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Abstract: This paper shows that a suitable decomposition of TFP can be applied to a large sample of 

subsidized firms for a relevant period of time, allowing an evaluation of the impact of subsidies on 

either the roles of technical progress and technical efficiency change or scale and allocative efficiency 

change as determinants of granted firms’ long-term growth. We measure and decompose TFP using 

a Stochastic Frontier Analysis (SFA). The impact of capital subsidies on the different components of 

TFP is captured by a quasi–experimental method (Multiple RDD), exploiting the conditions for a 

local random experiment created by Law 488/92 (L488), which has been an important policy 

instrument for reducing territorial disparities in Italy. The main findings from the case study are 

twofold. First, capital subsidies positively affect TFP growth in the medium-long term and not in the 

short term. The main reason is that allocative efficiency has a positive effect only after 2-3 years. 

Second, the positive impact comes especially through technical progress and not through scale impact 

change, as may have been expected. 
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1. Introduction 

Given the increasing amount of financial resources devoted to regional policies 

supporting private enterprises since the mid-1970s in Europe and abroad, a large and 

growing body of literature has investigated the policy contribution to growth and 

competitiveness of subsidized firms. However, the empirical evidence has provided mixed, 

if not contradictory, results. A recent review promoted by the European Commission to 

inform preparation of the 2014-20 programs (Mouque ́, 2012) notes that while financial 

support to SMEs in lagging regions has been effective in increasing investment and creating 

jobs of good quality and longevity, productivity in subsidized firms has basically stayed the 

same. Ultimately, the main effect of the grant schemes examined is to make subsidized 

enterprises larger rather than more efficient.   

The result is not unexpected. In fact, policy makers use the financial incentive to 

change firm preferences and to push the firm to invest in projects that, without incentive, 

would normally be abandoned. The reason is that the social cost of the investment (and of 

the new employment) is lower than the cost for the firm because there are positive 

externalities in the less developed areas (Bernini & Pellegrini, 2011). The results might be 

different if the incentives were to overcome failure in the credit market. In this case, 

incentives could support projects with high productivity. This point is crucial for a regional 

policy: Efficiency and competitiveness are the main factors for endogenous growth and 

long-term catch up by lagging regions. The risk is the policy of the lame duck that subsidizes 

firms that are unable to stay in the market (Mouque ́, 2012).1 

From an empirical point of view, the relationship between public subsidies and 

efficiency and productivity of subsidized firms is complex and not unique. However, only 

a few studies address the effect of capital subsidies on total factor productivity (TFP) (see 

Bergstrom, 2000; Harris & Trainor, 2005; Bernini & Pellegrini, 2011; Criscuolo et al., 2012; 

Moffat, 2014). Growth of TFP is a productivity measure that reflects the increase in total 

output that is not explained by the increase in capital and labor. Indeed, while labor 

productivity (output per worker) may grow simply because of the capital deepening 

induced by the subsidies, the efficiency with which all inputs are used (measured by TFP) 

                                                           
1 Indeed, capital subsidies may impede the Schumpeterian process of “creative destruction” that creates 
growth in the economy by shifting resources from low- to high-productivity plants (Moffat, 2013). 
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may not increase at all. Then, TFP can be considered the most relevant productivity measure 

for analyzing the efficiency of a subsidized firm. However, one major drawback of this 

literature is that it does not provide results about the determinants of the changes in TFP 

caused by the subsidies. The analysis of the variation in the technical or allocative efficiency 

or in the dynamics of technical change among subsidized firms can explain the sources of 

the impact on TFP and sheds light on the mechanism that links subsidies to efficiency and 

competitiveness. For instance, we expect that public incentives increase the propensity to 

invest in new and more up-to-date capital, augmenting the rate of technological progress of 

the firm. On the other hand, firms can choose not to pursue the allocative efficiency if the 

increase in the use of one factor (for instance, labor) augments the probability of obtaining 

the subsidy. The overall effect of both behaviors on TFP is ambiguous and can be 

determined only by empirical analysis. 

The main contribution of this paper is to show that a suitable decomposition of TFP 

can be applied to a large sample of subsidized firms for a relevant period of time, allowing 

an evaluation of the impact of subsidies on either the roles of technical progress and 

technical efficiency change or scale and allocative efficiency change as determinants of 

granted firms’ long-term growth. We measure and decompose TFP using a Stochastic 

Frontier Analysis (SFA). Besides SFA, which is a parametric method, two other non-

parametric methods are widely used in estimating TFP, Growth Accounting and Data 

Envelopment Analysis. The advantage of SFA is that it allows for the presence of 

idiosyncratic shocks, which are widely expected in our framework and can be used to 

investigate the determinants of technical inefficiency and thus those of TFP. SFA also has 

the great advantage of decomposing productivity change into parts that have a 

straightforward economic interpretation. The stochastic frontier model used in this study 

assumes that technical inefficiency evolves over time, which enables productivity changes 

to be decomposed into the change in technical efficiency (i.e., measuring the movement of 

an economy toward or away from the production frontier) and technical progress 

(measuring shifts in the frontier over time). Moreover, because a flexible technology is used, 

the SFA make it possible to evaluate the presence of scale efficiency, as well as measure 

changes in allocative efficiency (i.e., the Bauer-Kumbhakar decomposition; see Kumbhakar, 

2000; Kumbhakar & Lovell, 2000; Brummer et al., 2002).  
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Note that, unlike Obeng & Sakano (2000) and Skuras et al. (2006), we are able to 

capture the impact of capital subsidies on the different components of TFP by a quasi-

experimental method. In fact, another important novelty of the paper is that we analyze the 

causal effect of capital subsidies on firm productivity by exploiting the conditions for a local 

random experiment created by Law 488/92 (L488), which has been an important policy 

instrument for reducing territorial disparities in Italy. This policy has been characterized by 

a rigorous and transparent selection procedure. Each year, subsidies are allocated to a broad 

range of investment projects through regional “calls for tenders”, which mimic an auction 

mechanism. In each regional “call for tender”, the investment projects are ranked on the 

basis of a score that depends on a number of (known) characteristics of both the project and 

the firm. Projects receive subsidies according to their position in the ranking system until 

the financial resources granted to each region are exhausted. The presence of sharp 

discontinuities in the L488 rankings makes it possible to use a quasi-experimental method 

deriving from a regression discontinuity design (RDD) approach, enabling us to identify the 

causal effect of subsidies on components of firms’ TFP. 

Finally, a further novelty of the work is the timing used for the evaluation. We 

scrutinize the impact of the subsidy for each year, from the first to the fifth year, starting 

from the beginning of the investment. This way, we can capture effects that appear later, 

after the adjustment period of the subsidized firm, which could have a different sign from 

the first ones. Even this approach is quite unusual in the literature. 

The rest of the paper is organized as follows: The next section summarizes the 

literature, while Section 3 describes the policy and the data in more detail. In Section 4, we 

describe the TFP decomposition and present the evaluation method. The results are 

discussed in Section 5, while Section 6 assesses their robustness. Section 7 concludes the 

paper. 

