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Abstract. This paper deals with the concepts of persistence diagram and

matching distance. These are two of the main ingredients of Topological Per-
sistence, which has proven to be a promising framework for shape comparison.

Persistence diagrams are descriptors providing a signature of the shapes un-
der study, while the matching distance is a metric to compare them. One
drawback in the application of these tools is the computational cost for the

evaluation of the matching distance. The aim of the present paper is to intro-
duce a new framework for the approximation of the matching distance, which

does not affect the reliability of the entire approach in comparing shapes, and
extremely reduces the computational cost. This is shown through experiments
on 3D-models.

1. Introduction

Interpreting and comparing shapes are challenging issues in computer vision,
computer graphics and pattern recognition [18, 20]. Topological Persistence – in-
cluding Persistent Homology [13] and Size Theory [3, 14] – has proven to be a
successful comparison/retrieval/classification (hereafter CRC) scheme.

In a nutshell, the basic idea for dealing with the CRC task is to define a measure
of the (dis)similarity between the shapes in a given database. This can be done
by extracting a battery of shape descriptors – the so-called persistence diagrams –
from each element in the database, capturing meaningful shape properties. Thus,
the problem of assessing the (dis)similarity between two shapes can be recast into
the one of comparing the associated persistence diagrams according to the matching
(or bottleneck) distance, a proven stable distance between these descriptors. This
process defines a metric over the database, that can be used for CRC purposes.
In general, a given persistence diagram may come from different shapes. This can
be interpreted as an equivalence with respect to the properties captured by that
descriptor.

Such an approach has been successfully used in a number of concrete prob-
lems concerning shape comparison and retrieval [7, 9, 12]. However, defining a
(dis)similarity metric in the case of large databases can lead to a considerable com-
putational cost. The bottleneck in this procedure can be identified in the evaluation
of the matching distance.

The contribution of this paper. Reducing the computational costs in defining
a (dis)similarity metric within a database of shapes is definitely a desirable target.
This would enable us to further improve the persistence CRC framework and apply
it to a wider class of concrete problems.
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In [8], the authors introduce a multi-scale strategy for the approximation of a
matching distance-based (dis)similarity metric. For each pair of persistence di-
agrams associated to different elements in a database, the idea is to compute a
rough estimation of their matching distance, which is faster to obtain than its ex-
act computation. This estimation is based on a “dissimilarity criterion” that will
be explained in detail in Section 3. It has been implemented using an algorithmic
procedure which allows for a progressive refinement of such an estimation, whenever
it is not sufficient to distinguish between persistence diagrams (and hence shapes)
which are too similar.

The aim of the present paper is to continue that work, by extending it in two
main respects:

• From the algorithmic viewpoint, we introduce a new scheme generalizing
the one proposed in [8]. It is based on a randomized strategy to apply
the aforementioned dissimilarity criterion. The outcome is a more flexi-
ble tool allowing us to obtain statistically better performances in terms of
classification results.

• As for experiments, we enlarged their setting by considering a new dataset
of triangle meshes and new batteries of persistence diagrams, obtaining
even in this case satisfactory results.

The present work is organized as follows. In Section 2 we recall the necessary
definitions and results needed in the rest of the paper. In Section 3 we describe
the multi-scale construction of a matching distance-based (dis)similarity metric
presented in [8], together with the dissimilarity criterion which is formalized in
Theorem 3.1. Section 4 and Section 5 are devoted to present the schema we have
developed for the application of the dissimilarity criterion. The experimental setting
is described in Section 6, ranging from the chosen datasets to the selected batteries
of persistence diagrams. In Section 7 experimental results are provided. A final
discussion about the obtained results concludes the paper (Section 8).

2. Background notions

In the classical formulation of persistence [13], the shape of an object is usually
studied by choosing a topological space X, and a function ϕ : X → R, called
a filtering (or measuring) function. The role of ϕ is to describe the properties
considered relevant to analyze the shape of the object represented by X [7, 14].
By considering the sublevel sets induced on X by the variation of ϕ, we can define
a family of subspaces Xu = ϕ−1((−∞, u]), u ∈ R, nested by inclusion, i.e. a
filtration of X. Focusing on the occurrence of important topological events along
this filtration, such as the appearance and disappearance of connected components,
tunnels and voids, it is possible to obtain a global description of the considered
shape. This information can be encoded in an algebraic structure known in the
literature as ordinary persistent homology groups and defined as follows. Given
u ≤ v ∈ R, we consider the inclusion of Xu into Xv. This inclusion induces a
homomorphism of homology groups Hk(Xu) → Hk(Xv) for every k ∈ Z. Its image
consists of the k-homology classes that live at least from Hk(Xu) to Hk(Xv) and is
called the kth persistent homology group of (X,ϕ) at (u, v). If X satisfies some mild
conditions [6] (which will be assumed to hold throughout the paper) this group is
finitely generated: In this case, we denote its rank by βu,v

k (X,ϕ).
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Persistence diagrams. A simple and compact description of the persistent ho-
mology groups of (X,ϕ) is provided by the corresponding persistence diagrams.

These are multi-sets of points lying in the half-plane ∆+ = {(u, v) ∈ R×R : u ≤ v}.
For each point, the u-coordinate represents the birth (in terms of the values of the
filtering function) of a topological feature, whereas the v-coordinate represents its
death. The distance of a point from the diagonal ∆ = {(u, v) ∈ R×R : u = v} repre-
sents the lifespan of the associated topological feature. Having this interpretation
in mind, we can rank topological features with bounded lifespan by importance,
according to the length of their life. The basic assumption here is that the longer a
feature survives, the more meaningful or coarse the feature is for shape description.
Vice-versa, noise and shape details are characterized by a shorter life. A persis-
tence diagram can be formally defined via the notion of multiplicity [13, 15]. In
what follows, the symbol ∆+ denotes the set {(u, v) ∈ R× R : u < v}.

