example). 

Figure 1: example of GL histogram of a MF processed CT slice. The peak at zero is not taken into 
account for the subsequent processing. 

It can be noted that only one peak is always present (the zero GL peak on the left 

is ignored), and, moreover, its corresponding GL value is always lower than that of the 

nodules that might be in the image, and the ratio between these two values can vary 

between 1 and 10. This was verified on a small subsample of nodules of the database. It 

was then decided to set the optimal threshold in the following way: 

threshold = peak_GL + numdelta * delta_value 

where numdelta is a parameter to be optimized on the database, and delta_value = (255 

– peak_GL)/255*delta_number, that is, the difference between the peak GL and the 

maximum GL divided into a predefined number of parts, delta_number, set to 10 in this 
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case, normalized by the maximum GL, 255 in the case of 8-bit images. It is clear at this 

point that the threshold varies with the image according to the position of the GL peak, 

but the relationship between this peak and the threshold is determined by the numdelta 

parameter, to be established by means of a validation database and never changed for 

images of the same database. Numdelta was set to 1.65. 

4.5 Some cleaning 
The thresholded image, now a binary one, was then processed with an erosion 

filter [Castleman96] of side 3 by 3 pixels (see Table 2), with the aim to: 

1. Eliminate objects with area of 1 or 2 pixels 

2. Clean large objects borders, very irregular in shape 

3. Part very large and elongated objects into smaller and more manageable ones. 

0 1 0 

1 1 1 

0 1 0 

Table 2: erosion filter, diamond shaped 

In a typical image, the number of objects after the erosion decreases from 50/150 to 

15/70, and most of the deleted signals are 1 or 2 pixels in area. The filter was set 3 by 3 

because a “heavier” erosion by a larger filter would have deleted too many pixels. The 

diamond shape proved to delete less objects than the square one, so it was chosen for 

precaution. 

4.6 Area bounds 
The subsequent processing consists in an area thresholding: because nodules are 

limited in size, and because most of the remaining signals smaller than 3 pixels are false 

signals, all the objects with area larger than MAXAREA and smaller than MINAREA 

are deleted. MAXAREA was set to 430 pixels, far larger than the area of the larger of 

the nodules at this point of processing, which was about 250 pixels: unfortunately the 

DB was too small to allow a normal Cross-Validation procedure, so it was decided to 

proceed by setting the threshold-type parameters on the whole DB, but in a “light” 

manner, that is, not too strict, so not to risk too much an overfitting bias (see also 

paragraph 4.11 at the end of the chapter). 

At this point, detected signals are given a positive label (they are considered 

nodules) if their centre of mass is within a certain tolerance from the centre of mass of 
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the nodules marked by the radiologist, otherwise it is given a negative label (it is a false 

signal). Tolerance was set to 6 pixels, with Euclidean distance. 

4.7 Finding borders of signals: the Seeded Region Growing algorithm 
Now the problem was to find the exact borders of the objects. To do this, a 

Seeded Region Growing (SRG) procedure was implemented [Mehnert97]. SRG is a 

robust and rapid algorithm for objects segmentation in intensity images that, taking as 

input a number of seeds, either individual pixels or regions, is able to make the seeds 

“grow” until the number of free pixel around the grown region is zero, or a certain 

stopping criterion is satisfied. For each seed, pixels are examined around it and if, for 

example, their GL value is within a certain tolerance from the mean GL of the seed, 

they are merged with the seed, otherwise are discarded. The merging criterion can be 

updated or not at each step. The stopping criterion can be introduced at will. 

The SRG procedure was then used to make the signals that had survived the 

preceding detection steps grow. Pixels connected to the seed were merged only if their 

GL value was within 5% of the mean GL of the seed: no noticeable changes were found 

over a number of objects in the range between 3% and 9% of the mean GL. It was also 

noted that objects growing too much were highly likely to be not nodules, but maybe 

vessels or other lung structures. Thus, another stopping criterion was introduced: a 

maximum number of iterations in the growing process. At any iteration all the pixels 

which are neighbours of the seed region or of the already grown one are considered for 

merging, and, if merged, their neighbours are put in the list of new neighbours to be 

analyzed at the next iteration. When the number of iterations for each region becomes 

too big, it means that the object is growing too much, and can be stopped. By analyzing 

the distribution of iterations in many patients, it was noted that: 

1. most of the nodules grow thoroughly within 100 iterations; 

2. the mean number of iterations in an image is typically 1,000 – 10,000; 

3. the maximum number of iterations can go up to 40,000. 

For this reasons the iteration number was bound to 200. 

4.8 Simple False Positive Reduction before Classification 
At this stage of development, making the system run over the entire DB gave the 

following results: 28 of 34 nodules found with 54 2D signals, 16.3 2D False Positive 

signals (FP) per image, on average. In order to try to eliminate some of the FP before 
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using the classifier, some simple geometric characteristics of the signals were 

considered for analysis. These characteristics were: area, major axis length, minor axis 

length, ratio of major and minor axis lengths. Figures 2 and 3 illustrate these 

characteristics, comparing nodules and non-nodules. To optimize as much as possible 

the thresholds on these values, half of the patients of the database were randomly 

chosen and analyzed: because the database is small, in order to avoid overfitting bias 

not all the patients were considered at this stage. 
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Figure 2: Major/minor axis length ratio Vs Area. Blue: negative signals (FP), lilac: positive signals 
(nodules). 

Only thresholds on the simple characteristics were considered, and the chosen 

values are the following ones: 

1. area < 310 pixels; 

2. Major axis length < 40 pixels; 

3. minor axis length < 25 pixels; 

4. ratio Major/minor axis length < 4.5pixels. 

It can be noted that some of the two dimensional nodules get lost in this simple False 

Positive Reduction (FPR) step, but this is inevitable, when trying to diminish the overall 

number of FP. However, there is some redundancy here: there are indeed 51 2D true 
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signals remaining of the 54 initial ones, and none of the 28 found nodules are lost (Note 

that a nodule is considered detected when at least one of its corresponding 2D views has 

been found). On the other hand, the simple FPR step proved to be very effective, 

because about 35% of the FP signals are eliminated: now there are only 10.6 FP per 

image on average. 
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Figure 3: Major axis length Vs minor axis length. Blue: negative signals (FP); lilac: positive signals 
(nodules). 

4.9 SVM based signals classification and results 
At this point, with 51 2D positive signals and 15,444 2D negative signals 

coming from the first part of the detection algorithm, a Support Vector Machine (SVM) 

classifier [Vapnik95] was used to discriminate between nodules and not-nodules. SVM 

is a class of supervised learning algorithms for nonlinear classification, regression, 

distribution estimation, novelty detection and clustering. It is deep-rooted in the 

Statistical Learning Theory [Vapnik98] and at present is considered the state-of-art in 

the machine learning field: indeed, it exhibits many useful properties that are not shared, 

together or at all, by other algorithms. Among these properties are: 1) the training 

process is made by solving a quadratic optimization problem, hence no local minima 

trapping is ever encountered; 2) the architecture of the classifier is automatically set by 

the solution of the optimization problem, which makes the training very easy, and, 

moreover, allows for a very low risk of poor generalization; 3) the generalization 

capability is good even when a small number of training samples are employed or when 

the two classes are unbalanced to a high degree (the number n of training samples is 
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considered small when d, the sample space dimensionality, is not much smaller than n 

[Vapnik95], even if the seriousness of the situation also depends on the absolute value 

of d, due to the curse of dimensionality [Haykin99]). These properties guarantee in 

general a learning procedure simpler and faster than that given, for example, by a 

conventional multilayer Artificial Neural Network (ANN), or by a Radial Basis 

Function (RBF). 

Perimeter, area, major axis length, minor axis length, equivalent diameter, 

circularity, compactness, mean Grey Level and standard deviation of Grey Level are the 

features calculated for each signal. Circularity and compactness are defined as 

object
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scompactnes

π= : they are two ways to measure how much an object shape 

resembles a circle. Note that geometric features are invariant to rotation and translation 

transformations, but not to scaling ones. 

Because there are not enough data to set up a standard Estimation, Validation 

and Test procedure [Haykin99], a Cross Validation (CV) algorithm [Efron83] was 

instead employed, in particular, a stratified 10-Fold CV procedure, putting an equal 

number of samples of each class in 10 subsets, and then training on the different 

groupings of 9 subsets and testing on the 10th subset each time, for 10 times. When the 

number of samples is small, it is particularly important to optimize the use of the 

database. This goal implies that both the inner (result of learning optimization 

procedure) and the outer (result of learning supervisor decisions) parameters of the 

learning algorithm are optimized: the SVM algorithm is able to extract a great amount 

of information from the training set, automatically used to optimize the inner parameters, 

but the optimization of the outer parameters depends on the global training procedure, 

on the relationship between the training and the test sets, generally speaking. For 

example, it is well-known that the Hold-Out method is far less efficient then the CV 

[Kohavi95] for training any algorithm and giving an estimate of its performances in 

case of a small database. Efficiency can be measured in terms of reliability of results at 

varying number of samples: a plot of this behaviour gives what is called a learning 

curve [Hastie01]. The faster the plateau (or saturation level) is reached, the more 

efficient the algorithm is. When the number of samples is very big, almost all 
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algorithms show the same results, but when their number is not very large, which is 

what usually happens in the real world, efficiency heavily comes into play. The 10-Fold 

CV algorithm is a very good one for giving an estimate of the performances of a 

learning algorithm in small database cases. It can be affected by bias and variance to 

some reasonable degree, and it is considered one of the best choices [Hastie01]. 

Another possible trick that can be used in cases when the two classes are very 

much unbalanced is to randomly decrease the number of negative signals to a figure 

always larger than the positive signals number. This can improve the speed of training, 

without affecting too much the final results, providing the class is not under-sampled. 

The SVM parameters that were optimized with the CV procedure were: the 

kernel, the Cost parameter C, the unbalancing Cost parameter C+/-. Used kernels were 

the Linear, the Polynomial of degree 2, 3 and 4, the RBF with γ equal to 0.01, 0.05, 0.1, 

0.5, 1.0, 2.0, 5.0, 10.0. The parameter C was given the values 0.05, 0.1, 0.5, 1.0, 2.0, 4.0, 

8.0, 10.0, 12.0, 15.0, 20.0, and the parameter C± the value equal to the ratio number of 

positive signals/number of negative signals in the training subset. The parameter C+/-, 

changing the cost of one class with respect to the other in the training phase, moves the 

final output decision line, which affects the label given to objects [Riccardi00]. The 

number of negatives used in training was sampled at 60, 100, 150, 200, 300, 400, 500, 

600, 700, 800, 1000, 2000. The database underwent a whitening normalization process 

[Duda00][Campanini04] which simply forces the samples distribution to have zero 

mean and unit standard deviation: this is necessary in order to have a training procedure 

where all the dimensions of the samples are given the same weight, hence are treated for 

their intrinsic discriminatory capability and not for their original range values 

[Riccardi00][Bazzani01]. 

A summary of results are given in Table 3: for each kernel, only the best ones 

are shown. 
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Kernel Kernel 

parameter 

C Negatives number 

in training 

Hit Positives Hit Negatives 

Linear - 10÷20 > 2000 (13%) (85.4±0.2)% (80.1±0.1)% 

Poly 2 0.5÷2 > 1000 (6.5%) (82.3±0.3)% (79.2±0.2)% 

RBF 0.5 0.05÷1 > 1000 (6.5%) (80.4±0.4)% (80.7±0.2)% 

Table 3: summary of CV results of SVM classifier trained on the 51 positive signals and 15,444 
negative signals. 

Performance percentages and errors are calculated as mean and standard 

deviation of the mean of 100 Monte Carlo runs: in each run a random redistribution of 

samples is executed before the CV is performed. Though this procedure cannot give an 

estimate of the variance of the CV procedure [Kohavi95][Efron83], nonetheless it can 

provide us with an estimate of the variance in the database at hand, hence can 

approximately tell us how far the system is from the plateau in the learning curve. The 

small errors show that the system has almost reached the saturation level in the learning 

curve, at least for what concerns the given database; it is indeed not possible to check if 

this is true also with respect to the positives and negatives global distribution, because 

this distribution is unknown. 