 

2. Literature review 

In the literature, there is considerable variation in the estimated impact of investment 

subsidies, which, among others, reflects differences in circumstances between countries, 

regions, sectors and firms, differences in the design of policy and delivery (policy 
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implementation details) and differences in the quality of the data and the analytical methods 

used in the empirical studies (Brandsma et al., 2013). 

A large part of this literature has focused on the incentives to R&D (see Cerulli, 2012; 

Becker, 2014), the Enterprise Zones (EZs) program (see, among others, Ham et al., 2011; 

Busso et al., 2013), and the effectiveness of investment incentives for firms located in lagging 

areas. Among the latter studies, the empirical evidence, although sketchy, suggests a 

positive impact of capital subsidies on financed firms’ employment, investment and plant 

survival prospects but a negligible or negative effect on productivity (see, among others, 

Bernini & Pellegrini, 2011; Criscuolo et al., 2012; Bondonio & Greenbaum, 2014; Cerqua & 

Pellegrini, 2014a). 

Among this stream of research, a few papers have considered the impact of capital 

subsidies on the total factor productivity (TFP). Having estimated a production function, 

Bergstrom (2000) investigated the role of subsidies as a determinant of TFP growth. The 

author finds that after the first year, the more money a firm has been granted, the worse TFP 

growth develops. The results suggest that subsidization can influence growth, but there 

seems to be little evidence that the subsidies have affected productivity and hence 

competitiveness (i.e., growth is achieved simply by using more inputs but not by improving 

their usage). Moreover, by transferring resources to firms, which become less productive, 

the subsidies have also disfavored non-subsidized firms because they have been forced to 

partly finance the subsidies, with negative effects on regional as well as national growth. 

Harris & Robinson (2004) found opposite results by using a policy off/policy on model in 

which capital grants are treated as an input of the production function (i.e., TFP is defined 

as any change in output not due to changes in factor inputs). The analysis shows that for all 

manufacturing, real gross output would have been 7-10% per annum lower if SFA had not 

been in operation; while capital grants seem to have a positive impact on TFP compared 

with the other forms of grant aid. Using a similar approach, Harris & Robinson (2004) found 

that assistance does improve productivity compared with average levels; however, when 

the comparison group is defined more restrictively to only include other plants within 

Assisted Areas, assistance does not appear to significantly improve plant productivity. The 

analysis also indicates that this is not a uniform finding across all regions and that for plants 
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located in Scotland as well as those in a small number of industries, the assistance does 

improve TFP. 

In a subsequent paper, Harris & Robinson (2005) break down TFP into different 

components (entry, exit, within plant, between plant and cross-plant effects), applying a 

decomposition approach. The analysis is carried out by comparing non-assisted firms with 

firms assisted by different types of grants (i.e., Regional Selective Assistance and Small Firm 

Merit Awards for Research and Technology). They find that financed plants experienced 

negative TFP growth, mostly due to plants with low TFP that increase their market share 

during the period, suggesting that capital is being substituted for labor. Then, plants in 

receipt of RSA generally experience market share growth despite having relatively lower 

productivity. 

A different decomposition procedure was used in Skuras et al. (2006). After having 

estimated a production frontier in which the subsidy is treated as a new input, the authors 

decomposed the TFP into three components, which are technical change, technical efficiency 

change, and scale efficiency change. They find that capital subsidies to the food 

manufacturing sector are not fully additional and affect TFP growth mostly through 

technical change. Combining the above decomposition with a cost function approach, 

Obeng & Sakano (2000) found negative contributions of subsidies to TFP growth through 

subsidy-induced factor augmentation. 

Only a few papers have investigated the role of subsidies in TFP in a policy 

evaluation framework. Bernini & Pellegrini (2011), by means of a matching diff-in-diffs 

approach, showed that growth in output, employment and fixed assets is higher in the 

subsidized firms. Conversely, TFP of subsidized firms shows a smaller increase than that in 

non-subsidized firms. The positive temporary effects of regional policy contrast with the 

expected negative impact on long-term productivity and growth. Criscuolo et al. (2012) 

investigated the effects of the Regional Selective Assistance (RSA) by using a combination 

of IV and plant- or firm-level fixed effects. They find a positive program treatment effect on 

employment, investment and net entry but not on TFP. The treatment effect is confined to 

smaller firms with no effect for larger firms; moreover, the policy raises area-level 

manufacturing employment mainly through significantly reducing unemployment. 

Recently, Moffat (2014) examines whether receipt of a RSA grant has a causal impact on 
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plant TFP. To tackle the problem of self-selection into the treatment group, propensity score 

matching is employed. Similar to Criscuolo et al. (2012), for high-tech and medium high-

tech manufacturing, the effect is not statistically significant. However, for medium low-tech 

and low-tech manufacturing, receiving an RSA was found to reduce TFP. Results suggest 

that RSA grants lead plants in low-tech manufacturing, the sector that received the highest 

number of grants, to employ an inefficiently high level of inputs. Without such grants to 

compensate them for employing a sub-optimally high level of inputs, they would employ 

fewer inputs but have higher levels of TFP. 

In sum, several studies have focused on the role of subsidies on firms’ TFP, mainly 

considering grants as an additional input in the production process or a determinant of TFP. 

Conversely, there are a few attempts to estimate the causal impact of capital subsidies on 

both TFP growth and their components by means of accurate counterfactual analysis. To 

our knowledge, no studies have yet investigated the role of capital subsidies on productivity 

and efficiency by means of a causal model. 

 

3. Data 

L488 has been the main policy instrument for reducing territorial disparities in Italy 

during the period 1996-2007. L488 operates in the less-developed areas of Italy, i.e., the areas 

designated as Obj. 1, 2 or 5b for the purpose of EU Structural Funds. L488 has financed firms 

in both the northern (Objective 2 or 5b) and southern regions (Objective 1) of the country; 2 

however, Objective 1 regions receive transfers that are substantially higher in magnitude 

than transfers under all other lines of the EU’s Structural Funds program (Becker et al., 

2013).3 L488 makes available grants on capital account for projects designed to build new 

productive units in less-developed areas or to increase production capacity and 

employment, increase productivity or improve ecological conditions associated with 

productive processes, technological updates, restructuring, relocation and reactivation. 

                                                           
2 In the southern regions, L488 has been financed not only with national funds but also with the EU Structural 
Funds (the southern regions were the only eight Objective 1 Italian regions in the 1994-1999 cycle of EU 
regional policies). 
3 In particular, for the L488, the medium-large subsidized firms located in Objective 2 or 5b areas received 
capital grants that support up to 10-20% of the total investment expenditures, but the medium-large 
subsidized firms located in Objective 1 areas received capital grants that support up to 40-50% of the total 
investment expenditures (plus an additional 15% for small firms). 
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L488 allocates subsidies through a rationing system based on regional competitive auctions. 

In each auction, the investment projects are ranked with respect to five objectives and 

predetermined criteria.4 The criteria carry equal weight: the values related to each criterion 

are normalized, standardized and added up to produce a single score that determines the 

place of the project in the regional ranking (this normalized score is the forcing variable used 

in the following analysis). The rankings are drawn up in decreasing order of the score 

awarded to each project, and the subsidies are allocated to projects until funding granted to 

each region is exhausted. 