Definition 2.1 (Multiplicity). Let k ∈ Z and (u, v) ∈ ∆+. The multiplicity
µk(u, v) of (u, v) is the finite non-negative number defined by

lim
ε→0+

(

βu+ε,v−ε
k (X,ϕ)− βu−ε,v−ε

k (X,ϕ)− βu+ε,v+ε
k (X,ϕ) + βu−ε,v+ε

k (X,ϕ)
)

.

Definition 2.2 (Persistence Diagram). The persistence diagram Dk(X,ϕ) is the
multiset of all points (u, v) ∈ ∆+ such that µk(u, v) > 0, counted with their multi-
plicity, union the points of ∆, counted with infinite multiplicity.

We will call proper points the points of a persistence diagram lying on ∆+.

D0(X,ϕ) D1(X,ϕ)

uu

vv
p

q

Xϕ

Figure 1. (a) The height function ϕ on the space X, and the associated
persistence diagrams D0(X,ϕ) and D1(X,ϕ).

Figure 1 shows an example of persistence diagrams for k = 0, 1. The surface
X ⊂ R

3 is filtered by the height function ϕ. D0(X,ϕ) has only one proper point
as well as D1(X,ϕ). The abscissa of p (q, respectively) corresponds to the level at
which a new connected component (tunnel, respectively) is born along the filtration,
while its ordinate identifies the level at which this connected component (tunnel,
respectively) merges with the existing one (is closed on one side, respectively). To
see, for instance, that µ0(p) = 1, letting p = (ū, v̄), it is sufficient to observe that, for

every ε > 0 sufficiently small, it holds that βū+ε,v̄−ε
0 (X,ϕ) = 2, βū−ε,v̄−ε

0 (X,ϕ) =

βū+ε,v̄+ε
0 (X,ϕ) = βū−ε,v̄+ε

0 (X,ϕ) = 1, and apply Definition 2.1. In a analogous
way, it can be observed also that µ1(q) = 1.
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Matching distance. Two persistence diagrams can be compared by means of the
matching distance, which measures the cost of finding a correspondence between
their points. In doing this, the cost of taking a point p to a point p′ is measured
as the minimum between the cost of moving one point onto the other and the cost
of moving both points onto the diagonal. In particular, the matching of a proper
point p with a point of ∆ can be interpreted as the destruction of the point p. See
Figure 2 for an example.

a

c

b

a’
c’

a

a’
c’

b

c

D1
k D2

k

uuu

vvv

matching

Figure 2. The matching between D1
k and D2

k realizing their matching distance.

Definition 2.3 (Matching Distance). Let D1
k, D

2
k be two persistence diagrams.

The matching distance dmatch

(

D1
k, D

2
k

)

is defined as

dmatch(D
1
k, D

2
k) = min

σ
max
p∈D1

k

d(p, σ(p)),

where σ varies among all the bijections between D1
k and D2

k and

(1) d ((u, v) , (u′, v′)) = min

{

max {|u− u′|, |v − v′|} ,max

{

v − u

2
,
v′ − u′

2

}}

for every (u, v) , (u′, v′) ∈ ∆+.

The main interest in this metric is due to the fact that persistence diagrams
are robust with respect to the matching distance. A visual interpretation of this
property is given in Figure 3, where the 0th persistence diagram of a woman surface
model filtered by the height function is considered (a) together with a noisy version
of it (b). In both diagrams, the two points which are farthest from the diagonal
represent the components born once the filtration includes the woman’s hands (they
do not touch the rest of the body) and dying at the height of the armpits.

Looking at Figure 3, the stability of persistence diagrams with respect to the
matching distance can be explained as follows: Small changes in the considered
filtering function produce only small changes in the position of points far from the
diagonal, and possibly produce variations close to the diagonal.

More formally, let us fix a homology degree, and consider two filtering functions
ϕ,ψ : X → R. If we measure the distance between ϕ and ψ by the L∞-norm, and
the one between the corresponding persistence diagrams Dk(X,ϕ) and Dk(X,ψ)
by the matching distance, the stability result bounds the latter distance by the
former, i.e. dmatch(Dk(X,ϕ), Dk(X,ψ)) ≤ ‖ϕ− ψ‖∞ [11, 13].
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Figure 3. A woman surface model filtered by the height function and its

0th-persistence diagram (a). A noisy version of the filtered surface model and
its 0th-persistence diagram (b). The surface model is part of the non-Rigid
Shape Benchmark [4].

3. A dissimilarity criterion

Computationally, the evaluation of the matching distance between two persis-
tence diagrams takes O(h2.5) [10], being h the total amount of their proper points.

As stressed before, in CRC applications involving large databases, computing
the matching distance for any possible shape comparison can imply a high com-
putational cost. In fact, noisy or detailed shape models can produce persistence
diagrams with a large number of proper points. Our goal is to reduce this compu-
tational complexity by considering, at first, only a rough estimation of the metric
induced by the matching distance over a database, to be possibly refined whenever
it is not sufficient to distinguish between different shapes.

The key point here is the observation that, in most cases, realizing that two
shapes are very dissimilar does not require to compute the exact matching distance
between the associated persistence diagrams. Deciding, e.g., whether an elephant
is different from an ant requires only a first glance at the two animals. In our
framework, such a “first glance” could be equivalent to a rough estimation of the
matching distance – and hence faster than its exact computation – between the
persistence diagrams associated with the “elephant shape” and the “ant shape”,
respectively. On the contrary, a different level of accuracy could be necessary
to distinguish, e.g., the “wolf shape” from the “German shepherd shape”. This
would lead to a sharper estimation of the matching distance between the associated
persistence diagrams, possibly to its actual computation.

In light of these considerations, we propose a multi-scale construction of our
matching distance-based (dis)similarity metric.

Let Dk be a persistence diagram. For every p = (u, v) ∈ ∆+ and every δ > 0,
let Qδ(p) be the open square centered at p of side equal to 2δ, and let us denote by
♯(Qδ(p), Dk) the number of points of Dk contained in Qδ(p). These notation will
be maintained throughout the paper.