The Linear kernel shows the best results, the number of negatives used for 

training can be a small percentage of the total number of 15,444, the value of the cost 

parameter C can be chosen in a small range. The classifier shows very good results, as it 

is able to correctly find about 85% of positives, in a population of only 51 samples, and 

80% of negatives, in a population of more than 15,000.  

4.10 Overall system results 
Now it is possible to give an estimate of the overall performances of this first 

CAD system. The number of detected nodules before the SVM classifier was 28/34 

(0.8235), with 10.6 False Positives per Image (FP/Image): these figures, combined with 

the SVM classifier results, lead to 0.8235 * 0.854 = 0.7033 nodule fraction, and 10.6* 

0.199 = 2.1 FP/Image. In other words, approximately 70% of nodules have been 

detected, together with about 2 false signals per CT slice. It must be noted that the 

redundancy of 2D nodule signals with respect to the 34 nodules has not been considered, 

so 70% could be considered a lower limit. The final figure of system performances is 

then 70% of nodules @ 2.1 FP/Image. These results can be considered comparable with 

those of a similar system developed by Armato and co-workers [Armato99a], even if 

our system shows a larger variability because of the smaller database. 
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4.11 Final note on parameters optimization and results 
A final note about parameters optimization procedures and results of this work is 

necessary. Due to the small database at disposal, many of the parameters of the CAD 

system, apart from the SVM classifier, have not undergone a complete validation 

procedure, that is, have not been tested on an independent validation set. They have 

been chosen according to their behaviour on a subset of the database, as much as 

possible a well subsampled one, and in a very conservative manner: they could have left 

less false signals than what they actually did, but we decided to stay far from the limits. 

This cautiousness should help avoiding as much as possible the overfitting risk that is 

always present when using small databases, even though it is not possible to give a final 

figure of the overall performance error of the system without a complete validation 

procedure. However, an estimate of the error can be given using the binomial proportion 

interval estimation [Berger95][Brown02]: considering 24 found nodules over 34, at 

95% Confidence Interval the error is approximately 5÷6 nodules.  

Anyway, it must be stressed that the goal of this part of the research was primarily to 

get in touch with the problem, to obtain an estimate of the behaviour of a very simple 

approach to nodule detection. 

4.12 Critical analysis of the system 
A critical analysis of the CAD system leads to the following notes: 

1. the well known drawbacks of the MF have been verified in this work, in 

particular: 1) high GL pixel regions are enhanced even if their shapes do not 

match with the template, 2) the enhanced signal is spread over an area wider 

than the signal itself [Rao94]. As a consequence, the system finds three kinds of 

FP: nodule-like, bright zones close to the border, circular vessels (see Figure 7 at 

the end of the chapter); 

2. the geometric features have some positive properties: they are translation and 

rotation invariant, and a negative property: they strongly depend on the object 

border, which in turn depends on the SRG algorithm. Unfortunately, the SRG 

algorithm can be unstable, especially when the seed is very small [Adams94]. 

Moreover, the geometric features do not take into account the context of the 

signal, and its texture; 
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3. the detection algorithm is 2D-only, and this is another limitation: more 

discriminative information could be found considering the relationships between 

signals across scans; 

4. a final limitation is due to the kind of data, in particular their thickness, limited 

to 10 mm: this means that nodules smaller than 10 mm are detected with much 

difficulty. 

4.13 Conclusions 
This first system has provided us with a lot of information which hopefully will 

be helpful in developing a more advanced CAD system. In particular we know that we 

have to: i) find a filter with high sensitivity and high specificity to circular signals of the 

size corresponding to nodules, ii) take into account the 3D behaviour of the detected 

signals across slices, iii) find classification features which are good for discriminating 

positive and false signals and, as much as possible, not dependent on the unstable SRG 

algorithm, iv) base the analysis on a large database composed of CT scans with slices 

thinner than 10 mm, in order to be able to detect signals in the size range clinically 

relevant (4÷20 mm, see paragraph 1, chapter 4). 

4.14 Some examples of processed images 
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Figure 4: example of CT slice with a nodule marked by radiologists (red circle). 

 

 

Figure 5: slice of Figure 4 after MF filtering and thresholding. The threshold is too low, hence 
many large zones are enhanced. 
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Figure 6: slice of Figure 4 after MF filtering and thresholding. Threshold is high, hence a small 
number of objects have survived. 

 

 

Figure 7: examples of objects detected by the CAD system. Together with a nodule (blue and red 
squares, object A), 4 false nodules have been found (only red squares, objects B, C, D, E).  Object C 
is an example of a nodule-like false signal, as well as B and E, object D is one of the false signals due 

to the enhancement given by the MF to high Grey Level zones close to the segmentation border. 
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Figure 8: another example of detected objects. 

 
Figure 9: another slice with more examples of detected objects. 
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Chapter 5 

A new CAD, part I: finding nodules in slices 

The observations about the weaknesses of the MF-based CAD described in the previous 

chapter constituted the basis for developing a new, and improved, CAD system. In this 

chapter, in particular, we will focus on a different and more specific method to find 

nodule-like signals in (2D) CT slices. 

5.1 The Fast Radial transform 
Since most nodules in CT images usually show a quasi-circular shape, and the 

few of them more irregular look nonetheless like compact bright “stains” in a darker 

background, a filter able to enhance bright zone with radial symmetry would be a 

natural choice. A very interesting filter for radial symmetry has recently been presented 

by Loy and Zelinsky [Loy03]: the Fast Radial Symmetry transform (FR). This 

transform has been shown to provide equal or superior performance when compared to 

contemporary techniques such has Reisfield’s Generalized Symmetry Transform 

[Reisfield95], Di Gesù and Valenti’s Discrete Symmetry Transform [Di Gesù95], 

Kovesi’s symmetry from Local Phase [Kovesi97]. 

The FR transform determines the contribution each pixel p makes to the 

symmetry of pixels around it, at an integer distance (radius) of n pixels from the above 

mentioned central pixel p: the value of the transform at radius n indicates the 

contribution to radial symmetry of the pixels lying in a circle around it at distance n. At 

each radius n an orientation image On and a magnitude projection image Mn are 

generated by examining the gradient g at each point p. The point p influences a 
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positive-affected point p+, which is the point the gradient is pointing to, and a negative-

affected point p-, the point the gradient is pointing away from (see Figure 1). 

 

Figure 1: positive-affected and negative-affected points by gradient g(p) at point p. Radius n = 3. 

The projection images are initially zero, and are then built in this way: 
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is a two-dimensional Gaussian used to spread the influence of affected pixels as a 

function of radius n, kn is a scaling factor used to normalize Mn and On across different 

radii, and α is the parameter that controls the radial strictness. The full transform is then 

defined as ∑=
n
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, and its positive and negative values correspond respectively to 

bright and dark radially symmetric regions. 

5.2 Comparison between Fast Radial and Matching Filter 
FR parameter kn was set as suggested by authors. To find the optimum radius 

range some CT images with and without nodules were analyzed: it was found that n>9 
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can enhance many falses, together with nodule-like objects, then it was decided to use 

together radius values equal to 3, 5, 7, 9 pixels, approximately corresponding to nodule 

sizes in the range 4÷10 mm. This does not affect the detection of larger nodules, whose 

bulks are always enhanced, but it can save from detecting too many large false signals. 

The strictness parameter α was set to 2: a larger value asks for too strict circular objects, 

so many irregular nodules are lost, whereas value 1 is not specific enough, and finds too 

many falses. This is also the value for parameter α suggested by authors. 

The FR filter was initially compared with the MF on the whole database 

DB10mm: results are given in Table 1. 

filter MF optimal THR FRTHR 0.4 FRTHR 0.48 FRTHR 0.52 

Hit- nodules 28/34 31/34 30/34 29/34 

Hit – 2D signals 51 63 58 56 

FP/Slice before 

cuts 16,3 16,6 12,5 10,9 

Table 1: results of comparison between MF and FR on DB10mm. Hit nodules refers to individual 
nodules, hit 2D signals to 2D signals that compose a nodule. Clearly, the FR algorithm is a better 

detector than the MF algorithm. 

For the MF it was considered the optimal threshold value (THR) described in 

chapter 4, while for FR were analyzed thresholds from 0.3 to 0.6, with 0.02 increments. 

These tests have clearly shown that FR is better than MF for the analyzed task. At the 

rate of about 16 FP/image, FR is able to find 63 2D signals instead of the 51 of MF 

(approximately 25% increase), whereas at the rate of 10÷11 FP/image, the increase is 5 

signals, but without any FPR step, like that described in paragraph 8, chapter 4, for MF. 

Hence, not only less FPs are detected with the same, or a better, True Positives 

detection rate with respect to the MF, but also the FR is easier to be optimized: the 

filtered image is simply thresholded without the need for other manipulations, necessary 

instead after the MF algorithm processing (see paragraphs 4, 5 and 6 in chapter 4). The 

variations on the nodule detection rates are not significant because their number is too 

small.  

5.3 A new database 
A new database has been used in the rest of this work (DB5mm): it is composed 

of 13 patients with 34 nodules, with diameters between 2.7 mm and 9.7 mm (22 nodules 

are larger than 4.0 mm and 34 than 3.0 mm), plus 4 patients without nodules. The 
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average number of slices per patient is 105. All the scans come from a Low Dose Spiral 

CT (GE HiSpeed CT/i), with parameters: 140 kVp, 80 mA. Slice thickness is 5 mm, 

reconstruction increment is 3 mm, slice dimensions are 512 x 512 pixels (0.67 ÷ 0.74 

mm/pixel), and reconstruction filter are lung, and standard. The database comes from 

IEO, Istituto Europeo di Oncologia, Milan, Italy, where a team of radiologists detected 

and marked the nodules. Tolerance was set to 6 pixels, with Euclidean distance. 

5.4 A slightly modified Fast Radial transform and other versions of the Fast 
Radial algorithm 

A slightly modified version of the FR algorithm [Kovesi05b] is introduced here. 

In this version, the matrix images Mn and On are not zeroed at the beginning of each n–

value radius loop: the consequence is that more weight is given to small search radii in 

the full transform S, when more than one radius is considered. By performing many 

comparisons between the original FR, the slightly modified FR, the orientation-based 

FR (ORBA) [Loy03] and the noise-lowered FR algorithms (NLO) [Loy03], we have 

found that the slightly modified FR leads to the best results, for nodule detection, hence 

it has been chosen for the CAD. 

In the noise-lowered FR, gradients smaller than a pre-defined threshold β are 

ignored, because more corrupted by noise. In the orientation-based FR, it is the 

magnitude projection image Mn that is ignored, together with small gradients. We tested 

these algorithms on the DB5mm database, with the noise parameter β equal to 0, 0.05, 

0.1, 0.15, 0,20. Always has the above-mentioned modified FR algorithm given the best 

performances: with β >= 0.15 both ORBA and NLO didn’t get over 55 2D nodule hits 

with 35 FP/image (FR: 88 hits), and with β <= 0.10 both reached 80 hits at no less than 

45 FP/image (FR: 89 hits at 38 FP/image). From this point, the modified FR has been 

employed, and simply referred to as Fast Radial. 

5.5 First problem on path: instability of SRG 
At this point of work, we had to face a big question about how to proceed. We 

started by performing several tests in order to analyze the impact of seed area on SRG 

and consequently on the calculation of geometric features of nodule-like signals 

detected by the FR algorithm after thresholding. We shrank to a different extent the 

detected signals before starting SRG, and then compared the ratio between major and 

minor axes length of grown signals. It must be noted that some erosion, or shrinking, is 
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necessary before making the signals grow, because it can happen that the signal masks 

in the binary thresholded image are larger than original signals. We found that the shape 

of positive signals becomes less and less regular with increasing degree of shrinking: 

for example, the maximum ratio of axes goes from 3.1 when just one pixel is eroded, to 

4.4 when shrinking leaves just one pixel. This behaviour is due to the instability of the 

SRG algorithm at the diminishing seed area [Adams94]. This instability affects the 

determination of the borders of the objects, which are fundamental to calculate 

geometric features to be used for object classification: if borders are unstable, geometric 

features are unreliable and classification results are unreliable. Unfortunately, this is 

only the first kind of problem introduced by the pair SRG-geometric features: indeed, 

there is another problem. When it comes to consider 3D objects in CT slices, that is, 

follow 2D signals in consecutive slices and group them together to characterize 3D 

nodules as collections of 2D signals, it might happen that SRG grown 2D objects are 

hard to put together, due to the strange shape they can acquire during the growing 

process – growing too much or too less – which is strictly related to the given seed and 

the stopping conditions chosen. Furthermore, objects can grow one into another, adding 

more troubles, if possible. For example, when it happens that very strange 2D objects, 

extremely irregular in shape, need to be grouped across slices, what do we have to 

consider as coordinates of the objects, to be compared? Would it be enough to take the 

centre of mass? After this operation, to what extent would the 3D object shape be 

reliable and ready for further processing? There is no easy answer to these questions. 