L488 auctions have been conducted on a yearly basis. Our analysis refers to the period 

1995-2003 and focuses on three of the four L488 auctions that were taken up by 1998 (see 

Bronzini and de Blasio, 2006, for the timing of the assistance). This time-span makes it 

possible to analyze the TFP disaggregation dynamics for the 5 years following the subsidy 

assignment. The data for the auctions derive from two datasets: the administrative L488 

dataset of the Ministry of Economic Development, a financial statement dataset that collects 

data from AIDA5, and other sources of financial information.6 After cleaning and merging 

the data, we have 1074 firms localized in the South (377 in the treatment group and 697 in 

the control group) and 800 firms localized in the Center-North (264 in the treatment group 

and 536 in the control group), which applied for the L488 funds in at least one of the auctions 

considered (auction 2, auction 3, and auction 4).7 Table A1 in Appendix A displays for both 

                                                           
4 1) The share of owners’ funds in total investment; 2) the new job creation by unit of investment; 3) the ratio 
between the subsidy requested by the firm and the highest subsidy applicable; 4) a score related to the 
priorities of the region in relation to location, project type and sector; 5) a score related to the environmental 
impact of the project. For a detailed description of each criterion and other aspects of L488, see Section 3 in 
Bernini & Pellegrini (2011). 
5 AIDA is a large dataset that contains the budgets delivered by a subset (mostly corporate enterprises) of over 
500,000 Italian firms to the Chambers of Commerce. 
6 The estimation results we present below rely on the assumption that there are no other governmental 
programs correlated with the allocation of L488 funding. Actually, a feature of L488 minimizes the extent of 
this bias by requiring that firms that apply for the incentives renounce any other public subsidies even without 
any guarantee of receiving the L488 funds. Besides, a recent study (Cerqua & Pellegrini, 2014b) shows some 
modest evidence of negative spillover effects reporting how the employment growth in subsidized firms is in 
part determined to the detriment of the untreated firms. However, there is no evidence of substantial spillovers 
concerning turnover and investment. 
7 We considered only firms having a meaningful balance sheet since at least 2 years before the subsidy 
assignment, whereas we excluded projects that presented anomalies and irregularities. Concerning duplicate 
projects, i.e., applications for more than one auction, we decided to exclude the non-financed projects if the 
referring firm had already received L488 funds in a previous auction. 
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treated and control firms the medians for a number of baseline covariates referring to the 

year before subsidy assignment. 

4. Method 

4.1 SFA and TFP decomposition 

In the literature, studies on productivity growth have measured productivity as a 

residual after controlling for input growth, interpreting the improvements in productivity 

as determined by technical progress. This interpretation is correct only if firms are 

technically efficient (i.e., firms are operating on their production frontiers and realizing the 

full potential of the technology). Because firms do not usually operate on their frontiers, TFP 

measured in this way can reflect both technological innovation and changes in efficiency. 

Therefore, technical progress may not be the only source of total productivity growth, and 

it will be possible to increase factor productivity by improving technical efficiency (Jin et al. 

2010). 

Stochastic Frontier Analysis (SFA) is a widely used approach to study production 

efficiency. SFA make it possible to estimate technical efficiency in addition to technical 

change, which is captured by a time trend and interactions of the inputs with time (Aigner 

et al., 1977; Meeusen & van den Broeck, 1977; Battese & Coelli, 1992). 

The general stochastic production frontier model is described as 

 

)(

);,,( ituitv

ititit
eKLtfy



    (1) 

 

where y is the vector for the quantities produced by the various firms, L and K are 

the vector for production factors used, t is the time trend variable and β is the vector for the 

parameters defining the production technology. The variable v refers to the random part of 

the error, while u is a downward deviation from the production frontier. Thus, f (t, Lit, Kit; 

β) exp(vit) represents the stochastic frontier of production, and v captures the random effects 

of measuring errors and exogenous shocks that cause the position of the deterministic 

nucleus of the frontier, f (t, Lit, Kit; β), to vary from firm to firm. The level of technical 

efficiency (TE), that is, the ratio of observed output to potential output (given by the 

frontier), is captured by the component exp(−uit) and, therefore, 0 ≤ TE ≤ 1.  
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There are several specifications to account for time-varying technical inefficiency uit 

(Kumbhakar, 2000). Battese & Coelli (1995) proposed a specification for the technical 

inefficiency effect in the stochastic frontier production function, 
ititit

 z w  , where the 

random variable wit is defined by the truncation of the normal distribution with zero mean 

and variance 2

  . Replacing zit by t (time trend), the technical inefficiency function uit can be 

defined as 
it

2

210it
 t  wt   . The time trend variable controls for time varying, 

systematic unobserved factors. Alternately, yearly dummy variables Dt can be used; then, 

the model for the inefficiency term becomes it
t

t0it
  wD

t
  . Following Battese and 

Coelli (1992), the technical inefficiency component can also be considered time-variant, 

assuming that uit=exp(−η(t − T))ui, uit ≥ 0, i=1, . . .,N, t ∈ τ(i). τ(i) represents the Ti periods of 

time for which we have available observations for the i-nth firms among the available T 

periods in the panel (i.e., τ(i) may contain all periods in the panel or only a subset of periods). 

η represents the rate of change of technical efficiency over time; the sign of η dictates the 

behavior of technical inefficiency over time. Moreover, the estimated value for η/δ is the 

same for all firms in the sample, which means that the pattern of inefficiency rise or 

reduction is the same for all firms.  

Following Bauer (1990), Brummer et al. (2002), Kumbhakar (2000) and Kumbhakar & 

Lovell (2000), after a production frontier function has been estimated, it is possible to 

compose the rate of total factor productivity change from the results. In particular, the 

authors suggested a productivity decomposition that goes beyond the division of 

productivity changes to a catch-up effect and a technical innovation effect, also accounting 

for scale effects and inefficient allocation of productive factors. 

The components of productivity change can be identified from the deterministic part 

of the production frontier depicted in (1) combined with the usual expression for the 

productivity change Divisia index:  

 

 -   
L

L
s

K

K
s

y
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g

LKTFP




  
(2) 
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where dots over variables indicate time derivatives, gTFP denotes the rate of TFP growth, sK 

and sL are the shares of capital and labor in aggregate income, and εK and εL are output 

elasticities with respect to the factors of production. 

From the deterministic part of (2), we have 

 

t

ln
-  

t

)K;L,lnf(t,
  











u

L

L

K

K

y

y
LK





  (3) 

 

Combining (2) and (3), it follows that 

 

   
LLLKKkLLKkTFP

gsgsggRTSuTPg )()()1(     (4) 

 

where RTS denotes returns to scale with RTS=εK+εL, gK is the growth rate of capital ( K /K) 

and gL is the growth rate of labor ( L /L); λK=εK/RTS and λL=εL/RTS are defined as normalized 

shares of capital and labor in income. 

Then, the growth in TFP can be split into four elements: 

 

(i) technical progress, measured by ∂ ln f (t,K, L,B)/∂t; 

(ii) change in technical efficiency, denoted by − u ; 

(iii) change in the scale of production, given by (RTS−1)·[λK · gK + λL · gL]; 

(iv) change in allocative efficiency, measured by [(λK −sK) · gK + (λL − sL) · gL]. 