Theorem 3.1 (Dissimilarity criterion). Let D1
k, D

2
k be two persistence diagrams

for which a point p = (u, v) ∈ ∆+ and two real numbers δ, ε > 0 exist, such that
Qδ+ε(p) ⊂ ∆+ and ♯(Qδ(p), D

1
k)− ♯(Qδ+ε(p), D

2
k) > 0. Then dmatch(D

1
k, D

2
k) ≥ ε.

Proof. The assumption ♯(Qδ(p), D
1
k) > ♯(Qδ+ε(p), D

2
k) implies that, for every bi-

jection σ : D1
k → D2

k there exists at least one proper point q̄ = (ū, v̄) ∈ D1
k such
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that q̄ ∈ Qδ(p) and σ(q̄) = q̄′ = (ū′, v̄′) ∈ D2
k, with q̄

′ 6∈ Qδ+ε(p). Then, from (1) it
holds that

(2) d(q̄, q̄′) ≥ min

{

ε,max

{

v̄ − ū

2
,
v̄′ − ū′

2

}}

≥ min

{

ε,
v̄ − ū

2

}

= ε.

Indeed, in (2), the first inequality holds because both |ū − ū′| and |v̄ − v̄′| are not
smaller than the difference between the semi-sides of Qδ(p) and Qδ+ε(p); the second
inequality is obvious; the equality follows from both the facts that v̄− ū > (v−δ)−
(u+δ), being (ū, v̄) ∈ Qδ(p) and (u+δ, v−δ) ∈ ∆+ the bottom right vertex ofQδ(p),

and (v−δ−ε)−(u+δ+ε) ≥ 0, i.e. (v−δ)−(u+δ) ≥ 2ε, being (u+δ+ε, v−δ−ε) ∈ ∆+

the bottom right vertex of Qδ+ε(p). Hence max
q∈D1

k

d(q, σ(q)) ≥ ε for every bijection

σ and, by Definition 2.3, the claim is proved. �

Figure 4 shows an example of Theorem 3.1 in action. Figures 4 (a)−(b) represent
two persistence diagrams, say D1

k and D2
k, respectively. In Figure 4 (c) the two

multisets of points are overlapped, and the two squares Qδ(p) and Qδ+ε(p) are
depicted. As can be seen, it holds that ♯(Qδ(p), D

1
k)− ♯(Qδ+ε(p), D

2
k) = 1. Hence,

by Theorem 3.1 we get that surely dmatch(D
1
k, D

2
k) ≥ ε.

(a) (b) (c)
u uu

v vv

ε
δp

Figure 4. (a) − (b) Two persistence diagrams D1
k and D2

k. (c) The over-

lapping of D1
k and D2

k, and the two squares Qδ(p) and Qδ+ε(p) for a certain

p ∈ ∆+.

The issue here is to find a suitable way to apply Theorem 3.1, so to improve our
CRC framework. To this end, two different schemes have been designed, which we
describe in Section 4 and 5, respectively.

We conclude the section with a remark which will be useful later.

Remark 3.2. Definition 2.3 implies that dmatch(D
1
k, D

2
k) ≤ (V − U)/2, with U =

min
(u,v)∈L

u, V = max
(u,v)∈L

v and L = D1
k ∪ D2

k. Indeed, (V − U)/2 upper bounds the

cost of the bijection between D1
k and D2

k, taking all the points of L onto ∆. Since
dmatch is realized by the cheapest bijection between D1

k and D2
k, we have the claim.

4. A Refinement Prefixed Grid Scheme

This section is devoted to review the scheme introduced in [8] to estimate from
the bottom the matching distance between two persistence diagrams by virtue
of Theorem 3.1. Moreover, we describe the pseudo-code and the computational
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complexity of each algorithm. We called this procedure a Refinement Prefixed
Grid Scheme (RPGS).

An implementation of RPGS is Algorithm 1, which takes as input the lists A
and B of proper points of two persistence diagrams, and a parameter N which
is a natural number. It runs a number of iterations equal to N . Starting from
a prefixed grid as in Figure 5(a), during each iteration, a finer and finer grid is

created on a triangular region T ⊂ ∆+ with vertices (U − ω,U − ω), (U − ω, V +
ω), (V + ω, V + ω), containing all the points belonging to A and B, being U and
V as in Remark 3.2, and ω an arbitrarily small positive real number. At each
iteration n, the algorithm produces n(n + 1)/2 small squares with side equal to
(n+5)th part of the side of T. It then evaluates Theorem 3.1 on each small square
compared with the square having its same center and side three times greater. The
algorithm returns the maximum value for which Theorem 3.1 holds. Algorithm 1
makes use of two different subroutines. The first one is Matrix(i, j), which simply
generates a two dimensional matrix 0i×j . The second one is CountPoints(S, p, q)
(Algorithm 2), whose output is the sum of the entries of the 3 × 3 submatrix
S[p− 1, p, p + 1; q − 1, q, q + 1], that is, the number of points of the largest square
into which we are going to evaluate the theorem. An example of RPGS in action
is shown in Figure 5.

(a) (b) (c)

uuu

vvv

Figure 5. RPGS in action: three steps (a)−(c) are necessary to find squares
in which Theorem 3.1 holds.

Computational complexity. Set h = |A|+ |B|. The computational complexity
C of RPGS can be formalized as

C(h,N) = c1 +

N
∑

n=1

(

c2 + 2c3(n+ 5)2 + c4 · h+

n+4
∑

p=2

n+4
∑

q=p+3

c5

)

,

with c4 · h the cost of lines 9 − 16, c3(n + 5)2 the cost of lines 7 − 8, c3 and c4
being constants as well as c1 (lines 1− 3), c2 (lines 5− 6) and c5 (lines 19− 29), in
Algorithm 1.