5.6 A possible solution 
The most pleasant choice would probably be to get rid of any kind of shape 

algorithms, hence of geometric features: this, in turn, means that we have to find an 

alternative way to determine the general shape of the objects, and a very effective way 

to extract information from their texture. Well, we might be lucky. We actually know 

we don’t really need to use geometric features, because we have access to many 

classification algorithms based on different kinds of features, such as the 

multiresolution analysis methods – wavelets, ranklets [Masotti05], etc –or the Support 

Vector Regression (SVR) Filtering [Angelini05], to name but a few, that have already 

proved to be very effective as classification features. So, one part of our problem could 

have been solved. In fact, a different problem arises from this prospected solution: all 

these methods are based on the determination of a proper Region of Interest (ROI) 
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around the object to be analyzed. In other words, we have to know the dimensional 

extent of the signal, in order to tailor the best ROI around it. Apparently, the SRG 

comes again into play, with all its drawbacks. Well, only apparently, in the end. It 

turned out that the problem of a tailored ROI can be very well, and very appealingly, 

solved by a Scale Space based Approach (SSA) [Lindeberg93]. 

5.7 Scale Space 
Scale Space representation was introduced by Witkin [Witkin83] and 

Koenderink [Koenderink84], and provides a good framework for dealing with image 

structures at different scales. Scale Space of an image ),( yxI  can be defined as a 

function ),,( σyxL  produced by the convolution of a variable-scale Gaussian ),,( σyxG  

with the image: 
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Unfortunately, the original approach does not address the problem of how to select 

appropriate scale for further analysis, as stated by Lindeberg [Lindeberg93], who 

proposed an heuristic principle to deal with this problem: “a scale level at which some, 

possibly non-linear, combination of normalized derivatives assumes a local maximum 

can be treated as reflecting the characteristic length of a corresponding structure in the 

data”. The basic idea of the principle stems from the behaviour of normalized Gaussian 

derivatives of sinusoidal signals: it can be shown that the scale (sigma) at which a 

normalized derivative assumes its maximum is proportional to the wavelength of the 

signal. Normalized (dimensionless) coordinates are defined as: σξ /x= , hence the 

normalized derivative operator is: x∂=∂ σξ . The Normalized Laplacian (NL) thus 

becomes: 22∇σ . According to the principle, Scale Space extrema - points that are local 

extrema both in scale and space - of the NL reflect a characteristic length of the objects 

in the image. In particular, it turns out that the ratio between the scale levels at which 

the maxima of analysed objects, similar in shape but different in size, are attained, is 

roughly equal to the ratio between the sizes of the objects. 

This approach is basically the core of the SIFT algorithm [Lowe04], even if it 

employs Difference of Gaussians (DOG) filters instead of the Normalized Laplacian: 

they can be shown to be equivalent, by using the diffusion equation: 
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which gives: GkyxGkyxG 22)1(),,(),,( ∇−≅− σσσ , that is, the Difference of two 

Gaussian filters with sigma equal to kσ and σ is approximately equivalent to a 

Normalized Laplacian multiplied by (k-1), where k is integer. Above all, DOG are faster 

in execution than NL. 

5.8 Preliminary tests with Scale Space 
We performed some experiments with the SSA, using both NL and DOG filters, 

and analyzed the relationship between the sigma value of local maxima and the sizes of 

simple bright objects, like circles, squares and rectangles, in a dark background. In the 

case of the DOG approach, the algorithm initially computes the correlation of the 

original image with a Gaussian filter with increasing sigma (the implementation is 

actually done by iteratively filtering the already filtered image: this is due to the 

property that repeating a Gaussian filtering is equivalent to filtering once with a 

Gaussian whose sigma is the Euclidean sum of the two sigmas), then, the difference 

images are determined. In the equivalent NL approach, simply the convolution between 

the image and the NL filters are computed. After this part, the algorithm looks for local 

extrema in local windows of size 3x3 or 5x5 pixels, across 3 or 5 images of the scale 

space sequence. The factor k is defined so that km = 2, with m integer [Lowe04]. We 

chose m = 5. 

An interesting fact emerged from these tests on toy images (see also Figure 2): 

1. A local maximum is found in the centre of circles of radius r, and its sigma 

is
2

r
=σ . 

2. Local maxima also are found in the centre of squares and quasi-square 

rectangles, with a sigma equal to the minimum of the two sides, halved by two 

(equal to the sigma of the square inscribed in the circle of point 1). 

3. Rectangles and Bars show the most irregular behaviour: local extrema are found 

close to the short side of rectangles, along the diagonals of the squares inscribed 

in them with side length equal to the short side of the rectangle or less. These 

virtual squares have one, or at most two, angles in common with the processed 

rectangle, and their positions correspond to different resonance scales. Small 
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virtual squares resonances are also found in the corners of real squares and also 

along the border of more irregular objects (partial border resonance), providing 

the correct sigma is employed in filtering. 

 

    

Figure 2: explication of i) local maximum found in the centre of a circle (right), ii) local maximum 
found in a square (left), and iii) some of the multiple local maxima found in a rectangle along the 

diagonals of the inscribed squares with side equal at most to the short side of the rectangle (middle). 

Point 1) is very interesting for nodule detection: it means that a circular bright object of 

a certain radius r could be detected with a proper sigma, a sigma such that
2

r=σ  

(resonance sigma). More in general, it means that not only a constant relative ratio 

between objects of different sizes and their sigma values exist, but also that an absolute 

relationship between the size of an object and the sigma resonance value can be found, 

at least for simple objects. Point 3) will become important in the discussion about the 

FPs detected by the system in chapter 7. 

These observations formed the basis for the solution to the problem of finding a 

proper and easy way to estimate the size of a nodule, without employing the SRG 

algorithm, as we shall soon see. 

Subsequently we tested the SSA on some CT images with nodules and falses, 

and we found out that: 

1. circular and quasi-circular objects are detected by the SSA: the local maximum 

is positioned in the centre of the object, it is usually alone, and corresponds to a 

single resonance sigma; 

2. less regular objects are still detected, but more than one maximum is found 

within a certain tolerance from the object centre: each maximum usually 

corresponds to a portion of the object where a circle could be individuated, and 

can have its own resonance sigma value; 
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3. relative brightness of the signal with respect to the background is not of 

fundamental importance: same results can be found in different conditions; 

4. the radii of the detected signals, as measured on the CT images, are well 

approximated by the formula 
2

r=σ ; 

5. a nodule is missed only if its resonance sigma is out of the filter range; 

6. if the whole image is processed the number of detected false signals is much 

larger than that of FR (250 instead of 10÷50), but their characteristics are 

different, because only almost circular objects are found: indeed, the SSA has 

proved to be much more specific to circular shapes than the FR, but also less 

specific to bright objects, as said above (see point 3 of this list), which gives 

most of its falses; 

After these findings, it was decided to test the SSA and the FR filters in logical AND 

combination for nodule detection. This proved to be a good choice, but, before looking 

at the results, another question must be addressed. 

5.9 Second problem on path and a promising solution 
The other question is: is it possible to find a way to transform the image in order 

to further enhance the nodule-like signals? To find a transformation with higher 

specificity to nodules? Indeed, there are many nodules that show low GL values, and 

which are therefore less enhanced, by the FR filter, than larger but less circular noise 

spots with higher GL values: would it be possible to enhance the former more than the 

latter? We know that every GL transformation is not targeted to object shape, hence is 

useless, because similar GL values are transformed in the same manner. A good choice 

would be a shape dependent transform. Well, we already know a transform with this 

property. It is the FR transform! Actually, a FR filtering of a FR filtered image (FR2), as 

the next paragraph will show, has proved to be very effective for nodule-like signal 

detection. It is a non linear transformation of the image which takes into account the 

local circularity: it can really happen that circular objects are enhanced more than 

brighter non-circular ones. Results are given below. 

5.10 Putting all together 
In Table 2 are compared results of FR and FR2 on the database DB5mm, before 

and after the logical AND with the SSA filter. 
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filter FR 0.1 FR 0.16 FR 0.19 FR2 0.47 FR2 0.65 FR2 0.79 

Nodule hit 34/34 34/34 33/34 34/34 34/34 34/34 

Signal hit 92 91 89 92 91 90 

FP/slice 85,4 51,2 38,4 53,2 37,4 29,3 

FP/slice after 

SSA 67 43,3 33,3 45,3 32,8 26,2 

Decrease 22,00% 15,00% 13,00% 15,00% 12,00% 11,00% 

Table 2: comparison of the detection results between FR and FR2, before and after the logical AND 
with the Scale Space filter. The resonance sigma range corresponded to 2.4÷20.0 mm nodule 

diameter range. 

The three more significant threshold values for both FR and FR2 are shown. 

Clearly, FR2 is better than FR: with the same number of 3D and 2D nodule signal hit, 

the average number of False Positive/slice is much lower, both before and after the SSA 

filtering (from 25% to 40% before, and from 22% to 33% after, depending on the 

threshold value). It must be noted that these variations are highly significant because the 

number of false signals is huge and, even if the number of 3D and 2D nodule signals is 

much smaller, nonetheless the comparison has been performed between the highest 

threshold values giving the same results. The number of 2D nodule signals is a 

monotone function, decreasing with increasing threshold, and are the general 

behaviours of these curves that have been compared. This result shows that the first FR 

really acts as a nonlinear and shape-dependent GL transformation, which can improve 

the detection rate of the FR filter. Because FR2 is never worse than FR, we can always 

safely use it. 

If we now analyze the effect of the logical AND between FR-based filtering and 

SSA filtering, we notice that there is a reduction in the number of detected FP of 

approximately 10 – 20%, depending on the absolute threshold value: the effect of SSA 

decreases with increasing FR threshold. The resonance sigmas in the searched range 

corresponded to nodule diameters from 2.4 mm to 20.0 mm. The lower limit is slightly 

smaller than the suggested value 4 mm (see chapter 1, paragraph 4) for two reasons: the 

first is that there are many nodules in the database smaller than 4 mm, and the second is 

that nodules might be composed of sub-signals, each of them resonating with its own 
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smaller sigma. Besides, it must be noted that, even if the maximum nodule diameter in 

the database is about 10 mm, the maximum searched diameter was 20 mm, in order to 

have a good estimate of the number of falses detected by the algorithm in the usual 

detection range. The comparison FR, FR2 is synthesized in Figure 3. 

FR^2 Vs FR, after SSA
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Figure 3: plot of absolute number of detected 2D nodule signals for FR and FR2 Vs FP/slice, after 
logical AND with SSA. Threshold values go from 0.35 to 1.01 for FR2, and from 0.1 to 0.22 for FR.  

Searched nodule range is 2.4÷20.0 mm. The superiority of FR2 is evident. 

5.11 Brief summary of Scale Space Approach useful properties 
It is now the time to summarize the many good properties of SSA, in order to 

determine its impact on the detection algorithm: 

1. SSA can decrease the number of false signals detected by FR or FR2 of a 

considerable amount, depending on initial falses number and detection threshold; 

2. SSA can give an estimate of the size of the detected nodule, through the 

relationship
2

r=σ ; 

3. SSA is very effective in controlling the searched nodule diameter, whose bounds 

can be exactly set; 

4. SSA can effectively locate the nodule, because its centre corresponds to the 

position of the local maximum in the scale space. 

Points 2 and 4 give an answer to the question arisen in paragraph 5 of this chapter, and 

together with point 3, allow us to get rid of the SRG algorithm, because there is no more 
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need to calculate the borders of the signals. Point 1 is a very welcome surprise, which 

strengthens the power of the Scale Space Approach. 