 

Technical change (TC) is the increase in the maximum output that can be produced 

from a given level of inputs, thus capturing the upward shift in the production function. 

Technical efficiency (TE) change is the change in a firm’s ability to achieve maximum output 

given its set of inputs; then, it measures the changes in TFP because of a movement toward 

the production function. The scale component accounts for TFP changes due to variations 

in the scale of operations, its contribution depending both on technology and factor 

accumulation. The presence of constant returns to scale (RTS=1) cancels out the SC. In the 

case of increasing returns to scale (RTS > 1) and an increase in the amount of productive 
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factors, the firm shows a higher rate of productivity growth. If the amounts of production 

factors diminish, the firm would have a reduction in the rate of productivity change. An 

inverse analogous reasoning can be made for decreasing returns and a reduction (increase) 

in the amount of productive factors. Allocative efficiency (AE) change is the change in a 

firm’s ability to select a level of inputs to ensure that the input price ratios equal the ratios 

of the corresponding marginal products. Because λK + λL=1, the distances (λK − sK) and (λL − 

sL) are symmetric and have opposite signs. Therefore, a factor reallocation that, say, 

increases the intensity of labor and reduces that of capital will necessarily bring a change in 

allocative efficiency.  

The three components SC, TC and TE are called the connected to technology part of the 

TFP change, which can be calculated using the estimated production technology (i.e., 

parameters in the output distance function and the technical efficiency estimates of Eq. 1). 

The allocative component AE is caused by the violations of the first-order conditions for 

profit maximization. These violations might occur if market imperfections exist (i.e., 

transaction costs, risk, quantitative restrictions, incomplete information, or mark-ups) or if 

the implied assumption of profit maximization behavior is not adequate. Because these 

effects are caused by market or behavioral conditions (i.e., they represent the part of the TFP 

change that is not determined technologically), the allocative component is referred to as 

the connected to market part of the TFP change. Obviously, it accounts for the differences 

between the Divisia index and the three technology-connected components, i.e., 

)( TETCSCTFPAE 


 (Zhu et al., 2006; Brummer et al., 2002). 

 

4.2 Multiple RDD 

Support programs usually select firms in a non-random manner, and L488 is no 

exception. However, we can build a reliable counterfactual using data for the firms that 

applied for the incentives but were not financed because they scored too low in the L488 

ranking.8 Unlike in randomized experiments, this control group is not random, but we can 

use a sharp RDD approach to address selection bias issues. 

                                                           
8 These non-treated firms are willing to invest and have a valid investment project as checked by a preliminary 
screening. As a consequence, within each ranking, we can consider these firms as the best control group 
available; in fact, as suggested by Brown et al. (1995), they show a propensity for investment very similar to 
that of subsidized firms. 
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In a potential-outcomes framework, let Yir (1) and Yir (0) denote the potential 

outcomes of firm i in technological group r. Moreover, let treatment assignment depend 

only on whether the level of the pre-treatment variable Xir (in our case, Xir is the sum of the 

indicators normalized for firm i in technological group r) is above or below the referring 

threshold  r
s . Estimation in a sharp RDD naturally focuses on the local average treatment 

effect (LATE) 

 

   [ 1 0 | ]
SRDD

r ir ir ir r
E Y Y X s      (5) 

 

Because of its local nature, RDD average treatment-effects estimators are usually 

constructed using local regression techniques. We follow standard practice and use local 

polynomial non-parametric regression to estimate two separate regression functions above 

and below the cut-off. This kernel-based estimator requires a bandwidth for 

implementation, with observations outside the bandwidth receiving zero weight in the 

estimation. We select an optimal bandwidth that minimizes mean-squared-error (MSE) 

using the robust confidence intervals developed by Calonico, Cattaneo, & Titiunik (2014b) 

and a triangular kernel.9 To check the robustness of the results, we also use a parametric 

estimator with a 3rd order polynomial in the forcing variable, which is allowed to differ on 

the left and the right of the cut-off point to account for non-linearity in the outcome variable. 

Our main approach consists of pooling in the same ranking firms belonging to the 

same technological group. Indeed, the analysis is conducted separately for low-tech, 

medium-low tech, and medium-high and high-tech manufacturing firms. Such a 

disaggregation is necessary because different sectors will operate with different production 

technologies, and the impact of capital subsidies on TFP is therefore likely to differ across 

sectors (Moffat, 2014). As L488 was directed also at a subset of non-manufacturing firms, we 

include them in a separate analysis. After estimating the causal effect of L488 with respect 

to the TFP components via the RDD for each of the 4 groups of firms, we aggregate the 

treatment effects to obtain the global treatment effect of the policy under analysis (see 

                                                           
9 See Calonico, Cattaneo, & Titiunik (2014a) for more details on the implementation of the RDD estimates and 
the Stata module rdrobust.ado. 
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Cerqua & Pellegrini, 2014a for a wider discussion on multiple RDD).10 The aggregation of 

different estimates is not a trivial problem because it is not easy to find an objective criterion 

to choose the weights of the estimates. For non-parametric estimates, we use the number of 

treated firms in each ranking with a forcing variable value within the optimal bandwidth 

selector (see Calonico, Cattaneo & Titiunik, 2014b);11 however, in Section 6, we check the 

robustness of this aggregation procedure. 

As a result, the global LATE of L488  MRDD
 and the standard errors  

 are computed 

as follows: 

 

* /
MRDD SRDD

r r

r TechGroup

N N 


  ;  (6) 

 

2 2 2
* /

r r

r TechGroup

N N 


  ;   (7) 

 

where, SRDD

r
 represents treatment in technological group r, r

  is the standard error of 

the LATE estimate in technological group r, r
N  is the number of treated firms inside the 

bandwidth interval in technological group r, and N  is the total number of treated firms 

inside the bandwidth interval. 

Furthermore, policymakers are particularly interested in exploring the impact of 

different treatment levels on policy outcomes as this may uncover heterogeneities along 

different amounts of financial aids and provide some information on the optimal level of 

incentives (Bia & Mattei, 2012). As L488 allows for different levels of subsidies depending 

on the investment project, the firm dimension, the region and also the firms’ choice, in 

Section 5.4, we explore the relationship between subsidy intensity and TFP growth. To do 

so, we adopt a modified version of the HLATE RDD framework proposed by Becker et al. 

                                                           
10 Before carrying out the analyses, we used a truncation method, wherein extreme values (observations in the 
first two and last two centiles) are recoded to lowest or highest reasonable values (the value of the 2nd centile 
and the value of the 98th centile, respectively) to the relative dependent variable. 
11 For parametric estimates, we still use the number of treated firms in each ranking, but they are not limited 
to the observations within the optimal bandwidth selector. 
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(2013),12 plotting 3D graphs that clearly display the interaction between the forcing variable, 

the subsidy intensity, and the TFP growth.13 

 

5. Results 

The components of the TFP change were estimated within an SFA framework, where the 

time-varying production frontier is specified in translog form; the inefficiency term is 

modelled by using year dummies, allowing the temporal pattern of TE to be completely 

flexible (all parameter estimates and specification tests are reported in Appendix A).  