Making some simple mathematical manipulations we obtain that

C(h,N) = c1 +N(c2 + c4 · h) + 2c3 ·
N
∑

n=1

(n+ 5)2 +

N
∑

n=1

n+3
∑

p=1

n−p+1
∑

q=1

c5.
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Algorithm 1 RPGS(A,B,N)

1: Res⇐ 0
2: ω ⇐ (V − U)/10
3: Side⇐ V − U + 2ω
4: for n = 1 to N do

5: t⇐ 5 + n
6: sSide⇐ Side/t
7: qA⇐ Matrix(t, t)
8: qB ⇐ Matrix(t, t)
9: for all a ∈ A do

10: (i, j) ⇐ ⌈(a− U + ω)/sSide⌉
11: qA(i, j) ⇐ qA(i, j) + 1
12: end for

13: for all b ∈ B do

14: (i, j) ⇐ ⌈(b− U + ω)/sSide⌉
15: qB(i, j) ⇐ qB(i, j) + 1
16: end for

17: for p = 2 to (t− 1) do

18: for q = (p+ 3) to (t− 1) do

19: QA⇐ CountPoints(qA, p, q)
20: QB ⇐ CountPoints(qB, p, q)
21: r1 ⇐ (QA < qB(p, q))
22: r2 ⇐ (QB < qA(p, q))
23: if (r1 or r2) and (Res < sSide) then
24: Res⇐ sSide
25: end if

26: end for

27: end for

28: end for

29: return Res

Algorithm 2 CountPoints(S, p, q)

1: for i = (p− 1) to (p+ 1) do
2: for j = (q − 1) to (q + 1) do
3: Res⇐ Res+ S(i, j)
4: end for

5: end for

6: return Result

Now, by counting the total number of squares on which the theorem is evaluated
on a run of the algorithm, which is

N
∑

n=1

n+3
∑

p=1

n−p+1
∑

q=1

1 =

N
∑

n=1

n+3
∑

p=1

(n− p+ 1) =

N
∑

n=1

n(n+ 1)

2
=
N3 + 3N2 + 2N

6
,

we can conclude that the computational complexity of RPGS is O(N3).
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5. A Randomized Bisection Squares Scheme

In this section we are going to elaborate on a more generic procedure for the
application of Theorem 3.1 to approximate the matching distance between two
persistence diagrams. Starting from the most general formulation, we will analyze
the main building blocks, showing how to configure them to obtain different schemes
of computation.

General Scheme. Algorithm 3 shows the skeleton of the most general scheme.

Algorithm 3 GeneralScheme(A, B, R, S, IQS, CIR)

1: r ⇐ r1 ⇐ r2 ⇐ 0
2: H ⇐ A ∪B
3: Q ⇐ IQS(H)
4: for i = 1 to R do

5: p ⇐ (CIR(xmin(H), xmax(H)), CIR(ymin(H), ymax(H)))
6: d ⇐ py − px
7: if d > c ∗ (V − U) then
8: δ ⇐ CIR(0, d)
9: for i = 1 to S do

10: η ⇐ CIR(0, δ)
11: if #(Qη(p), A)−#(Qδ(p), B) > 0 then

12: r1 ⇐ δ − η
13: end if

14: if #(Qη(p), B)−#(Qδ(p), A) > 0 then

15: r2 ⇐ δ − η
16: end if

17: r ⇐ max(r, r1, r2)
18: end for

19: end if

20: end for

21: return r

The overall idea can be sketched as follows. We first choose some points inside
the triangular area T defined as in Section 4 (first for loop, Line 5). For each of
these points p, we build a first square, sayKp, centered at p (first if-then construct,
Line 8). Then, other squares, say {Lp

j}, are taken concentrically inside each Kp

(second for loop, Line 10). Finally, we evaluate Theorem 3.1 on each possible pair
(Kp, Lp

j ) (Lines 11-15). Before going on, let us first disambiguate the pseudo-code
and explain the followings key points:

• Line 1 initializes return values of Theorem 3.1 applications. In particular
r will store the best result while r1 and r2 will memorize the temporary
values related to the two possible applications;

• Line 3 initializes any structure which is necessary to make membership
tests (IQS(H) stands for “Initialize Query Structure on the set H”), and
in particular to count how many proper points of a given set (A or B)
belong to a given squared area;

• The value c appearing in Line 7, which represents the discrete step we use
in our measurement, is a scalar in the interval ]0,m[⊂ R, with m arbitrarily
small, while the whole expression stands for “Take p only if it is over the
main diagonal by at least c times V − U”;
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• Finally, the expression CIR(m,M) (that is, “Choose In Range m..M”) in
Lines 5, 8 and 10 denotes the choice of a value inside the interval [m,M ] ⊂
R.

Computational complexity. From a computational point of view, Algoritm 3
generates R “outer” squares, each one containing S smaller, “inner” squares, and
tries to evaluate at each step if Theorem 3.1 holds, keeping the maximum value of
the estimate. It is already possible to identify the main parameters involved:

• A,B ⇐ lists of proper points (H = A ∪B and h = |H|);
• R ⇐ the number of outer squares;
• S ⇐ the number of inner squares;
• CIR ⇐ the way we choose the side length and the center of each square;
• Q ⇐ the way we make membership tests.

Having introduced the above parameters, we can give a first formulation of the
overall computational complexity C(h,R, S), which appears to be:

(3) C(h,R, S) = IQ(h) + Eout(R) · Eint(S) · EQ(h),

with IQ(h) the cost of building a structure to make membership tests, Eout(R) the
cost of evaluating R outer squares, Eint(S) the cost of evaluating S inner squares,
and EQ(h) the cost of executing a query on such a structure.

In the following subsections we will discuss in detail each computational cost
appearing in (3).

Eint(S): Choosing the best pair - A bisection scheme. The first block we
are going to explain is the one which realizes the search of the pair of squares (inner
and outer) optimizing the estimate of the matching distance. Let us start with the
following remark:

Remark 5.1. Assume that the side 2δ and position p of the outer square is fixed.
If Theorem 3.1 holds for this square compared with some inner square, then there
is only one optimal side’s measure of the inner square, such that ε (semi-difference
of square’s sides) is maximal and #(Qδ−ε(p), A) −#(Qδ(p), B) > 0 (Theorem 3.1
holds). This is a straightforward consequence of the monotonicity of #(Qδ−ε(p), A)−
#(Qδ(p), B) with respect to ε.