5.12 Conclusions 
The work described in this chapter has provided us with a new method for 

detecting 2D nodule signals in CT slices. This method, based on the Fast Radial 

transform used twice and on the Scale Space approach, has proved i) to have higher 

sensitivity and specificity, with respect to the Matching Filter method, and ii) to have 

many interesting properties, which will become important in the next future. As we 

have already seen, the SSA gives us the opportunity to abandon the Seeded Region 

Growing algorithm for the estimation of nodule sizes and borders, which is a critical 

point of the FPR part of the CAD system. Further validation of the method will be 

necessary in future, employing larger databases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 6 

A new CAD, part II: matching signals through slices; coarse False 
Positive Reduction (FPR-1) 

Nodule-like 2D signals found in CT images need to be matched together to characterize 

3D signals to their full extent. This operation, matching signals through slices, can also 

help to delete a great amount of false signals, which is a fundamental step of any CAD 

systems, because most of the initially detected signals do not correspond to true nodules. 

6.1 Grouping 2D signals into 3D objects 
Each two dimensional signal detected by previous steps of the CAD system is 

stored as a collection of features (spatial coordinates of signal, number and type of 

resonance sigmas), together with some extra-information concerning its “identity” 

(patient and slice number) and, only during the validation procedure, label (positive if 

signal corresponds to a nodule, negative if not). Since more than a single resonance 

sigma can be found within true nodule position tolerance, with more than a single value 

(see Figure 1 below), two kinds of spatial coordinates, which are given by resonance 

sigma positions, are considered: normal average and sigma-weighted average. For the 

same reason, maximum, minimum, mean and variance values of resonance sigmas for 

each nodule-like signal are collected. It was decided not to memorize all the single 

sigma values because both it would have requested too much memory and, most 

important, this great amount of information needs to be synthesized to be subsequently 

utilized. 
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After setting a matching tolerance (7 pixels for the present database, DB5mm), 

which need not to be the same as that already considered to determine the objects label 

(see chapters 4 and 5), 2D signals are matched across slices by simply comparing their 

coordinates. Beginning from the first signal in the first slice, each signal is linked with 

each signal in the next slice, provided their spatial positions are within the chosen 

tolerance. 

 

Figure 1: examples of nodules with irregular shapes and correspondent multiple resonance radii 
determined by sigma-resonance. Left: 3 different centres given by 3 different resonance sigmas 

within the same object; right: 4 centres given by 2 resonance radii within the same object. 

The spatial position each signal has to be matched with is that of the last added 

2D signal, not the one of the signal at the top of the chain: indeed, whilst nodules are 

generally found in the same position in successive slices because they are sphere-shaped, 

vessels, which form a large subsample of falses, moves considerably across slices. 

Three-dimensional linking is stopped when no correspondence is found in the last 

analyzed slice. It is also permitted to link signals which stay in not successive slices, to 

manage those cases in which there are gaps in the detected nodule sequence. It must be 

noted that object labels are not taken into account during 2D signals linking, only 

relative positions.  

6.2 Results of 3D grouping on database DB5mm 
At the end of the linking part of the algorithm, we have groups of 2D signals 

corresponding to objects which develop across slices in the CT scan of the patients. In 

the table below (Table 1) are shown some results of this 3D linking process on the 

database DB5mm, at different detection thresholds FRTHR (average sigma-weighted 

coordinates of signals has been considered). 
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FRTHR Gap 3D Pos. 3D Neg. 2D Pos. 2D Neg. Positive 

singletons 

 

Negative 

singletons 

0.51 1 34/34 33019 91 75476 2 18756 

0.51 0 34/34 38866 91 75476 2 24285 

0.65 1 34/34 27164 91 58773 2 16364 

0.65 0 34/34 31048 91 58773 2 20264 

0.79 1 34/34 22181 90 46955 3 13957 

0.79 0 34/34 24757 90 46955 3 16693 

Table 1: results of 3D-linking process on database DB5mm (34 nodules, 17 patients, 105 slices per 
patient on average), at different FRTHR thresholds. Gap 0 corresponds to no gaps in the slice 

sequence, Gap 1 to 1 slice gap.  Singletons are signals not linked with any other signal. It is easy to 
see that the percentage of negative singleton is very large, whilst that of positive singletons is very 

small.  

It is clearly seen that, irrespective to the detecting threshold FRTHR, singleton 

signals, that is, signals not matched to others, constitute the largest part of falses, and 

only a very small part of positives. Indeed, only 2 positive singletons have been found 

in a group of 34 nodules (about 6%), whilst a percentage of singletons varying 

approximately from 55 to 65% is present in the ensemble of negative 3D signals. This 

will be very important for the False Positive Reduction (FPR) step. On the other side, 

there are an average number of almost 3 2D signals per nodule, and 5 or 6 2D signals 

per false positive. Another important observation is that Gap 1 can reduce the absolute 

number of 3D falses found by Gap 0 of a percentage varying from 10 to 20%. At the 

same time, anyway, the percentage of singletons is reduced by the same or a grater 

amount, which means that the FPR impact of singletons is lowered, hence it is not clear, 

at this stage of development, which value is better between Gap 1 and 0. It is interesting 

to note that no hybrid 3D objects, that is, objects composed of negative and positive 2D 

signals, resulted at the end of the grouping process. 

6.3 3D objects features 
To further characterize the 2D signal groups, we calculated some 3D features. 

These features are: length (in number of slices), inclination with respect to verticality 

(axis parallel to CT reconstruction increment motion) of a linear fitting through centres 

of 2D signals, and sigma-volume (sum of the mean values of sigmas of each 2D signal 
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of the 3D object, normalized to pixels of 0.7 mm). Figures 2 and 3 below show some 

combinations of these features. 

 

Figure 2: inclination (theta) in degrees Vs length of nodules (positives, blue), and not-nodules 
(negatives, red). 

 

Figure 3: length Vs sigma-volume of nodules (positives, blue), and not-nodules (negatives, red). 
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From the above figures we can see that: 

1. maximum length of nodules is 5 slices, of falses is 47 slices; 

2. most of the falses are longer than 3 nodules; 

3. maximum inclination of nodules is about 68° for objects 2 slices long. We could 

also argue that average inclination gets smaller with increasing length of nodules: 

indeed, nodules, being almost spherical in shape, are expected to be much less 

inclined than falses like vessels. The high inclination of 2-slice nodules should 

be due to the high variance which affects the linear regression calculation: this 

variance becomes less and less important when length increases, unfortunately 

this database is not very large, so we cannot validate this reasonable observation; 

4. all but one nodules have a sigma-volume smaller than 20. 

6.4 False Positive Reduction, first part (FPR-1) 
All the previous observations allow us to realize a first, coarse but very effective, 

False Positive Reduction (FPR-1). In fact, we can decide to cut all the signals which are 

too short or too long, those which are too much inclined, and those whose sigma-

volume is too large. In particular, too short means the signal is a singleton, and too long 

is related to the maximum size of searched nodules. Because we are looking for nodules 

smaller than 20 mm, we cuts objects longer than 8 slices (in this database the 

overlapping amount between slices is 2 mm, hence it is quite reasonable for a 20 mm 

long object to be no more than 7÷8 slices in length). At this point it is important to note 

that the database at hand is too small to allow a Cross-Validation procedure; hence we 

are forced to choose all these FPR-1 parameters so that they are no stricter than what we 

could reasonably estimate for the general distribution of nodules we are looking for. In 

other words, as we cannot validate these parameters, we have to accept a larger amount 

of false positives than what we could really eliminate by looking at this database alone. 

This is the reason why we do not accept signals more inclined than 70°, when long 2 or 

3 slices, 60° when long 4, 40° when long more than 4, and why we cut all signals with 

sigma-volume larger than 40: in both cases, smaller thresholds could have been set, but 

with the risk to be too much fit to this limited distribution. The general prescription is to 

apply lax criteria and to be not too much specific to the dataset: other researchers have 

adopted this approach [Gurcan02], when the limited size of databases could not allow 

putting up a validation procedure.  
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6.5 FPR-1 results on DB5mm 
Results of this FPR-1 procedure are shown in the table below (Table 2). 

FRTHR Gap 3D 

Pos. 

3D 

Neg. 

2D 

Pos. 

2D 

Neg. 

After FPR-1 

3D Pos. 

After FPR-1 3D 

Neg. 

Survived 

Neg. 

0.51 1 34/34 33019 91 75476 32 9003 27.3% 

0.51 0 34/34 38866 91 75476 32 9793 25.2% 

0.65 1 34/34 27164 91 58773 32 6611 24.3% 

0.65 0 34/34 31048 91 58773 32 7027 22.6% 

0.79 1 34/34 22181 90 46955 31 5105 23% 

0.79 0 34/34 24757 90 46955 31 5232 21.1% 

Table 2: effect of FPR-1 on signals detected with threshold values FRTHR. The amount of removed 
falses is approximately from 70 to 80%, at the expense of only 2 or 3 nodules over 34.  

From Table 2 it is easily seen that approximately 70% to 80% of false nodules are 

eliminated by this FPR-1 step, and at the same time that only 2 or 3 nodules are lost, 

over 34, because they are singletons. These are very good figures, and the fact that the 

decrease in negatives is large, no matter the value of the detection threshold FRTHR, is 

a particularly good result; anyway, further validation is necessary to clearly understand 

if heavier cuts could be done. Again, impact of Gap parameter cannot be judged: values 

0 and 1 seem to be quite equivalent, at this stage. 

6.6 Conclusions 
Matching of 2D signals across slices is a very important step of the CAD system, 

because it allows to process signals in their 3D extent. The 3D characterization of 

detected objects has proved to be particularly well-suited for the FPR step, which has 

received a great benefit from the 3D linking procedure, as can be seen by comparing the 

FPR results of the first CAD system described in Chapter 4, in which, for example, 

there is no impact at all of singletons. Of course, further validation on a larger and 

independent database will be necessary to assess the absolute performances of this False 

Positive Reduction step. 

It must be stressed that the 3D linking procedure and the following FPR-1 step 

are based on the use of the Scale Space Approach described in Chapter 5. The linking 

procedure makes use of the signal positions as detected by the corresponding resonance 

sigmas of the SSA, and one of the cuts of FPR-1 is based on resonance sigmas as well. 

As already stated in Chapter 5, the possibility to getting rid of the SRG algorithm has 

had a fundamental consequence on the development of the algorithm, in terms of 



A new CAD, part II 

 61 

simplification and reliability. What needs now to be tested is whether or not abandoning 

the geometric features has been a good choice. 
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Chapter 7 

A new CAD, part III: fine False Positive Reduction (FPR-2) 

As already stated, False Positive Reduction is a fundamental step of CAD systems of 

any kind. In this particular case, FPR is in charge of discriminating true nodules from 

false ones among all the signals detected by our system. In fact, the system 

performances depend both on the sensitivity and specificity of the initial filtering part, 

and on the discriminative ability of the FPR part. We have previously seen, in chapters 

5 and 6, that our system is composed of an initial filtering part, deputed to detect 

nodule-like signals in CT slices, and of a coarse FPR part, able to delete more than 70% 

of the falses detected by the system. Unfortunately, the remaining amount of falses is 

still very large, thus another FPR step is necessary (see for example chapter 4 of this 

thesis and [Armato02], [Suzuki03]). This step will be based on a Support Vector 

Machine classifier, and will comprise two sub-steps: one is the classification of each 2D 

signal; the other is the final labelling of each group of 2D signals, which have been 

given the identity of a single 3D object through the linking process described in the 

previous chapter. Eventually, only the 3D objects judged as nodules will be prompted to 

the final CAD user. 

7.1 Preparing for signals classification: choosing Regions of Interest and 
features  

We wrote in paragraph 6 of chapter 5 that we don’t need to use geometric 

features for classification, because there are many different kinds of features that have 

proven to be very effective for image classification, such as Gray Level values, wavelets, 
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ranklets, etc. What is necessary to do, when using this kind of features, is to find a 

square area around the object to be classified (Region of Interest: ROI) and use the 

features derived from this small image as features for the classifier. We have chosen to 

use as features in this work the Gray Level values of the ROI. This type of features has 

been used with success to classify microcalcifications and masses in CAD for 

mammography [El-Naqa02][Masotti05], and could also be considered as the coarse 

version of the Support Vector Regression Filtering approach described in [Angelini05]. 