To account for the different technological sets within the industries, several frontiers 

were estimated separately. First, we considered firms applying to the different Auctions as 

separate groups; within each Auction, we also distinguished firms operating in the Centre 

and North of Italy from those located in the South. The choice was motivated by either the 

specific characteristics of each Auction or distinctive features of L488 in the Northern 

regions14. Furthermore, four industry sub-groups defined according to firms’ technology 

were considered.15 Following Harris & Moffat (2013), industries were classified based 

mostly on Eurostat definitions, as high-tech and medium high-tech, medium low-tech, low-

tech manufacturing and other non-manufacturing firms. The last classification was applied 

in all the territorial-auction groups, with the exceptions of Auctions 2 and 4 in the North (in 

these areas, the small sample size prevented consistent statistical estimates of production 

frontiers with respect to technology).  

                                                           
12 The HLATE RDD allows estimating the LATE for different values of a covariate Z different from the forcing 
variable. The main assumption underlying the validity of this approach is that Z is uncorrelated with the error 
term in the outcome equation, conditional on the forcing variable. In the context of our application, this 
assumption states that, conditional on the sum of the normalized score that determines the subsidy 
assignment, firms with different intensities do not differ in unobserved dimensions that are relevant for the 
TFP growth. We do not pursue this approach as there are reasons for considering this assumption “hard to 
hold” in our context. The main one is that subsidy intensity is not randomly assigned, but rather, it has a 
decreasing relationship with respect to firm size. 
13 Notice that information on the subsidy intensity requested by non-subsidized firms is crucial for 
investigating such a relationship. 
14 L488 has financed firms in both northern (Objective 2 or 5b) and southern regions (Objective 1) of the 
country; however, the subsidy intensity is by far higher in the latter areas, following the map of state aid 
delineated by the European Commission (De Castris & Pellegrini, 2012). 
15 High-tech and medium high-tech firms were pooled because of small sample size issues. The non-
manufacturing category is made up by wholesale trade and commission trade, real estate activities, computer 
and related activities, sewage and refuse disposal activities and recreational, cultural and sporting activities. 
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Finally, 18 firm groups were identified and 18 production frontier models estimated 

(8 for Auction 3; 5 for both Auctions 2 and 4). LR tests support our identification strategy, 

strongly rejecting the null of homogenous production functions among the above groups 

(LR tests are 539.89 p-value=0.00, 920.47 p-value=0.00 and 480.89 p-value=0.00 for the 2-3-4 

Auction groups, respectively).  

 

5.1 Estimates of TFP decomposition  

The TFP and its components were calculated by using the estimated frontiers and the 

Divisia decomposition illustrated in Section 4, for every firm and period. Because each 

Auction operates on a different time span, we identified some typical dates, using as the 

first period the year when the firm starts to receive the grant (i.e., the fifth period 

corresponds to four years after the first-year installment). This strategy makes it possible to 

correctly aggregate and compare TFP components across Auctions, irrespective of the 

calendar years.  

Table 1 shows the average values of the TFP growth rate components for both treated 

and non-treated firms located in the South of Italy and separately for each technology 

level16. On the whole, the analysis reveals a slight decay of TFP in non-treated firms across 

all the periods. Treated firms reduce TFP until the third year after the subsidy is granted; 

while TFP improves by 2% in the fourth year, the increase is positive but negligible in the 

last period. The growth in treated firms, when decomposed, is mainly due to TC and AE. 

More specifically, the TC index grows by 1.5% during the first year after the subsidy is 

granted and rises to 5.8% in the fifth period. This indicates that firms adopt technologies 

that allow them to be more productive. In addition, non-treated firms grow over the period, 

but with lower intensity (0.8 – 4.0%). The allocative inefficiency results when factor prices 

are not equal to their marginal product. The estimates of AE for treated firms show the 

existence of allocative inefficiency in the years immediately after the grants, while in the last 

part of the observed period, AE turns out to be positive, indicating the presence of 

adjustment lags and “connected-to-the-market” effects for the subsidized firms. Conversely, 

untreated firms show a continuous decline in their AE for all periods.  

                                                           
16 All results, related to auctions, size, geographical area and technological sets, are available on request from 
the authors. 
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Table 1. Dynamics in TFP components  

 South 

 Treated  Not Treated 

 TC SC AE TE TFP  TC SC AE TE TFP 

Year 1 0.0115 0.0006 -0.0615 -0.0358 -0.0831  0.0081 -0.0024 -0.0142 -0.0138 -0.0162 

Year 2 0.0217 -0.0014 -0.1064 -0.0252 -0.1086  0.0160 0.0026 -0.0259 -0.0056 -0.0137 

Year 3 0.0333 0.0050 -0.0331 -0.0379 -0.0349  0.0244 0.0059 -0.0400 -0.0294 -0.0393 

Year 4 0.0456 0.0045 0.0166 -0.0434 0.0238  0.0321 0.0053 -0.0303 -0.0233 -0.0156 

Year 5 0.0581 0.0084 0.0241 -0.0954 0.0035  0.0396 0.0143 -0.0376 -0.0884 -0.0787 

 South – Low-tech Firms 

 Treated  Not Treated 

 TC SC AE TE TFP  TC SC AE TE TFP 

Year 1 0.0176 -0.0016 -0.0398 -0.0462 -0.0551  0.0172 0.0001 -0.0161 -0.0480 -0.0274 

Year 2 0.0343 -0.0006 -0.1119 -0.0027 -0.0853  0.0351 0.0052 -0.0118 -0.0155 0.0058 

Year 3 0.0532 0.0064 -0.0095 -0.0524 -0.0084  0.0531 0.0113 -0.0360 -0.0393 -0.0181 

Year 4 0.0725 0.0053 0.0132 -0.0413 0.0517  0.0691 0.0095 -0.0463 -0.0303 0.0054 

Year 5 0.0924 0.0096 0.0244 -0.1557 -0.0283  0.0863 0.0123 -0.0182 -0.1450 -0.0702 

 South - Medium-Low tech Firms 

 Treated  Not Treated 

 TC SC AE TE TFP  TC SC AE TE TFP 

Year 1 0.0086 -0.0029 -0.0460 -0.0215 -0.0690  0.0048 -0.0023 -0.0220 0.0174 0.0035 

Year 2 0.0170 -0.0064 -0.0457 -0.0257 -0.0471  0.0094 0.0000 -0.0234 0.0379 0.0277 

Year 3 0.0247 0.0005 -0.0301 -0.0447 -0.0522  0.0141 0.0023 -0.0627 -0.0256 -0.0675 

Year 4 0.0323 0.0023 0.0260 -0.0294 0.0277  0.0187 0.0045 -0.0311 0.0084 0.0023 

Year 5 0.0399 0.0080 0.0543 -0.0572 0.0558  0.0236 0.0092 -0.0534 -0.0596 -0.0815 

 South - Medium-High and High-tech Firms 

 Treated  Not Treated 

 TC SC AE TE TFP  TC SC AE TE TFP 

Year 1 0.0099 0.0059 -0.1344 -0.0519 -0.1734  0.0051 -0.0046 0.0194 -0.0542 -0.0469 

Year 2 0.0172 -0.0058 -0.1952 -0.0614 -0.2492  0.0091 -0.0015 -0.0471 -0.0779 -0.1149 