We can exploit information from Remark 5.1 to formulate an algorithm for find-
ing the optimal measure for an inner square’s side with a fixed outer square. One
can use the bisection method [17] to find the maximal difference in the length of
sides of the squares up to a given error τ . Such τ value would depend on S with re-
gard to the number of steps of the algorithm, and on a real interval to calculate the
effective value. Without further constraints, the best choice of τ would be τ = δ−η

S
.

The choice of a bisection scheme to find the optimal pair of outer/inner squares
provides an improvement in the overall computational complexity from O(S) down
to O(log2 S) (which means that we are evaluating O(S) smaller squares in O(log2 S)
steps). The pseudo-code related to this part can be found in Algorithm 4.

It is interesting to observe that this method can be easily transposed to the
opposite situation, when the inner square is fixed and the bigger one may vary,
which is what Algorithm 5 achieves. Finally, we can provide a scheme which does
not degrade the overall complexity and use both these approaches, constant outer
square first, then constant inner square, and this is Algorithm 6.
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Algorithm 4 BisectionInnerSquare(p, δ, η, τ, A,B)

1: b ⇐ η, e ⇐ δ
2: while e− b > τ do

3: γ ⇐ (b+ e)/2
4: if #(Qγ(p), A)−#(Qδ(p), B) > 0 then

5: e ⇐ γ
6: else

7: b ⇐ γ
8: end if

9: end while

10: return δ − γ

Algorithm 5 BisectionOuterSquare(p, δ, η, τ, A,B)

1: b ⇐ η, e ⇐ δ
2: while e− b > τ do

3: γ ⇐ (b+ e)/2
4: if #(Qη(p), A)−#(Qγ(p), B) > 0 then

5: b ⇐ γ
6: else

7: e ⇐ γ
8: end if

9: end while

10: return γ − η

Algorithm 6 BisectionSquare(p, δ, η, τ, A,B)

1: dm ⇐ dM ⇐ 0
2: if #(Qδ(p), A)−#(Qδ(p), B) > 0 then

3: dm ⇐ BisectionInnerSquare(p, δ, η, τ, A,B)
4: end if

5: if #(Qη(p), A)−#(Qη(p), B) > 0 then

6: dM ⇐ BisectionOuterSquare(p, δ, η, τ, A,B)
7: end if

8: d ⇐ max(dm, dM )
9: Return d

The introduction of the bisection method in the general scheme can be carried
out simply by replacing lines 8-18 with the code:

δ ⇐ CIR(0, d)
η ⇐ CIR(0, δ)

τ ⇐ δ−η

S

r1 ⇐ BisectionSquare(p, δ, η, τ, A,B)
r2 ⇐ BisectionSquare(p, δ, η, τ, B,A)
r ⇐ max(r, r1, r2)

The new part is responsible for choosing sides of squares, as well as calling the
bisection method. In this case, in the overall computational complexity 3, we have
Eint = O(log2(S)).



12 A. CERRI, B. DI FABIO, G. JABLONSKI, AND F. MEDRI

Eout(R): Choosing outer squares - A random scheme. The procedure to
choose outer squares is quite different from the bisection scheme we have just pre-
sented. Indeed, the only constraint we have to satisfy in choosing outer squares is
that their bottom-right vertex must be contained in the triangular region T. This
requirement directly contributes to the computational complexity, which cannot be
better than linear in the number of outer squares we want to consider, meaning
that Eout(R) = O(R).

We propose in Algorithm 7 the Randomized Bisection Square Scheme (RBSS)
to choose outer squares. Such choice is determined by selecting the squares’ centers
(line 5 in the for loop). We observe that a first optimization of our scheme can be
obtained by taking only squares containing at least one proper point from A ∪ B:
We will show in Section 7 how we achieve this.

The optimal estimates for inner and outer squares are computed separately as ex-
plained in the previous subsection. In Lines 8-9 we use the procedure Random(b, e)
which returns random numbers from the interval [b, e]. For a point p = (px, py),
the measure of inner squares’ sides centered at p is set randomly up to 30% of the
maximal possible length, which is d = py − px. The measure of the outer squares’
sides is set also randomly to at least 70% of d.

Algorithm 7 RBSS(A, B, R, IQS)

1: r ⇐ r1 ⇐ r2 ⇐ 0
2: H ⇐ A ∪B
3: Q ⇐ IQS(H)
4: for i = 1 to R do

5: p ⇐ (Random(xmin(H), xmax(H)),Random(ymin(H), ymax(H)))
6: d ⇐ py − px
7: if d > c ∗ (V − U) then
8: δ ⇐ d · Random(0.7, 1)
9: η ⇐ d · Random(0, 0.3)

10: τ ⇐ δ−η

S

11: r1 ⇐ BisectionSquare(p, δ, η, τ, A,B)
12: r2 ⇐ BisectionSquare(p, δ, η, τ, B,A)
13: r ⇐ max(r, r1, r2)
14: end if

15: end for

16: return r

IQ(h),EQ(h): Making membership tests - kD-Trees. We need a fast method
to make a query about number of points in a given square of ∆+. Using kD-trees
[1] is probably one of the best possible choices, as this allows for fast retrieval of
points in a given square. Moreover, it is linear in terms of memory usage (with
respect to the number of points) and the kD-tree construction does not increase
the overall computational complexity, being O(y log2 y), with y the cardinality of
the set on which the kD-Tree is built. In our context two kD-trees are needed, one
for points of A and one for points of B. Therefore, by using the kD-tree structure
in Algorithm 7 we can update the overall complexity 3 as

C(h, S,R) = O(h log2 h) +O(R) ·O(log2(S)) ·O(h),

with O(H) the cost of executing a query on a kD-tree.
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IQ(h),EQ(h): Making membership tests - Pre-Computed number of points.