The only problem would be that of precisely determining the size of the signal to be 

classified, in order to crop a ROI which is adequate to the object size. Indeed, the aim is 

to obtain a ROI not too large or too small with respect to the signal, because the former 

would make the signal to be “lost” in the background, the latter would focus only on the 

signal, without consider its relationship with the background. Balance is not easy to 

reach. The SSA helps us in estimating the size of the signal detected in the slice, 

through the relationship found in chapter 5, paragraph 8, based on the resonance sigma 

value: 
2

r=σ . We could then set the ROI side proportional to the radius r, by 

introducing the formula, depending on the parameter extraside: 

rextraside 2*)1(*2 side ROI += , (see Figure 1). 

 

Figure 1: relationship between ROI side and nodule radius. 

By taking into account previous experiences regarding the classification of ROIs 

containing mass lesions [Angelini05], we already knew that the area of a lesion with 

complex texture, as a mass is, needs to be not smaller than 17÷22% of the total area of 

the ROI. Since a nodule has a considerably less complex texture than a mass, we made 

the hypothesis that the background plays a considerably more important role for nodule 



A new CAD, part III 

 65 

classification than what it does for masses: this is the reason why we decided to start 

with the value extraside = 0.05, which makes the signal area be about 19% of the ROI 

area, and then compare it with the values 0.15 (18.2%), 0.24 (17.5%). 

Afterwards, all ROIs are resized by means of a bilinear algorithm to a common 

ROI size (parameter RESIZE, indicating the ROI side length, in pixels), and then their 

GL pixel values are put in form of a vector, by simply building a single column vector 

made by the columns of the ROI matrix. These vectors are the feature vectors for the 

SVM classifier. Classification of each ROI is the first step of FPR-2: after that, each 

group of 2D signals, corresponding to a 3D nodule-like signal initially detected by the 

system, is given a final label, positive if it is judged a nodule, negative if not. The 

RESIZE parameter was chosen among the values 11, 15, 19, 23, respectively 

corresponding to vectors of length 121, 225, 361, 529. We must note in fact that it is 

important not to reduce too much the side length of the ROIs, because valuable 

information could be lost during the process, so that the resized ROI would be useless 

for classification purposes. On the other side, we must remember that the risk referred 

to as the curse of dimensionality is always present in learning algorithms, when the 

number of training vectors is close or smaller than the classification space 

dimensionality [Haykin99], even if we know that SVM is much less prone to this risk 

than all other learning algorithms [Vapnik95][Campanini04]. In conclusion, because the 

smallest ROI size detected by the algorithm was 11 pixels, and because the number of 

positive 2D training vectors is less than 100, we decided to choose the above values for 

the parameter RESIZE. 

7.2 Classifying 2D signals: 7-Fold Cross Validation and 90° rotations of ROIs 
Consider now the classification of 2D signals. Because the database DB5mm is 

a small one, a Cross-Validation procedure was considered for training and for 

performance estimation. The set of survived 3D signals, for FRTHR = 0.65, is 

composed of 32 nodules and approximately 7,000 falses, corresponding to 89 2D 

positive signals and 16,999 (Gap 1) or 17,394 (Gap 0) negative ones. This FRTHR 

value was chosen because it seemed a good compromise between nodules and falses 

numbers: as already noticed, a larger database will be necessary to choose the optimal 

value of parameters. Unfortunately, of the 13 patients with nodules, 2 contain 17 

nodules of the total number of 32, hence a Leave-One-Out procedure was not possible, 

and 7-Fold CV was chosen instead: this is a good trade-off between the necessity to 
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have balanced sub-groups in the CV, that is, with similar numbers of positive and 

negative signals, and the prescription of CV experience, saying that the number of sub-

groups should be closer to 10÷20 [Kohavi95]. The 4 patients without nodules were used 

to make the number of signals as balanced as possible across the sub-groups. Before 

proceeding with the CV, all the data vectors underwent a whitening procedure, 

“pixelwise”: the distribution of each pixel, being a dimension of the feature space, was 

individually normalized to zero mean and unit standard deviation (see also chapter 4, 

paragraph 9). We tried a polynomial kernel for SVM, with low degree (2, 3), that is 

know to always guarantee good performances with low overfitting risk, at a low 

computational cost [Campanini04]. 

Further, to increase the number of positive signals and, at the same time, to 

introduce some rotational invariance in the classifier generalization capability, all 

positive ROIs in each training procedure were rotated 3 times by 90° and the new 

correspondent vectors added to the training. With this operation, the number of 

positives in training is multiplied by 4 (from 89 to 356). Moreover, this procedure was 

also introduced into ROIs classification, by considering the 4 labels of the 4 90° rotated 

views of each ROI. Different thresholds can be set for this labelling procedure: 2, 3 or 4 

positive labels can be required to give the final positive label to the ROI. 

7.3 Labelling 3D objects 
Consider now the labelling of 3D objects. Their labels must depend on the 

individual labels of each of their 2D signals. If we look at these 2D signals, we notice 

that not all have the same quality, that is, some of them really resemble a nodule, while 

others do not, especially those at the beginning and at the end of the 3D object (see 

Figure 2 below). 
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a.1 a.2 a.3 

b.1 b.2 b.3 

Figure 2: examples of two 2D nodules sequences relative to two different 3D nodules. Differences in 
quality are evident: the last signal of sequence a  is much noisier than the first two ones; the first 

signal of sequence b is very small and difficult to spot. 

This can be easily explained: the first and last 2D signals usually come from 

slices which have cut the nodule in its top or bottom, so that in the slice it has been 

reconstructed together with some of the lung tissue positioned over its top or under its 

bottom. This makes the nodule be very difficult to see, and smaller in size than its 

maximum extension. To try to overcome the fact that top and bottom low quality 2D 

nodules present a high risk to be classified as negative signals, we decided to use not 

strict procedure when labelling a 3D object: it is sufficient that only a fraction of its 2D 

signals are classified as positive to give it a positive label. This fraction must depend on 

the 3D object length. This is a sort of Majority Voting (MV) algorithm [Kittler98]. 

7.4 7-Fold CV results – part I 
In this section we shall see the first final results of the CAD system. The 

procedure of CV on the dataset of 356 2D positives and 16,999 2D negatives was 

performed to optimize the following parameters in their respective ranges: extraside = 

0.05, 0.15, 0.24; RESIZE = 11, 15, 19, 23 pixels; Gap = 1, 0 slices; SVM kernel: 

polynomial, with degree 2, 3. Because we found that all the training processes 

terminated with complete separability of the two classes, both the SVM cost parameter 

C and the SVM unbalancing parameter C± = (number of negatives)/(number of 

positives) were useless, hence were no more considered. 

The MV algorithm was used with these settings: a 3D object is given a positive 

label if at least one signal is positive, in case it is long up to 4 signals, and if at least two 

signals are positives, in case it is longer than 4 slices (remember that the maximum 

allowed signal length in the database DB5mm is 8 slices). From the histograms in 
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chapter 6, we know that the 3D positive objects in this database are all long less then 5 

slices, except one. The average length is 2.8 slices for positives and 3 for negatives 

objects, even if the maximum length of negatives is 48 slices. It is clear that, for this 

database, the behaviour of the algorithm on objects no longer than 4 slices is what really 

matters for what concerns performances on true nodules; on the other side, as already 

stated in the previous chapter, we tried to obtain an estimate of the FP rate of the CAD 

system for nodules in the range 3÷20 mm: this is the reason why we tried to use lax 

criteria in the FPR-1 phase and in this labelling phase as well, by not eliminating all 

signals longer than 5 slices. We initially compared the above MV settings with a strict 

labelling procedure, requiring all 2D signals to be positive to give the 3D object a 

positive label, but, as the weak labelling results below will show, this was really too 

strong a requirement. 

In the table below (Table 1) are shown the best results of the 7-Fold CV 

procedure. 

Gap 2D 
pos. 

2D neg. 3D pos. 
average 

3D pos 
overall 
average 

3D neg FP/Pat. -
average 

SVs 
number: 
positives 

SVs 
number: 
negatives 

1 33-37 
/89 

350-390 
/16999 

23/32 23/34 320-350 
/6611 

19.4 ~260/330 ~750/13500 

 0.40 0.022 0.719 0.676 0.05  75÷80% 5.5% 
0 35-37 

/89 
350-400 
/17394 

23.7/32 23.7/34 320-360 
/7027 

19.9 idem idem 

 0.40 0.022 0.74 0.699 0.05    

Table 1: results of  the 7-Fold CV (extraside = 0.05, polynomial kernel with degree = 2), averaged 
over RESIZE parameter values, for both Gap 1 and Gap 0. The overall column takes into account 
the total number of nodules of the database. The second and the fourth rows report the fractional 

number of positives and negatives. In the last two columns are shown the average number of 
Support Vectors per class, with respect to the total number of training vectors in the 6 sub-groups 

(the other one is used as test). 

These results have been obtained with parameters: extraside = 0.05; kernel = 

polynomial, with degree 2; number of positive labels over 4 necessary to give a positive 

label to a 2D signal (ROI): 2; MV parameters: at least 1 positive for objects long up to 4 

slices, at least 2 for longer objects. Moreover, these results have been averaged over the 

RESIZE parameter values, because no clear indication was obtained for an optimal 

resizing value among the proposed four ones. 

The other values of extraside gave no better results, sometimes worse: approximately 

equal or slightly lower 2D positive rates with about 22÷25 FP/Patient. 

Polynomial kernel of degree 3 gave approximately the same positive rates with 150% 

FP/Patient. 



A new CAD, part III 

 69 

As can be seen from Table 1, no differences can be found in the performances of Gap 1 

and Gap 0. 

It is important to note that the performances of the classifier over 2D signals are 

not brilliant from an absolute point of view, because only 40% of positives are hit, but 

are quite good from a relative point of view, because only 2% of negatives receive a 

wrong label. This means at the same time that: i) the GL features and the ROIs database 

carry an amount of information useful to distinguish the two classes; ii) this amount of 

information might not be sufficient to improve the performances. At this point, it is not 

possible to know whether the database or the features need first to be improved. From 

previous experiences, we could argue that it is the lack of data that mostly affects the 

performances. 

In conclusion, this system configuration can find almost 70% of nodules in the 

database range 3÷20 mm at a cost of about 20 FP/Patient. To compare these figures with 

those obtained by the system described in chapter 4, whose results were 70% of nodules 

with 2.1 FP/slice, we must consider that the total number of 2D falses of the present 

system is approximately 350÷400, and that they have been found in 17 patients with 

105 slices on average each: this gives 0.2 FP/slice. The present system, according to the 

7-Fold CV results, is ten times better than the systems of chapter 4. 

7.5 7-Fold CV results – part II: choosing positives for training 
It is now important to consider again what was noted in paragraph 7.3: not all 

the 2D nodule ROIs have the same quality. Top and bottom ROIs present a lower 

quality, when compared to inner ROIs. Because CV is a procedure which considers all 

the samples in the database alternatively for training and testing, this fact is very 

important and leads to the observation that a better training dataset might be prepared, 

by choosing only the high quality samples. In other words, the multiple learning 

procedures of the CV should be performed with a smaller positive set, in which all the 

ROIs must have been chosen according to their qualitative aspect. This was done, and 

54 ROIs were chosen among the initial 89 (resulting in a set of 216 2D positives): about 

40% of the detected positive signals were judged low-quality ones and not considered 

for training (but were for test). Results are given in Table 2. 
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Gap 2D 
pos. 

2D neg. 3D pos. 
average 

3D pos 
overall 
average 

3D neg FP/Pat.-
average 

SVs 
number: 
positives 

SVs 
number: 
negatives 

1 28-31/ 
89 

170-200 
/16999 

21.3/32 21.3/34 150-180 
/6611 

9.6 ~150/185 500/13500 

 0.32 0.011 0.666 0.625 0.025  80% 4% 
0 24-31 

/89 
200  
/17394 

20.8/32 20.8/34 170 
/7027 

10.1 idem idem 

 0.32 0.011 0.65 0.610 0.024    

Table 2: results of 7-Fold CV (extraside = 0.0.5, polynomial kernel with degree = 2) with chosen 
positives in training, averaged over RESIZE parameter values, for both Gap 1 and Gap 0. The 

overall column takes into account the total number of nodules of the database. The second and the 
fourth rows report the fractional number of positives and negatives. In the last two columns are 

shown the average number of Support Vectors per class, with respect to the total number of 
training vectors in 6 sub-groups (the other one is used as test). Clearly, results are better than those 

reported in Table 1. 