Year 3 0.0250 -0.0040 -0.1004 -0.0426 -0.1162  0.0137 -0.0026 -0.0162 -0.0633 -0.0760 

Year 4 0.0354 -0.0053 -0.0096 -0.0747 -0.0519  0.0189 0.0036 -0.0115 -0.0873 -0.0862 

Year 5 0.0452 0.0000 -0.0627 -0.0991 -0.0956  0.0223 0.0013 -0.0364 -0.1061 -0.1396 

 South - Non-Manufacturing Firms 

 Treated  Not Treated 

 TC SC AE TE TFP  TC SC AE TE TFP 

Year 1 0.0027 0.0116 -0.0841 -0.0251 -0.0980  -0.0003 -0.0059 -0.0164 0.0086 -0.0191 

Year 2 0.0012 0.0176 -0.1612 -0.0488 -0.1905  -0.0014 0.0073 -0.0451 -0.0402 -0.0815 

Year 3 0.0062 0.0269 -0.0296 0.0373 0.0421  -0.0004 0.0101 -0.0088 0.0079 0.0166 

Year 4 0.0134 0.0220 0.0335 -0.0525 0.0215  -0.0004 0.0001 -0.0097 -0.0403 -0.0502 

Year 5 0.0213 0.0175 0.0435 -0.0139 0.0749  -0.0027 0.0417 -0.0386 -0.0311 -0.0423 

Note: Statistics computed only using the 536 observations (255 treated firms and 281 control firms) closest to 
the forcing variable threshold (scores within -1.5 and +1.5). 

The contribution of TE is relevant but negative for all the firms and over (almost) all 

the period; the intensity is slightly higher in the sample of treated firms. This decrease may 

be caused either by internal cost of adjustment (organizational changes) or by transaction 
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costs arising from the adoption of the new quantity of inputs. Conversely, the SC effect is 

negligible, for both treated and untreated firms. The expected boost of capital subsidies on 

scale efficiency, due to the new capital and consequent additional employees, has not been 

realized. 

This evidence suggests that subsidized capital does not really increase the scale of 

operation, but it substitutes the capital to be invested by the firm under conditions of no 

subsidization. Being that the SC is similar between granted and not financed firms, it may 

be attributed to a simple extrapolation of past trends and not to the effect of subsidization.  

These effects are quite similar between the different technological groups but with 

different intensities. TC is higher for firms operating in the low-technology industries, 

suggesting that in the observed period, all these firms (i.e., treated and untreated firms) have 

improved their technology. Conversely, non-manufacturing firms show the lowest TC 

effect, which becomes null for the untreated firms of these industries. Medium-high and 

high-technological firms show a continuous decline in TFP, mainly due to a negative effect 

of AE for all the periods. 

 

5.2 Multiple RDD estimates 

As suggested by Lee & Lemieux (2010), we subtract from each dependent variable its 

pre-treatment value. This is done because differenced outcomes should have a sufficiently 

lower variance than the level of the outcome to lower the variance in the RD estimator.  

The main outcomes are presented in Table 2, which provides the decomposition for 

all subsidized firms in the South. The most interesting result relates to the difference in TFP 

growth between subsidized and non-subsidized firms: Considering the non-parametric 

approach, in the first three years the difference is negative, indicating that TFP grows more 

in non-subsidized firms; on the contrary, over the last two years, TFP growth is greater in 

subsidized firms, with a differential equal, on average, to approximately 8%. This 

differential is significant from a statistical point of view for three out of five years. The 

dynamics of TFP growth rate in subsidized firms appears to be linked to the process of 

learning and concluding the implementation of the investment. The sign reversal also could 

explain the mixed results achieved in the literature. The decomposition analysis allows us 

to identify the components that are responsible for this sign reversal. 
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In the first place, the technical progress (TC) component gives a positive contribution 

to the TFP growth gap: In subsidized firms, the growth rate of TC is always higher than in 

non-subsidized firms, and the differential is statistically significant for two out five years. 

On the other hand, the contribution of technical efficiency (TE) is always negative and 

statistically significant for two out of five years. The contribution of scale effect (SE) is mixed 

and always not statistically significant. Finally, the contribution of allocative efficiency (AE) 

switches sign during the period: It is negative in the first two years and positive in the last 

three years (it is strongly statistically significant in year 4). The results using the parametric 

approach are basically the same, even if slightly less statistically significant. 

The results suggest that public subsidies help firms to improve their technological 

assets, mostly by increasing the technological content embedded in the (new) capital. The 

new capital bought with incentives augments the rate of technological progress of the firm. 

It is plausible that the component of technical progress incorporates some element of 

technical efficiency, which could be underestimated in subsidized firms. Moreover, during 

the 5-year period, the firm adjusts the production factors to be more efficient: Actually, if in 

the first years the subsidized firm chooses not to pursue allocative efficiency because a 

higher intensity in the use of one factor (for instance, labor) could increase the chance  to 

obtain the subsidy, in the following years, the firm has the opportunity to move toward a 

more efficient configuration. 

The results are similar also for the subsample of small firms (Table 3). The differences 

in TFP growth rate in the last two years are slightly larger (9%), whereas the differences in 

the technical progress growth rate are smaller and statistically not significant. The scale 

effect is interesting; in this case, it is negative and statistically significant. A plausible 

interpretation is that using the subsidies, the firms move toward market niches, which are 

more profitable but where the scale economies are unfeasible or not essential. 

We also report the productivity differential by technological sector in the South 

(Appendix B). In this case, the number of firms by subsample is considerably lower, 

affecting the statistical significance of the estimates. The differential in TFP for the low-tech 

manufacturing firms is higher than the average in the last two years (more than the 15%), 

even if not statistically significant. The differential in the allocative efficiency is very high in 
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the last two years, where the technical progress growth rate differential is also positive only 

in the same period. Both explain the higher TFP growth differential. 

For the medium-low, medium-high and high-tech firms the picture is different. The 

TFP growth of subsidized firms is higher with respect to non-subsidized firms only in the 

fourth year (third and fourth years for the medium-low tech firms). Even if the contribution 

of the technical progress is always positive, the contribution of the allocative efficiency is 

lower and sometimes negative. In the non-manufacturing firms, the TFP growth differential 

is positive in the last two years but lower than the average (5%). In addition, the positive 

contribution of the technical change is lower than the average. 

The conclusion of the analysis is that the TFP differential is basically dominated by 

two factors: Technical change and allocative efficiency. In sectors where the technical change 

growth induced by the subsidies through new capital overcomes the negative effect on 

technical efficiency (related to the new enterprise organization and management, entry in 

new market and so on), the TFP tends to be positive. However, this is realized when the 

impact of the allocative efficiency differential induced by the subsidies becomes positive. 