Instead of using kD-trees, we could take into account pre-computed arrays to re-
trieve number of points in squares. Such an approach requires that the edges of
the considered squares lie on a known grid. A further restriction is that vertices
have integer coordinates, so we can use a two dimensional array. Under these as-
sumptions, the number of points in the square with opposite vertices in (a, b) and
(a+ k, b+ k), respectively, is

#points = SUM(a+ k, b+ k)− SUM(a+ k, b)− SUM(a, b+ k) + SUM(a, b),

where SUM(u, v) stores the number of points in the rectangle of R2 having one
vertex in (0, 0) and the opposite one in (u, v). See Figure 6 for a visual interpretation
of this relation.

Let us now assume we have an array SUM with entries SUM(i, j), i, j ∈ Z. In
order to compute each entry in SUM , we divide the triangular region T by the
smallest possible grid. The number of the grid cells is set to λ2. It is then possible
to count the number of points in the considered squares using Algorithm 8.

Algorithm 8 Sum(A, λ)

1: τ ⇐ V −U
λ

2: for every a ∈ A do

3: (i, j) ⇐ ⌈a−U
τ

⌉
4: SUM(i, j) ⇐ SUM(i, j) + 1
5: end for

6: for i = 1 to λ do

7: for j = 1 to λ do

8: SUM(i, j) ⇐ SUM(i, j) +SUM(i− 1, j) +SUM(i, j− 1)−SUM(i− 1, j− 1)
9: end for

10: end for

First we count the number of points in the cells of the grid. Then we proceed row
by row starting from the bottom, and in every row we go from the left to the right.
For every entry SUM(i, j) we add the number of points in the grid cell and the
number of points in the rectangles which have vertices just below and to the left.
Finally, we subtract the number of points in the rectangle with vertex (i− 1, j− 1)
(line 8).

Using this approach the computational complexity of RBSS turns out to be

C(λ,R) = O(λ2) +O(R) ·O(log2(λ)) ·O(1),

with O(1) the cost of executing a query on Algorithm 8. We remark that, when
evaluating the computational complexity, the parameter λ has an effect on the
range of the error τ . More precisely, by choosing the Sum scheme, the best possible
choice of τ is τ = V−U

λ
.

Comparison with the matching distance computational cost. We conclude
this section with some final remarks on the computational complexity of Algo-
rithm 7, by comparing the usage of kD-trees with the one of the Sum procedure
(Algorithm 8). We start from kD-trees. In this case, the computational complexity
C(h, S,R) has been evaluated as

C(h, S,R) = O(h log2 h) +O(R) ·O(log2(S)) ·O(h).
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(0,0)

(a,b) (a+k,b)

(a,b+k) (a+k,b+k)

Figure 6. Computing number of points in the square.

It is not grater than the cost of evaluating the matching distance between two
persistence diagrams only if O(R) ·O(log2(S)) ·O(h) ≤ O(h2.5), or equivalently

O(R) ·O(log2(S)) ≤ O(h1.5).

From the above relation we can deduce that, in order to keep C(h, S,R) lower than
the computational complexity of the matching distance, once we fix S, R can range

between 1 and h1.5, while, fixing R, S can range between 1 and 2h
1.5

.
We can now analyze the usage of the Sum procedure. In this case, the RBSS

computational complexity has been evaluated as

(4) C(λ,R) = O(λ2) +O(R) ·O(log2(λ)).

Hence, in order to have a computational complexity asimptotically lower than that
of the matching distance, the following inequalities shall be verified:

(5)

{

O(λ2) ≤ O(h2.5)
O(R) ·O(log2(λ)) ≤ O(h2.5)

These reasonings lead us to conclude that optimal values for λ would be the in the

range between 2 and h1.25, while for R between h2.5

log2 h1.25 and h2.5.

The previous considerations about S, λ and R are summarized in Table 1, as-
suming that the minimum possible value for R to be taken is 1.

SUM λ from 2 to h1.25 R from 1 to h2.5

kD-tree S from 2 to 2h
1.5

R from 1 to h1.5

Table 1. Admissible values for the parameters S, R and λ.

To conclude we observe that, as in the case of RGPS, we can ensure that the
computational complexity of RBSS is smaller than the complexity of classical com-
putation of matching distance. We can do this simply by forcing the parameter R
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to be smaller than either h1.5 or h2.5, according to the usage of kD-trees and the
SUM scheme. Depending on the data, varying the ratio between S and R in the
former case, as well as the ratio between λ and R in the latter one, would give a
more accurate estimate for the matching distance computation.

6. Experimental setting

Our goal is to validate the theoretical framework introduced in the previous
Sections 4 and 5. Through some experiments on persistence diagrams for 0th ho-
mology degree (a.k.a. formal series [14]), associated with 3D-models represented
by triangle meshes, we will prove that our algorithms allow us to reduce the com-
putational complexity in defining a matching distance-based metric over a given
database, without greatly affecting the goodness of results (in terms of database
classification).

The datasets. To test the proposed framework we considered two datasets of 3D-
surface mesh models. As a first one, we opted for the Non-Rigid World Benchmark
[4] (from now on Db1). This database contains 148 three-dimensional models, such
as, e.g., cats, dogs, wolves, horses, lions and gorillas, in a variety of poses for non-
rigid, shape similarity experiments. Figure 7 shows five models belonging to the
“cat” class (first row), together with some representatives for other classes in the
database (second row). The second database used in our experiments is the one

Figure 7. Models from the “cat” class (first row), and some representatives

from other classes of the Non-Rigid Shape Benchmark.

introduced in [2], consisting of 228 3D-surface mesh models. This database (from
now on Db2) is divided into 12 classes, each one containing 19 elements obtained
as follows: A null model (cat0, david0, dog0,. . . , victoria0, wolf0) taken from the
Non-Rigid World Benchmark is considered together with six non-rigid, possibly
non-metric-preserving deformations applied to it at three different strength levels.
An example of the transformations and their strength levels is given in Figure 8.