Clearly, the system with chosen positives in training reaches better performances: 

indeed, even if the absolute hit rate is lower, the FP/Patient figure is halved! Moreover, 

the total number of Support Vectors (SVs) is decreased to approximately 60÷70% of 

previous level (Table 1), even if the absolute number of samples in the positive class is 

now 60% of the initial one. This means that [Vapnik95] the two classes are now more 

separable, or separable with less effort, which in turn means that the positive class is 

now more dissimilar to the negative class. The fact that without the selection of 

positives there were 2 times FP/Patient and only a small increase in correctly classified 

positives, signifies that in the 89 positives database there are many signals very close to 

the other class: the decision to discard them was hence right. Besides, this fact shows 

that the information carried in the training database is of fundamental importance to 

obtain good performances, and supports our observation of paragraph 7.4, that enlarging 

the database would be more important, at present, than trying different classification 

features, whose results could, also, not easily compared on this small database. 

7.6 Introducing Multirotation in training 
As a consequence of the previous result, we tried to find the way to use at best 

the information of the database. The natural way to do it was to force the procedure 

considered in paragraph 7.2 for introducing rotational invariance and increasing 4 times 

the number of positive ROIs in training. This time, we decided to add to the training set 

more rotated versions of each ROI, before applying the usual 90° rotation procedure. 

Each ROI is rotated of 15°, 30°, 45°, 60° and 75°, before being cut from the original 

image (otherwise there would have been problems with the image corners). The 

procedure (Multirotation) gives 24 times the number of original positives to be used in 
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training (54 x 6 x 4 = 1,296). The new Multirotation training procedure can also affect 

the classification procedure of 2D signals. Two options are hence possible: going on 

with the usual 4-rotation labelling procedure, or try to use a Multirotation based one. 

We tried both, beginning with the usual 4-rotation procedure. 

7.7 7-Fold CV results – part III: effects of Multirotation in training 
In the table below (Table 3) are reported the results of the 7-Fold CV with 

chosen positives, Multirotation procedure in training and usual 4-rotation procedure in 

test. In the latter, two different thresholds were considered to give a positive label: at 

least 2 over 4, or at least 3 over 4. Only Gap 1 was considered, because results are 

similar for both values 0 and 1. 

With Multirotation 
4-
rotation 
threshold 

2D 
pos. 

2D neg. 3D pos. 
average 

3D pos. 
overall 
average 

3D neg. FP/Pat. 
average 

SVs 
number: 
positives 

SVs 
number: 
negatives 

At least 2 45-47 
/89 

380-410 
/16999 

23.7/32 23.7/34 320-345 
/6611 

19.8 ~380/1150 650/13500 

 0.52 0.022 0.74 0.697 0.04  33% 5% 
At least 3 36-40 

/89 
180-200 
/16999 

22/32 22/34 155-165 
/6611 

9.5 idem idem 

 0.45 0.011 0.68 0.65 0.04    
Without Multirotation 
At least 2 28-31 

/89 
170-200 
/16999 

21.3/32 21.3/34 150-180 
/6611 

9.6 ~150/185 500/13500 

 0.32 0.011 0.666 0.625 0.025  80% 4% 

Table 3:  comparisons between 7-Fold CV with and without Multirotation in training, both 
employing usual 4-rotation labelling in test, with “at least 2” and “at least 3” thresholds. The 

introduction of Multirotation has increased the 2D performance rate but also the 2D FP rate, in the 
case of “at least 2” labelling threshold. The labelling threshold “at least 3” gives the best results. 

From the table above it is easy to see that the Multirotation training is superior to 

the previous 4-rotation training: indeed, it is superior from the point of view of the 

number of 2D positive signals correctly classified, and at the same time it finds the 

same number of FPs as before, when the labelling threshold is in the configuration “at 

least 3”. This fact means that the classifier has learned better than before the 

characteristics of the two classes, positives and negatives, due to the gain in information 

given by the Multirotation procedure, with which the nodule signals are “seen” by the 

classifier during the training step from many orientations. The absolute numbers of SVs 

have both increased: the positives almost 3 times, the negatives about 30%. This fact 

indicates that a better positive class description has forced the learning algorithm to ask 

for more information about the negative class. However, the fact that the two classes are 

easily separated in the training phase, but absolutely not separated in the test one, 
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together with the high difference between the positive and negative class percentage 

figures and the still larger absolute number of negative SVs with respect to the positive 

ones, denote that more information should be added to reach a better separability. In 

particular, the nodule class is certainly underrepresented in the training set. 

7.8 Introducing Multirotation in test phase 
The next step of the system development was the introduction of the 

Multirotation procedure in the 2D labelling phase. 24 views of the same ROI are 

classified by the SVM algorithm to obtain the most probable label between “nodule” 

and “not-nodule”. In order to optimize the threshold of this parameter, we first of all 

considered the following histograms (Figures 3 and 4): they show how many 2D signals 

has received a certain fraction of positive labels over the 24 (data shown for RESIZE = 

11). 

2D labelling fraction over 24 rotational views: positives
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Figure 3: this histogram shows how many 2D positive signals have received a certain number of 
positive labels, from 0 (column 1) to 24 (column 25). 
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2D labelling fraction over 24 rotational views: negatives 
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Figure 4: this histogram shows how many 2D negative signals have received a certain number of 
positive labels, from 0 (column 1) to 24 (column25). 

Figure 4 shows that the classifier is able to give 0 positive labels over 24 to 

13,320 negative ROIs over 16,999 (78.4%): moreover, only 593 negatives are given at 

least 13 positive labels. These are the false positives that will eventually contribute to 

the FP/Patient rate of the system. Figure 5 shows that 25 ROIs over the initial 89 are 

given 24 positive labels over 24 (28%), that 16 over 89 are given no positive labels at 

all (18%), and that 53 over 89 are given at least 13 positive labels over 24. The 

monotonically decreasing number of positive labels given by the classifier to the 

negative ROIs, together with the less regular but almost mirror behaviour of the 

positives histogram, tell us that we have to analyze the performances coming from all 

fractional values between 12 and 24 with the 7-Fold CV procedure, in order to obtain 

the optimized system. Results are given below. 

7.9 7-Fold CV results – part IV: effects of Multirotation in test and final FROC 
curve 

The next figures (Figures 5 and 6) show the effect of varying the labelling 

threshold from 12 to 24 over the positive and negative ROIs. 
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Correctly classified 2D positives at varying labelling threshold
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Figure 5: absolute number (over 89) of correctly classified 2D positive signals at varying labelling 
threshold from 12 to 24. In the legend, “res N” stays for “ROI resized to N pixel”. 

Wrongly classified 2D negatives at varying labelling threshold
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Figure 6: absolute number (over16,999) of wrongly classified 2D negative signals at varying 
labelling threshold from 12 to 24. In the legend, “res N” stays for “ROI resized to N pixel”. 
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The system behaviour seems in general to be not particularly dependent on the 

resizing parameter (RESIZE), except for the value RESIZE = 11, which presents a larger 

number of false positives for labelling threshold values from 12 to 17, and a larger 

number of true positives for threshold values equal to 22, 23, 24. 

As already noted, the smallness of the database makes it difficult to clearly 

determine some fine details of the system behaviour, hence we decided to simply 

calculate its average behaviour over the RESIZE parameter to derive an FROC (Free 

Response Operating Characteristics) curve [Metz86] to summarize the system 

performances. A FROC curve is a plot of True Positives (TP) rate, that is, fraction of 

detected nodules Vs the average number of FP/Patient, and is widely used in the CAD 

community as a tool for a quick and effective representation of systems performance. In 

the table below (Table 4) we can find the performances of the system averaged over the 

resizing parameter. 

2D labelling 

 threshold 

(over 24) 

12 13 15 17 19 20 21 22 23 24 

2D pos 54,5 53,5 47,75 45 39,5 38,25 35,5 31,25 27,25 20,5 
2D neg 713 519,5 342,25 240,5 167,25 136,75 104,25 74,5 53,5 32 
3D pos 27 26,75 24,75 23 22,75 22,5 21,5 20 18 16 
3D pos: fraction  0,794 0,787 0,728 0,676 0,669 0,662 0,632 0,588 0,529 0,471 
3D neg 572 426 291 206 147 121 91 65 46 27 
2D FP/slice 0,399 0,291 0,192 0,135 0,094 0,077 0,058 0,042 0,03 0,018 
3D FP/PAT 33,6 25,0 17,1 12,1 8,6 7,1 5,3 3,8 2,6 1,6 

Table 4: absolute and fractional numbers of positive and negative signals detected by the system at 
varying labelling threshold. The database is formed by 89 2D positives, 16,999 2D negatives, 34 3D 

nodules and 17 patients.  Results are averaged over the 4 different values of the RESIZE parameter. 
The number of 3D FP/Patient is calculated dividing the number of 3D negatives by the number of 
patients, whereas the number of 2D FP/slice by dividing the number of 2D falses by the number of 

patients times the average number of CT slices per patient (105). 

The average percentage of correctly classified 2D positives varies from 23% to 

61%, with an average percentage of wrongly classified 2D negatives varying between 

0.2% and 4%. Correspondingly, 47% to 79% of nodules are detected, with 1.6 to 33.6 

FP/Patient (or 0.02 to 0.4 FP/slice).  

These averaged results allow us to plot the FROC curve of the system over 34 nodules 

in 17 patients of the database DB5mm (see Figure 7 below). 
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FROC curve
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Figure 7: FROC curve of the CAD system for the DB5mm database. The 24-rotation curve refers to 

Multirotation algorithm used in test, with labellin g threshold going from 12 to 24, whilst the 4-

rotation curve refers to the usual 4-rotation algorithm, with labelling threshold equal to 2 and 3. In 

both Multirotation procedure was employed in training.  Error bars correspond to the standard 

deviation: 0.03. 

The FROC curve shows different working points of the system, depending on 

the labelling threshold. The first important result of Multirotation based test is in fact a 

finer tuning of the system, with respect to the 4-rotation based test. Furthermore, with 

the Multirotation procedure the system reaches better 2D positive rates at fixed 2D or 

3D negative rates, as can be seen by comparing Tables 3 and 4. Errors bars in the FROC 

curve, about 0.03 in absolute value, approximately corresponding to 1 nodule, simply 

refers to the standard deviation of the 4 different curves given by the 4 different values 

of the RESIZE parameter. However, if we take into account that these results have been 

obtained from a Cross Validation procedure on a small database of only 34 nodules, we 

must conclude that larger errors might affect these performances, and that these errors 

come from bad sampling of the database with respect to the real, and unknown, nodule 

distribution. Unfortunately, these effects can’t be directly estimated. As an alternative, 

we could consider again, as in chapter 4, the binomial proportion interval estimation 
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[Berger95][Brown02]: at 95% Confidence Interval, the error is approximately 3÷6 

nodules (9÷18%). Keeping in mind this figure, we notice that these results are 

comparable with those found in CAD literature, some of which are reported in chapter 2: 

consider for example [Armato02], [Lee01], [Gurcan02].  

7.10 False Positives analysis 
By direct visual inspection, it is possible to note that the set of FP signals can be 

divided into three categories: 

a. ROIs found at the outer border of the lung area, representing normal lung tissue; 

b. ROIs around large and non-circular bright zones, usually part of vessels; 

c. ROIs around small circular vessels. 

Whereas falses of type c are quite reasonable and constitute the largest subgroup, the 

other two types, though less common, being more dissimilar to relevant nodules, should 

be avoided as much as possible in order to reduce CT reader distraction to a minimum. 