The subsidized firms, usually after three years, are more efficient in the use of the productive 

factors and can finally fully exploit the new capital. On the other hand, in sectors where the 

technical progress gain is lower or the allocative efficiency catch-up is modest the impact of 

the subsidies on TFP is nil or negative.   
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Table 2. Non-parametric and parametric Multiple RDD estimates (SOUTH) 

 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00336 0.00483 0.00677 0.01424 0.02207  0.00190 0.00196 0.00346 0.00936 0.01532 
(0.00236) (0.00429) (0.00645) (0.00802)* (0.00963)**  (0.00235) (0.00424) (0.00608) (0.00807) (0.00999) 

Scale Effect 0.00740 0.00026 -0.00184 0.00336 -0.00488  0.01143 0.00726 0.00593 0.00710 0.00446 
(0.00809) (0.00803) (0.00755) (0.00844) (0.00967)  (0.00852) (0.00944) (0.00792) (0.00833) (0.00959) 

Allocative 
Efficiency 

-0.07780 -0.14907 0.01913 0.14988 0.05747  -0.11246 -0.14263 0.02241 0.10644 0.03601 
(0.05903) (0.06395)** (0.06070) (0.06219)** (0.05980)  (0.05418)** (0.06117)** (0.05718) (0.05604)* (0.05665) 

Technical 
Efficiency 

-0.06462 -0.06115 -0.07372 -0.01823 -0.10946  -0.04444 -0.03621 -0.03894 -0.02353 0.01820 

(0.03768)* (0.04373) (0.03477)** (0.04023) (0.04536)**  (0.03495) (0.03526) (0.03293) (0.04027) (0.04565) 

Total Factor 
Productivity 

-0.16239 -0.18189 -0.06630 0.13483 0.03542  -0.13678 -0.15656 -0.01832 0.11586 0.11123 
(0.08136)** (0.08996)** (0.08197) (0.07229)* (0.09941)  (0.07803)* (0.07735)** (0.07636) (0.07023)* (0.08649) 

Note: There are 1074 observations (377 treated firms and 697 control firms); however, for non-parametric estimates, the actual number of observations within the 
bandwidth ranges between 415 (205 T and 210 NT) and 544 (260 T and 284 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 
variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table 3. Non-parametric and parametric Multiple RDD estimates (SOUTH) - Small firms 

 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00209 0.00457 0.00780 0.00792 0.01006  -0.00587 -0.01057 -0.01353 -0.01898 -0.02288 
(0.00546) (0.01081) (0.01556) (0.02123) (0.02676)  (0.00423) (0.00852) (0.01249) (0.01695) (0.02135) 

Scale Effect -0.00927 -0.00731 -0.00515 -0.02503 -0.01714  -0.00382 -0.00480 0.00069 -0.00896 -0.00371 
(0.01006) (0.00858) (0.00706) (0.01246)** (0.00802)**  (0.00845) (0.00783) (0.00667) (0.00999) (0.00695) 

Allocative 
Efficiency 

-0.04763 -0.08000 0.00206 0.14095 0.08884  -0.02197 -0.05920 0.04389 0.13850 0.04731 
(0.05219) (0.06275) (0.06854) (0.05339)*** (0.05520)  (0.04784) (0.05859) (0.05693) (0.04929)*** (0.05133) 

Technical 
Efficiency 

-0.09257 -0.05964 -0.08369 -0.00565 -0.10459  -0.04002 0.01231 0.00221 0.03835 0.02551 

(0.03036)*** (0.03378)* (0.03669)** (0.04195) (0.05346)*  (0.02876) (0.03214) (0.03174) (0.04225) (0.04689) 

Total Factor 
Productivity 

-0.23133 -0.13327 -0.00933 0.13552 0.05782  -0.10696 -0.06812 0.06256 0.15820 0.07006 
(0.07663)*** (0.06904)* (0.07632) (0.06299)** (0.08530)  (0.06283)* (0.06657) (0.06832) (0.06595)** (0.08954) 

Note: There are 504 observations (169 treated firms and 335 control firms); however, for non-parametric estimates, the actual number of observations within the 
bandwidth ranges between 166 (86 T and 80 NT) and 265 (127 T and 138 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with a triangular kernel using the robust confidence intervals and CCT implementation of the mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias 
estimated with quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third order polynomial in the forcing 
variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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5.3 What effects on TFP had the subsidies to firms located in the Centre-North 
regions? 

We also estimated the effect of the L488 on TFP for the firms located in the Centre-

North regions, that are wealthier that the regions in the South. The areas where the firms 

could apply for the L488 subsidies were small (limited to few provinces) and the intensity 

of the subsidies was much lower than in the South. Therefore, we expect that the impact of 

L488 in these areas was less important. Actually, the differences in TFP growth between 

subsidized and not subsidized firms are statistically not significant (Table 4). The impact on 

TFP growth differential is positive in four years out of five. The same is also true for 

technical efficiency. Technical growth and allocative efficiency are always positive. 

Estimates of TFP by technology for the firms located in the Centre-North regions are affected 

by the smaller sample dimension. However, TFP growth differential are always positive 

and often statistically significant in medium-low tech manufacturing firms, where the main 

contribution comes from improvement in the allocative efficiency, and mostly in non-

manufacturing sectors, where it is important the contribution of scale economies. In the 

other sectors the picture is more complex, however the effects are negligible. Appendix C 

presents the productivity differentials by technological sector in the Centre-North regions. 
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Table 4. Non-parametric and parametric Multiple RDD estimates (CENTRE-NORTH) 

 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00065 0.00098 0.00229 0.00347 0.00539  -0.00133 -0.00242 -0.00258 -0.00248 -0.00172 
(0.00139) (0.00275) (0.00391) (0.00501) (0.00594)  (0.00139) (0.00262) (0.00356) (0.00447) (0.00517) 

Scale Effect -0.00361 0.00535 -0.00488 -0.00421 -0.03001  -0.01037 0.00241 -0.01752 -0.00119 -0.01706 
(0.00885) (0.00748) (0.00729) (0.00833) (0.01856)  (0.01222) (0.01045) (0.01098) (0.01013) (0.01850) 

Allocative 
Efficiency 

-0.00160 0.06399 0.06438 0.01382 0.01804  0.01980 -0.00303 0.04733 -0.00033 0.01207 
(0.05609) (0.06331) (0.06517) (0.06509) (0.06154)  (0.06175) (0.05897) (0.05747) (0.06113) (0.05557) 

Technical 
Efficiency 

0.01202 0.01705 0.03188 0.00977 -0.01039  0.01949 0.01961 0.02817 0.00043 0.01420 

(0.01604) (0.02008) (0.01662)* (0.04032) (0.04230)  (0.01759) (0.01935) (0.01574)* (0.03730) (0.04021) 

Total Factor 
Productivity 

0.01790 0.03601 0.04494 0.00035 -0.04445  0.03733 0.02659 0.06384 0.01211 0.01979 
(0.05628) (0.06272) (0.05384) (0.08808) (0.06750)  (0.06174) (0.06306) (0.05546) (0.07837) (0.06853) 

Note: There are 800 observations (264 treated firms and 536 control firms); however, for non-parametric estimates the actual number of observations within the 
bandwidth ranges between 259 (142 T and 117 NT) and 341 (172 T and 169 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 
variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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5.4 Heterogeneity of the results due to intensity of treatment 

The intensity of treatment is strongly heterogeneous across firms, depending on size, 

region and choices of the firms. We expect that treatment heterogeneity explains some 

differences in TFP growth across treated firms. The role of heterogeneity is analyzed by a 

modified version of the HLATE RDD framework proposed by Becker et al. (2013) for 

scrutinizing the relationship between subsidy intensity and TFP growth (Figure 1). The 3D 

graph allows a clear display of the interaction between the forcing variable, the subsidy 

intensity, and the TFP growth (or each TFP component as reported in Appendix D). The 

solid (hollow) dots indicate firms that received (did not receive) L488 funds. The surfaces 

represent fifth-order polynomial functions of the forcing variable and linear functions of 

subsidy intensity. These functions are estimated on both sides of the threshold separately. 