The filtering functions. To select the considered filtering functions we followed
[2]. In that paper, the authors exploit the modularity of the persistence framework
to study under different perspectives the models belonging to the two datasets.
Indeed, persistence diagrams inherit their invariance properties (with respect to
groups of transformations) directly from the corresponding filtering functions. There-
fore, to obtain different invariance properties, it is sufficient to change the filtering
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Figure 8. The null model “Centaur0” and the 3rd strength level for each deformation.

function. In particular, the ones chosen in [2] fit the different purposes the two
datasets are designed for: Db1 is suited to analyze non-rigid shape similarity, while
Db2 has been created to deal with noise and other deformations which do not
preserve the metric properties of shapes (e.g. the Riemannian metric).

According to the previous reasonings, for Db1 we considered two filtering func-
tions which are well known to be robust with respect to non-rigid shape changes.
The first one, which we denote by ϕ

HK
, is chosen to be the heat kernel signature

[5, 19], computed using the first 10 eigenfunctions of the Laplace-Beltrami operator
and a fixed time t = 1000, and the second one, ϕ

G
, the integral geodesic distance

[16]. The invariance to scale comes from the a priori normalization of the models.
As for Db2, to define the considered filtering functions we proceeded as follows:

For each triangle mesh M of vertices {P1, . . . , Pn}, the center of mass B is com-
puted, and the model is normalized to be contained in a unit sphere. Further, a
vector ~w is defined as

~w =

∑n
i=1(Pi −B)‖Pi −B‖
∑n

i=1 ‖Pi −B‖2 .

We can think to the vector ~w as a generalization of the center of mass: Its com-
putation is rotation and translation invariant, so that its relative position with
respect to the corresponding triangle mesh does not change when rigid movements
are taken into account. Moreover, the considered models are sufficiently generic (no
point-symmetries occur, etc) to ensure that the vector ~w is well-defined over the all
database, as well as its orientation is stable. Three filtering functions ϕ

L
, ϕ

P
, ϕ

B

are computed on the vertices of M : ϕ
L

is the distance from the line parallel to
~w and passing through B, ϕ

P
is the distance from the plane orthogonal to ~w and

passing through B, and ϕ
B

is the distance from B (see Figure 9 as an example).
The values of ϕ

L
, ϕ

P
and ϕ

B
are then normalized so that they range in the interval

[0, 1]. These filtering functions are translation and rotation invariant, as well as
scale invariant because of a priori normalization of the models.

The experiments. Suppose to have fixed a database, say Db, and a scheme, say
Scm. For each corresponding filtering function ϕ, we can induce a metric over
Db by computing the matching distances dϕij = dmatch(D0(Mi, ϕ), D0(Mj , ϕ)) for

every i, j = 1, . . . , |Db|, with |Db| the number of models in Db. To approximate
such a metric, we apply Scm to get a lower bound for each dϕij , say Res

ϕ
ij . This

procedure is controlled by a threshold, threshϕ, obtained as follows: For every class
in the database, 4 elements are (randomly) selected, and an average of the matching
distances on this small subset is evaluated. The final value of threshϕ is then the
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w
l

Figure 9. A shark model depicted with its center of mass, and the associ-
ated vector ~w, which define the filtering functions ϕ

L
, ϕ

P
, ϕ

B
.

average over all the classes in the database. In this perspective, the value threshϕ

represents the average matching distance between two elements of the same class.
Now, if Resϕij > threshϕ, then we can assume that the shapes of Mi and Mj are

quite dissimilar (compared with respect to ϕ) and therefore it is sufficient to have
just an estimation of dϕij : We opted for ((V −U)/2+Resϕij)/2, with V and U taken
as in Remark 3.2. In plain words, our estimation is the average between the lower
bound (according to Theorem 3.1) and the upper bound (according to Remark 3.2)
of dϕij . If Resϕij ≤ threshϕ, then the exact value of dϕij is computed. The overall
process is described in Algorithm 9.

Algorithm 9 MetricApprox(A,B,Exp, thresh)

1: Res = Scm(A,B,Exp) %Scm is either RPGS or RBSS

2: if Res > thresh then

3: V al = [(V − U)/2 +Res]/2
4: else

5: V al = dmatch(A,B)
6: end if

7: return V al

7. Experimental results

Experiments with RPGS. As seen in Section 4, the computational complexity
of RPGS is a function of the number of iterations N and is shown to be O(N3). We
want to apply this scheme to pay not more than computing matching distances for
all the pairs of persistence diagrams presented in our databases. Indeed, we recall
that computing dmatch costs O(h2.5), where h is the number of proper points in
each comparison. We set N = hExp, with Exp a parameter we make vary in such
a way that the inequality Exp ≤ 2.5

3 is verified. With this choice, we can ensure
that RPGS has a computational complexity asymptotically lower than the one of
the matching distance.

Tables 2 and 3 show how we applied RPGS to the two considered datasets. In
the first column of Table 2 (Table 3, respectively), from top to bottom, we display
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the average precision/recall (PR) graphs induced by ϕ
HK

, and ϕ
G
(ϕ

L
, ϕ

P
and ϕ

B
),

respectively, when considering the computation of the matching distances on the
whole database Db1 (Db2, respectively) and on some subparts of it after running
RPGS, with Exp set at different values. As can be seen, our approximation strategy
does not affect so much the PR performances even in the displayed worst cases.
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Table 2. First column: PR graphs related to ϕ
HK

and ϕ
G

computing

dmatch on the whole database (black), and on subparts of it (PR approx)
by virtue of RPGS for two different values of Exp (shaded); Second column:
varying Exp, how the percentage of dmatch computed and the distance between
PR graph and PR approx vary.