This will be the goal of future work, anyway, it can be arguer that falses of class a are 

related to SSA and FR2: indeed, in our initial test with SSA we noted that there can be 

resonance not only with whole objects (circles or squares), but with parts of them 

(partial border resonance: see chapter 5, paragraph 8). When the segmentation pre-

processing leaves some very bright pixels on the border of the lung area, it can happen 

that they are detected by the FR2 algorithm and, if in the same area a partial border 

resonance with lung tissue is found by the SSA, then the ROI will be considered for 

further processing. The fact that the training process is based on a small subgroup of the 

real and unknown nodule distribution, and that some of the used ROIs contain a very 

small nodule surrounded by lung tissue, is probably responsible for the detection of this 

kind of FPs. Similarly, even type b and c of falses will probably be reduced by the 

exploitation of a proper large database. The figures at the end of the chapter show 

examples of nodules and of FPs (RESIZED = 19, labelling threshold = 15). 

7.11 Conclusions 
In this chapter we have seen the last part of the CAD system, the FPR-2 step, 

based on Gray Level features and a Support Vector Machine classifier. Even if the 

employed database is not large enough to perform an independent test, the 7-Fold CV 

procedure allowed us to clearly show that: 

1. the GL features have good discriminative capabilities; 
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2. the introduction of the Multirotation procedure in training makes the classifier 

extract a great amount of information from the database, greater than the 

previous 4-rotation procedure; 

3. the introduction of the Multirotation procedure in the test phase gives the system 

a larger number of working points, and better results; 

4. the kinds of falses made by the system can be divided into three subgroups, one 

made of signals very similar to nodules, the other two related to the system 

structure. 

As already noticed, all the results need to be further validated on larger databases, but it 

must be remembered that, even if the nodules in the database DB5mm ranged from 3 to 

10 mm, we searched nodules in the range 3÷20 mm, in order to obtain a good 

estimation of the FP/Patient figure of the system. Moreover, the parameters in the FPR-

1 phase were chosen to be lax: not tailored to the positive distribution in the database, 

but reasonable for the “real” positive distribution. As a consequence, overfitting risk 

should have been successfully kept low in this work. 

 

 

Figure 8: example of detected nodule (blue square: truth; red square: CAD detection) (DB5mm, 
patient 6-2-1-1, slice 37) 
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Figure 9: example of detected nodule (DB5mm, patient 9-1-1-1, slice 31) 

 

Figure 10: example of FPs of type a (right) and b (left) (DB5mm, patient 6-1-1-1, slice 35) 
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Figure 11: example of FP of type c (DB5mm, patient 7-1-1-1, slice 28) 

 

Figure 12: example of FP of type c (DB5mm, patient 7-1-1-1, slice 58) 



 

Chapter 8 

Analysis of LIDC database 

The Lung Image Database Consortium (LIDC) is a cooperative enterprise of the 

National Cancer Institute (NCI) of the USA, aimed at developing an image database to 

serve as an international resource for the development and assessment of CAD systems 

applied to the detection of lung nodules in CT scans [Armato04]. 

Authors declare that the database will include: 

o CT images and related technical data; 

o nodule position and description; 

o pathology information, when available. 

Each CT scan will have been read by four radiologists two times, the first in blind mode, 

the second with knowledge of others results, and for each nodule larger than 3 mm a 

probabilistic description of contour will be provided, by taking into account results of 

the four readings, in order to capture inter-reader variability. Nodules smaller than 3 

mm will only be described by their centroid. 

8.1 Database at time of writing 
At time of writing the database (DBLIDC) is composed of 23 nodules in 23 

partial CT scans, with an average number of 38 slices per patient, slice thickness 0.625 

mm and reconstruction increment 0.625 mm. Each image is 512 by 512 pixels and each 

pixel 0.703 mm in length. Minimum diameter of 2D nodule signals is 1.4 mm, 

maximum 58.9 mm. The nodule length in slice number is comprised between 5 and 43 

slices. 
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By comparing DBLIDC with the database DB5mm, composed of slices of 5 mm 

thickness and 3 mm reconstruction increment, it is easy to understand that this database 

allows the detection of smaller nodules, and makes it easier as well: long objects are 

classified by means of more points of view (that is, ROIs). 

Unfortunately, as already happened with both the other two databases used in 

this work, even this one is small, which means that the filtering and FPR-1 parameters 

have been chosen by means of reasonableness criteria, and that FPR-2 has undergone a 

Cross-Validation procedure, without independent validation. Noticeably, when the 

database will be enlarged, a complete validation procedure will be necessary for 

parameter optimization. 

8.2 CAD processing I: detecting2D signals 
Threshold values (FRTHR) between 0.40 and 1.90 have been tested on the 

database, with tolerance for truth set, as usual, to 6.0 pixels. Truth was simply nodule 

centroid, taken from the probabilistic description given with each nodule. Searched 

nodules range was, as before, 2.4÷20.0 mm. Figure 1 below shows the number of 

FP/slice at varying FRTHR, both before and after the Scale Space Approach filtering. 

FP/slice Vs FRTHR
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Figure 1: FP/slice at varying FRTHR before and after Scale Space filtering. 
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Because there was no validation set for this database, being the database itself too small, 

we decided to increase the value of FRTHR until the average number of false positive 

signals per slice was similar to that of the DB5mm database for FRTHR = 0.65, the 

thresholding value considered in chapter 7. This choice is due the consideration that 

previous experience could be used as a guideline for new, unexplored databases, when 

no other landmarks are visible. With FRTHR = 1.90, the number of FP/slice was 

approximately 30, with 22 over 23 detected nodules, hence this value was chosen. 

Parameter extraside was set as for database DB5mm: 0.05. 

8.3 CAD processing II: matching signals through slice and FPR-1 
We grouped the 225 positive and 25,879 negative 2D signals across slices as 

described in chapter 6, with a tolerance between slices set to 7.75 pixels, and Gap to 1. 

Tolerance was slightly larger than before (7 pixels) because of the very irregular shapes 

of many nodules in this database, which could result in heavy nodule fragmentation 

across slices: such fragmentation was reduced to 6 unmatched positive signals and 2 

split nodules. Since parameter Gap was not critical in database DB5mm, value 1 was 

chosen, being able to help reducing nodule fragmentation. In the end, the grouping 

process resulted in 30 3D positive signals (6 unmatched single signals, 24 non-singleton 

objects) and 4,625 3D negative signals (1.746 singletons). 

After grouping, we determined FPR-1 cuts. As with database DB5mm, cuts 

were reasonably lax, in order to reduce to a minimum overfitting risk in such a small 

database. Figures 2 and 3 below show the distributions of the features: theta, sigma-

volume and length. 
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Figure 2: inclination - theta - in degrees Vs length of nodules (positives, blue), and not-nodules 

(negatives, red). 

 

Figure 3: length Vs sigma-volume of nodules (positives, blue), and not-nodules (negatives, red). 

Minimum length of non-singleton nodules was 3, maximum 26, and maximum 

length of negatives was 59. Maximum value of sigma-volume for nodules was 77, but 
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second maximum was 59, and all other values were under 50. Maximum value for theta 

was 64° for 2-slice long nodules, 38° for 13-slice long nodules, and 6° for 26-slice long 

nodules. 

It was then decided to apply the following cuts: 

1. Length: singletons and objects longer than 40 nodules; 

2. Theta: 

o more than 70° for length 2 objects; 

o more than 65° for length 3 objects; 

o more than 60° for length 4 objects; 

o more than 55° for length 5 objects; 

o more than 50° for objects longer than 5; 

3. Sigma-volume: greater than 80. 

After the FPR-1 process, there remained 24 positive signals (2 of them were parts of 

other signals) and 2,132 negative signals (46% of the initial set). The only lost nodule 

was not detected by the FR2 algorithm. No hybrid objects were found. 

If we compare these figures with those of the DB5mm database, we see that 

after the present cuts a larger proportion of falses is still present: more than 40% instead 

of approximately 25%. It is hard to say, without a validation set, if it could be possible 

to reduce this proportion and still reach a good detection rate, so we decided not to 

change the cuts nor the detection threshold FRTHR, even if the initial aim to have a 

FP/slice figure close to the DB5mm one has not been satisfied after the FPR-1 phase. 

Our concerns were more focused on keeping overfitting risk as small as possible, than 

obtaining a small but less reliable FPs number. 

8.4 CAD processing III: FPR-2 
For what concerns the classification of 2D signals, we employed a Cross-

Validation procedure for training and performance estimation, in particular a 7-Fold one, 

with 3 positives in the first 6 sub-sets, and 4 in the last one. As before with DB5mm, 

RESIZE was 11, 15, 19 or 23 pixels, Gap = 1 slices, SVM kernel: polynomial, with 

degree 2. Not as before, the training processes terminated with almost complete 

separability of the two classes, so we nonetheless decided not to change SVM cost 

parameter C, set equal to 100, and the SVM unbalancing parameter C±, set equal to the 

ratio number of negatives/ number of positives in the training set. A few errors on a total 
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number of more than 10,000 vectors means that overlapping between the two classes is 

negligible hence could be ignored.  

For what concerns 3D objects labelling, since nodules can be long more than 20 

slices, we decided to use the MV algorithm with the same settings as in chapter 7, for 

objects long up to 8 slices (a 3D object is given a positive label if at least 1 signal is 

positive, in case it is long up to 4 signals, and if at least 2 signals are positives, in case it 

is between 5 and 8 slices), with the addition of these settings for longer objects: 

o 3 (4) signals for 8 < object length ≤ 12; 

o 5 (6) signals for 12 < object length ≤ 16; 

o 8 (10) signals for 16 < object length ≤ 20; 

o 10 (12) signals for 20 < object length ≤ 30; 

o 12 (15) signals for objects longer than 30. 

Numbers between brackets are other values that have been tested in different 

combinations with those chosen during the CV process, and later discarded. The 

minimum number of necessary positive 2D signals to give a positive label to a 3D 

object varies then between 20% and 40% of the number of signals in the object.  

We tested the system with and without the Multirotation option. Results of the 

7-Fold CV procedure with Multirotation only in training are compared with those 

without Multirotation in Table 1 below. 

With Multirotation in training 
4-rotation 
threshold 

2D 
pos. 

2D neg. 3D pos. 
average 

3D pos. 
overall 
average 

3D 
neg. 

FP/Pat. 
average 

SVs 
number: 
positives 

SVs 
number: 
negatives 

At least 2 96-98  
/191 

2900-
2970 
/13426 

18/22 18/23 700-
720 
/2132 

30.8 ~1800/4000 ~2600/11500 

 0.51 0.22 0.82 0.78 0.33  45% 23% 
At least 3 65-74 

/191 
1520-
1680 
/13426 

15.2/22 15.2/23 360-
430 
/2132 

17.8 idem idem 

 0.45 0.12 0.69 0.66 0.19    
Without Multirotation in training 
At least 2 46-54 

/191 
1328-
1450 
/13426 

10.5/22 10.5/23 364-
393 
/2132 

16.6 ~530/650 ~1400/11500 

 0.26 0.10 0.477 0.456 0.173  81% 12% 

Table 1: comparisons between 7-Fold CV with and without Multirotation in training, both 
employing usual 4-rotation labelling in test, with “at least 2” and “at least 3” thresholds. The 

introduction of Multirotation has dramatically incr eased the 2D performance rate but also the 2D 
FP rate, in the case of “at least 2” labelling threshold.  SVs are considered for an average training 

set of 6 subgroups of the total 7 ones. 
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The effect of Multirotation is a dramatic increase in both positives detection rate and 

FP/Patient. As already noticed with the DB5mm database, with threshold set as “at least 

3” there is almost the same FP/Patient figure as without Multirotation, but with a much 

larger number of detected nodules. On the contrary, a noticeable difference with the 

DB5mm database is the absolute number of falses, both 2D and 3D: the percentage of 

the initial number here is approximately 10 times that of the previous database. The 

large number of falses and the heavy effect of Multirotation clearly show that the 

number of nodules in the database DBLIDC is at a critical low level. The number of 

SVs confirms this observation: almost half of positives and ¼ of negatives are SVs in 

Multirotation training, a situation very different from that with DB5mm database, where 

33% of positives and only 5% of negatives were SVs. 

Afterwards, Multirotation was considered for labelling. The following 

histograms (Figures 4 and 5) show the number of 2D signals that have received a 

positive label (data shown for RESIZE = 11). 

2D labelling fraction over 24 rotational views: positives
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Figure 4: histogram shows how many 2D positive signals have received a certain number of positive 
labels, from 0 (column 1) to 24 (column 25). 
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2D labelling fraction over 24 rotational view: negatives
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Figure 5: this histogram shows how many 2D negative signals have received a certain number of 
positive labels, from 0 (column 1) to 24 (column25). 

The ideal shape of the histograms would be that of a single column on the far right for 

the positive class and a single column on the far left for the other class. On the contrary, 

they both show shapes very different from the ideal ones, because the number of errors 

of the SVM classifier is very large, much larger than on the DB5mm database: there are 

87 2D positives that receive no more than 11 positive labels over 24 (45% of 191), and 

4,192 negatives that receive at least 12 positive labels (31% of 13,426). Besides, the two 

classes are not entirely separable in training, even if to an almost negligible degree (a 

few vectors over thousands), and are highly not separable in the test phase. This 

situation denotes that the two classes are not very well represented in the dataset, and in 

particular it is the nodule class that is underrepresented. This was among our 

expectations, because 23 nodules are a very small number, even to perform a Cross- 

Validation procedure. Figure 6 and 7 below show the effect of varying the labelling 

threshold from 12 to 20 over the positive and negative ROIs (all RESIZE values). 
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Correctly classified 2D positives at varying labelling threshold
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Figure 6: absolute number (over 191) of correctly classified 2D positive signals at varying labelling 
threshold from 12 to 24. In the legend, “res N” stays for “ROI resized to N pixel”. 

Wrongly classified 2D negatives at varying labelling threshold
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Figure 7: absolute number (over 13,426) of wrongly classified 2D negative signals at varying 
labelling threshold from 12 to 24. In the legend, “res N” stays for “ROI resized to N pixel 



Chapter 8 

 90 

As before with DB5mm, the system behaviour seems in general to be not particularly 

dependent on the resizing parameter (RESIZE), except for the value RESIZE = 11, 

which presents a larger values of false positives for labelling threshold values from 12 

to 15, and a larger values of true positives for threshold value equal to 20. Labelling 

thresholds over value 20 were not considered because of the already small performance 

rates. 

As already noted, the smallness of the database makes difficult to clearly 

determine some fine details of the system behaviour, hence we decided to simply 

calculate its average behaviour over the RESIZE parameter to derive an FROC curve to 

summarize the system performances. In the table below (Table 2) we can find the 

performances of the system averaged over the resizing parameter. 

2D labelling 

 threshold 

(over 24) 

12 13 15 17 19 20 

2D pos 104,75 99 87,25 77,25 65,5 59,75 
2D neg 3950 3121,75 2275,75 1633 1097,5 861,75 
3D pos 19,5 18,5 16 13,75 12,25 10,75 
3D pos: fraction  0,848 0,804 0,696 0,598 0,533 0,467 
3D neg 956,75 738,5 533 383 260,5 210 
2D FP/slice 4,907 3,878 2,827 2,029 1,363 1,07 
3D FP/PAT 40,1 32,1 23,15 16,625 11,325 9,125 

Table 2: absolute and fractional numbers of positive and negative signals detected by the system at 
varying labelling threshold. The database is formed by 191 2D positives, 13,426 2D negatives, 23 3D 
nodules and 23 patients (or cases). Results are averaged over the 4 different values of the RESIZE 
parameter. The number of 3D FP/Patient is calculated dividing the number of 3D negatives by the 
number of patients, whereas the number of 2D FP/slice by dividing the number of 2D falses by the 

number of patients times the average number of CT slices per patient (35). 

The average percentage of correctly classified 2D positives varies from 31% to 55%, 

with an average percentage of wrongly classified 2D negatives varying between 6.4% 

and 29%. Correspondingly, 47% to 85% of nodules are detected, with 9.1 to 40.1 

FP/Patient (or 1 to 5 FP/slice). 

These averaged results allow us to plot the FROC curve of the system over 23 

nodules in 23 patients of the database DBLIDC (see Figure 8 below). 
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FROC curve
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Figure 8: FROC curve of the CAD system for the DB5mm database. The 24-rotation curve refers to 
Multirotation algorithm used in test, with labellin g threshold going from 12 to 20, whilst the 4-

rotation curve refers to the usual 4-rotation algorithm, with labelling threshold equal to 2 and 3. In 
both, Multirotation procedure was employed in training.  Error bars correspond to the standard 

deviation: 0.05. 
Again, the FROC curve shows different working points of the system, which depend on 

the labelling threshold. As before, the 24-rotation curve allows a much finer tuning of 

the system than done by the 4-rotation curve, even if, this time, no clear difference in 

results can be spot, due to the small size of the database. With respect to the DB5mm 

database results, overall detection performances are comparable, but the number of FPs 

is generally larger: the FROC curve drops down faster when the FP/Patient figures 

dimishises. This reflects the fact that the SVM classifier makes a larger percentage of 

errors. In this case, the weakness of the small database plays a fundamental role. 

In the same manner as before, errors bars in the FROC curve, about 0.05 in 

absolute value, approximately corresponding to 1 nodule, simply refers to the standard 

deviation of the 4 different curves corresponding to 4 different values of the RESIZE 

parameter. If we take into account the small database of only 23 nodules, we must 

conclude that larger errors, all originated from bad sampling of the database with 

respect to the real, and unknown, nodule distribution, might affect these results, and that 

these effects can’t be directly estimated. As an alternative, we could consider again, as 



Chapter 8 

 92 

in chapter 4 and 7, the binomial proportion interval estimation [Berger95][Brown02]: at 

95% Confidence Interval, the error is approximately 4÷5 nodules (15÷20%). 

8.5 False Positives analysis 
The same three types of FPs found in database DB5mm are present here. Some 

examples of nodules and FPs are shown in the figures at the end of the chapter 

(RESIZED = 19, labelling threshold = 15).  

8.6 Conclusions 
LIDC database will for sure prove to be a great resource for the lung CAD 

community: unfortunately, at time of writing it is so small that only a partial validation 

of CAD systems is feasible. Because our CAD system needs to have many parameters 

optimized by means of a usual Estimation-Validation procedure, we initially considered 

the DB5mm database as a guideline and decided to set the FRTHR parameter in order to 

have a similar FP/slice value, then we choose FPR-1 step thresholds as much reasonable 

as possible, and finally we used a Cross-Validation procedure for training and 

performance estimation of FPR-2 step. With a large number of FP/Patient the overall 

CAD performances are similar to those of the CAD on the DB5mm database, but are 

worse when the FP/Patient rate moves towards zero. This variation is due to a 

performance decrease of both FPR-1 and FPR-2 steps, and the main reason is to be 

considered the narrowness of the database, which does not allow proper parameters 

estimation: with a large dataset parameters would be robust and their impact clearly 

estimated. Moreover, FPR-1 finds hard to eliminate falses also because of the use of 

partial CT scans: very long objects are truncated and made similar in length to nodules. 

Another important point is the quality and variety of 2D nodule views: even if in this 

database, with respect to the DB5mm one, there are more 2D nodule signals, many of 

them are very similar, because slices are very thin, so we can argue that the effective 

number of training sample is reduced; besides, the nodule class is wider, because there 

are many spiculated nodules. It must be said that we also tried to choose high-quality 

positive signals for the training phase as already done in chapter 7, by discarding 

approximately 30 signals over 191, but there were no appreciable differences in the 

final results, so we didn’t report the details. Once more, the critical point is the database 

size. 
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Figure 9: examples (blue square: truth; red square: CAD detection) of detected nodule and FPs. 
The three falses close to the bottom border are of type a, whilst the two inside lung area are of type 

c. (DBLIDC, patient 1, slice 23) 

 

Figure 10: example of nodule and false (type c) (DBLIDC, patient 5, slice 21) 
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Figure 11: example of nodule and false (type b/c) (DBLIDC, patient 7, slice 15) 

 

Figure 12:  example of falses of type c (DBLIDC, patient 5, slice 6) 
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Figure 13: examples of a missed 2D nodule signal and of falses of type a (left) and c (right) 
(DBLIDC, patient 7, slice 22) 
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Chapter 9 

Conclusions 

In this work we have described a new method for the detection of nodules in 

lung CT scans. At present, our CAD is composed of 5 macro steps: 

1. Pre-processing :  

a. DICOM to GL image transformation; 

b. Automatic lung segmentation; 

2. 2D candidate nodule signals detection: Fast Radial of Fast Radial filtering AND 

Scale Space filtering; 

3. Grouping of 2D signals into 3D objects across slices; 

4. False Positive Reduction , part 1 (coarse): simple cuts; 

5. False Positive Reduction , part 2 (fine): SVM-based classification and labelling; 

 

The segmentation part, which is completely automatic, reduces the area to be 

subsequently analyzed by the detection system, thus sinking the processing times of 

subsequent steps and eliminating false positive signals. 

The filtering approach is completely new: in particular, the iterative filtering 

with the Fast Radial Filter is original, as well as the innovative and effective use of the 

resonance given by the Normalized Laplacian of the Scale Space Approach. This 

resonance has some very desirable properties: the experimentally proved relationship 

between circular objects’ size and the resonance sigma value, the fine and easy control 

of nodule size and position. 
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The abandoning of the Seeded Region Growing algorithm and its unstable 

results is another important consequence of the SSA. The only weak point of SSA is a 

border resonance effect (partial border resonance), which gives rise to a subgroup of 

false positive signals, which will require ad hoc treatment in future.  

The simple and efficient FPR-1 phase is also partly based on the SSA. 

The FPR-2 phase employing Gray Level features and an SVM classifier is quite 

promising, especially used in conjunction with the Multi-rotation approach both during 

training and during test phases. During the latter, the Multi-rotation approach results in 

a finer tuning of the CAD working points (FROC curve). 

A big difficulty we had to face during the CAD development was the lack of a 

large database: a very common problem among the CAD community that will hopefully 

be resolved by the LIDC enterprise, unfortunately still at its beginning. 

Taking into account lung CAD literature, we can see that the work described in 

this thesis has reached satisfactory results, comparable to those of other larger research 

groups; nonetheless, it is clear that much effort is still necessary to bring this CAD to its 

full development. Some of the possible future improvements are, to name but a few: the 

employment of different ROI features, an FPR-3 step based on SVR-filtering, an ad hoc 

post-processing to get rid of some false positive signals, a different FPR-2 step based on 

an ensemble of classifiers trained with different positives or false subgroups. Taking 

into account the rapid technological advances of CT, constantly moving towards thinner 

and thinner slices, 3D interpolation of signals will probably become very interesting for 

nodule detection. 
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Glossary 
 

ANN: Artificial Neural Network 

CAD: Computer Aided Detection 

CT: Computed Tomography 

CV: Cross Validation 

CXR: Chest X-Ray 

DB: Data Base 

DICOM: Digital Imaging and Communication in Medicine  

DOG: Difference of Gaussians 

FP: False Positive 

FPF: False-Positive Fraction 

FP/slice: False Positive per slice 

FPR: False-Positive Reduction 

FR: Fast Radial 

FR2: Fast Radial of Fast Radial 

FROC: Free Response Operating Characteristic 

FRTHR: FR or FR2 Threshold 

GATM: Genetic Algorithm Template Matching 

GE: General Electric 

GL: Gray Level 

HU: Hounsfield Unit 

IEO: Istituto Europeo di Oncologia 

LDA: Linear Discriminant Analysis 

LIDC: Lung Image Database Consortium 

LOO: Leave One Out 

MF: Matching Filter 

MTANN: Massive Training Artificial Neural Network 

MV: Majority Voting 

NEMA: National Electrical Manufacturers Association 

NL: Normalized Laplacian 

NLO: Noise Lowered FR 
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ORBA: Orientation Based FR 

PACS: Picture Archiving and Communication Systems  

RBF: Radial Basis Function 

ROC: Receiver Operating Characteristic 

ROI: Region Of Interest 

SRG: Seeded Region Growing 

SSA: Scale Space Analysis 

SV: Support Vector 

SVC: Support Vector Clustering 

SVM: Support Vector Machine 

SVR: Support Vector Regression 

TPF: True Positive Fraction 

WL: Window Level 

WW: Window Width 
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