Table 2 (Table 3, respectively), second column, gives a more general overview of
the obtained results. From top to bottom, each graph shows the reduction in the
computational costs – in terms of the percentage of computed matching distances
used to build the metric approximations – and an evaluation of the PR performances
according to the chosen values of Exp, for the filtering functions ϕ

HK
, and ϕ

G
(ϕ

L
,

ϕ
P
and ϕ

B
), respectively. In particular, for a given value of Exp the evaluation of

results is expressed as the average L1-distance between the PR graph associated
to that value Exp and the one obtained by computing all the matching distances
between the elements in the database. The “critical Exp” depicted in all plots
represents the value of Exp for which the cost of applying RPGS equals the one of
computing the matching distance between two persistence diagrams.

As our plots show, it is possible to greatly reduce the computational costs by
approximating the matching distance-based metric over the database, obtaining PR
graphs which are quite close to the best possible.
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PR graph for function P
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PR graph for function B
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Table 3. First column: PR graphs related to ϕ
L

, ϕ
P

and ϕ
B

computing
dmatch on the whole database (black), and on subparts of it (PR approx)

by virtue of RPGS for two different values of Exp (shaded); Second column:
varying Exp, how the percentage of dmatch computed and the distance between
PR graph and PR approx vary.

Experiments with RBSS. We performed similar experiments for RBSS. Given
two lists A and B of proper points, we considered the Sum method (Algorithm 8)
to make membership tests (see Algorithm 7, line 3). As for the choice of outer
squares, we optimized Algorithm 7 by replacing Line 5 with the following:

p⇐ random point from A ∪B.
In other words, outer squares are randomly chosen in such a way that they are
centered at proper points.
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Having made use of the Sum method, by (4), the computational complexity of
RBSS can be expressed as a function of R, i.e. the number of outer squares, and
λ, being λ2 the number of cells in the finest possible grid covering the triangular
region T. Then, we fixed the value of λ in such a way that the number of cells in
the grid and belonging to T is approximately h = |A|+ |B|, that is, λ =

√
2h.

Finally, we set c (Algorithm 7, line 8) accordingly.
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Table 4. First column: PR graphs related to ϕ
HK

and ϕ
G

computing

dmatch on the whole database (black), and average PR graphs computed on
subparts of it (PR approx) by virtue of RBSS for three different values of
Exp (shaded); Second column: varying Exp, how the percentage of dmatch

computed and the distance between PR graph and PR approx vary.

Similarly to the case of RPGS, we want to apply RBSS to have an estimation
from the bottom of dmatch, possibly paying less than the computational cost of
the matching distance. To achieve this, by (5), we have to assure that O(R) ·
O(log2(λ)) ≤ O(h2.5). Indeed, having fixed λ in such a way that the first inequality

in (5) is verified, it is sufficient to require that R ≤ h2.5

log2(
√
2h)
.

In our experiments we set R = hExp

log2(
√
2h)

, letting Exp range from 1 (i.e., the

number of outer squares is proportional to the number of the considered proper
points) to 2.25. We observe that Exp = 2.5 correspond to a limit situation, in
which the computational cost of RBSS approaches the one of computing dmatch.
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Table 5. First column: PR graphs related to ϕ
L

, ϕ
P

and ϕ
B

computing
dmatch on the whole database (black), and average PR graphs computed on

subparts of it (PR approx) by virtue of RBSS for three different values of
Exp (shaded); Second column: varying Exp, how the percentage of dmatch

computed and the distance between PR graph and PR approx vary.

Tables 4 and 5 show our results. We remark that, due to intrinsic randomness
of RBSS, we repeated the same experiments more than once, observing however al-
most identical performances. Nevertheless, we decided to present here experimental
results representing the average of all considered experimental instances.

In the first column of Table 4 (Table 5, respectively), from top to bottom, we dis-
play the average PR graphs induced by ϕ

HK
, and ϕ

G
(ϕ

L
, ϕ

P
and ϕ

B
), respectively,

when considering the computation of the matching distances on the whole database
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Db1 (Db2, respectively) and on some subparts of it after running RBSS, with Exp
set at different values. Even for RBSS, our approximation strategy produces good
results in terms of PR performances, if compared with the ones corresponding to
the metrics induced by dmatch.

Table 4 (Table 5, respectively), second column, analyzes the obtained results
under a different viewpoint. From top to bottom, each graph shows the reduction
in the computational costs – in terms of the percentage of computed matching
distances used to build the metric approximations – and an evaluation of the PR
performances according to the chosen values of Exp, for the filtering functions ϕ

HK
,

and ϕ
G
(ϕ

L
, ϕ

P
and ϕ

B
), respectively. In particular, for a given value of Exp the

evaluation of results is expressed as the average L1-distance between the PR graph
associated to that value Exp and the one obtained by computing all the matching
distances between the elements in the database.

8. Discussion

In this paper we continued the work started in [8]. We presented two multi-
scale strategies, RGPS and RBSS, for the evaluation of a matching distance-based
(dis)similarity metric induced on a database of shapes. The capabilities of the
proposed frameworks in CRC applications have been validated through experiments
on two datasets of 3D models represented by triangle meshes, whose shapes have
been analyzed by considering five batteries of persistence diagrams.

The obtained results show that, using our multi-scale approaches, it is possible to
provide an approximation of the metric induced by the matching distance between
persistence diagrams without compromising the goodness of results – in terms of
retrieval performance – and greatly reducing the computational costs characterizing
the exact evaluation of the matching distance.

In particular, experiments on RBSS produced results which are, in our opinion,
even surprising. Indeed, as displayed by Tables 4 and 5, a decreasing in the number
of the actually computed matching distances corresponds in general to an increasing
in the goodness of results (in terms of retrieval performance). This is actually
shown by PR graphs we obtained by computing dmatch only on a subpart of the
considered datasets, as well as by the L1-distance between these PR graphs and
the ones obtained by computing all possible matching distances.

Having such experimental evidence in a hand, we may argue that RBSS can
achieve high accuracy level in approximating the matching distance. On the other
hand, we do not have any theoretical results confirming our intuition. This is
certainly an open problem we plan to address in the next future.

Moreover, it would be interesting to explore the capability of RBSS in other
theoretical settings, e.g., selecting the outer squares according to some probability
distribution built on the mutual positions of the considered proper points.
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