The top panel in Figure 1 suggests that the year after subsidy assignment, TFP grew at a 

slower pace for treated firms receiving less than 50% of the total investment (mostly small 

and medium-large firms) than their counterfactual (very similar untreated firms that 

basically asked for the same treatment intensities). Observing each TFP components 

separately (Appendix D), we infer that the slower TFP growth was mainly due to the TE 

and AE components. 

The bottom panel in Figure 1 still shows a negative and wide gap in terms of TFP 

growth between treated and untreated firms receiving or asking for less than 50% of the 

total investment. On the other hand, after 5 years of the subsidy assignment, a large TFP 

premium lies with firms receiving more than 50% of the total investment (mostly micro and 

small firms). Indeed, the wedges between the two surfaces clearly indicate that the smallest 

treated firms were those that benefitted the most from the policy in terms of TFP. Looking 

at Figure E3, we see that this growth is mainly due to the AE component. The effect that we 

note in the all sample is stronger in the highly subsidized firm: Higher subsidies help to 

build up larger and up-to-date capital; when these firms, usually after three years, become 

more efficient in the use of the productive factors, they fully exploit the new capital and 

increase the dynamics of TFP. 
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Figure 1. Relationship between TFP growth rate (1st and 5th years), subsidy intensity, and 
forcing variable 

 

 

Notes: The upper and lower figures illustrate the relationship between the TFP, forcing variable and subsidy intensity. The 

solid (hollow) dots indicate firms that received (did not receive) L488 funds. The surfaces represent fifth-order polynomial 
functions of the forcing variable and linear functions of subsidy intensity. These functions are estimated on both sides of 
the threshold separately. 
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6. Robustness analysis 

We assess the validity and the robustness of our results on the South adopting 

various specification tests. First, we rule out possible discontinuities in the conditional 

density of the forcing variable (the score of the project in the regional ranking), which would 

indicate evidence of manipulation in the subsidies assignment. The McCrary test (McCrary, 

2008) turns out to be negative for each ranking. In Figure F1 of Appendix E, we graphically 

present the negative results of this test in the rankings split by auction and by technological 

group. 

Additionally, we test whether the TFP components of the financed firms are similar 

to those of the control group in the year preceding the subsidies assignment. As shown in 

Table F1 of Appendix F, we find no evidence of statistically significant pre-treatment 

differences around the cut-off point between subsidized and non-subsidized firms in terms 

of technological change, scale effect, allocative efficiency, technical efficiency, and TFP. This 

holds for each technological group and for the aggregated sample. 

Following Martorell & McFarlin Jr. (2011), we assess the robustness of our parametric 

results by estimating the models on a “narrow-band” sample around the cut-off, equal to 

the optimal bandwidth above and below the cut-off. These parametric estimates are very 

close to those reported in the paper. Moreover, as valid estimates based on the Multiple 

RDD rely on the assumption that the discontinuity in the outcome can be attributed to the 

discontinuity in treatment, we tested if there were jumps in the value of other exogenous 

covariates at the cut-off point. No variables showed a significant jump at the discontinuity. 

We also need to check if the adoption of another weighting procedure will deliver 

different estimates. To do so, we adopt the weighting by inverse variance, which gives more 

weight to the LATE estimates with smaller variances. Formulae (8) and (9) reported below, 

show how MRDD and   are computed: 

 

2 2
( *1 / ) / ( 1 / )

MRDD SRDD

r r r

r TechGroup r TechGroup

   
 

   ; (8) 

 

2
1/ ( 1 / )

r

r TechGroup

 


  .    (9) 
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Table F2 in Appendix F shows that this weighting scheme produces estimates very 

close to the ones reported in Table 2. 

Finally, to investigate the role of the technical inefficiency modelling, we also 

considered the time-variant specification of u proposed by Battese and Coelli (1992), that is, 

uit=exp(−η(t −T))ui, uit ≥ 0, i=1, . . .,N, t ∈ τ(i). Table F3 reports the Multiple RDD estimates 

using the dynamic specification of u; the results show no relevant differences with respect 

to the baseline estimates, except for the absence of statistically significant effects for TE using 

the non-parametric estimator. 

 

7. Conclusions 

Understanding the effects of the subsidy policies for private firms is crucial to 

assessing the effectiveness of public actions to stimulate regional growth. In fact, regional 

policies that do not lead to an increase in productivity and thus competitiveness are destined 

to fail in the long run. The purposes of this article were to analyze the impact of a regional 

policy on TFP growth and decompose the effect among technical change, scale effect, 

technical or allocative efficiency. The main new element of our analysis is the evaluation 

design, based on a quasi-experimental approach (Multiple RRD) that allows capturing the 

causal effect of the subsidies on TFP and its components. Therefore, investigating the 

estimated effects for five years after the assignment of the subsidies, we can identify the way 

subsidies positively affect TFP and determine the processes by which the incentives act on 

the productivity and efficiency of subsidized firms. 

The main findings from the case study are twofold. First, capital subsidies positively 

affect TFP growth in the medium-long term and not in the short term. The main reason is 

that the allocative efficiency has a positive effect only after 2-3 years. There are several 

reasons that explain the finding: Time to learn, time to stay in a larger market, time to adjust 

factor proportion. The analysis can explain the differences from the previous literature on 

L488; actually, the effects on productivity are negative or negligible in several papers on this 

policy instrument (Bronzini and De Blasio, 2006; Bernini and Pellegrini, 2011; Bondonio and 

Martini, 2012; Cerqua and Pellegrini, 2014a). However, none of these studies perform such 

a long year-by-year analysis. Indeed, only after the third year are the effects positive and 
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statistically significant (in the South). In Bernini and Pellegrini (2011), it was noted that firms 

subsidized by L488 could overshoot the optimal amount of employment to gain a subsidy. 

It is plausible that after the third year, firms start to reduce the inflated employment and 

increase allocative efficiency. 

Second, the positive impact comes especially through technical progress and not 

through scale impact change, as may have been expected. Following the framework 

presented by Beason and Weinstein (1996) and Skuras et al. (2006), where industrial policies 

are classified as Schumpeterian when subsidies aim to support technological progress or 

Marshallian when subsidies assist economies of scale and/or infant industries, our results 

support the conclusion that capital subsidies present Schumpeterian and not Marshallian 

effects on regional growth. This is also the conclusion of Skuras et al. (2006). Therefore, the 

main channel of the impact of capital subsidies on TFP is through increasing the 

technological content of the new capital, which sustains the technological upgrade of the 

subsidized firm. 

In conclusion, the result suggested in the previous literature, that the increase in 

capital stock does not necessarily entail efficient and productive subsidized firms, is not 

confirmed by our empirical evidence. Even if in the short term firms are induced to 

overshoot the optimal amount of employment to gain the subsidy, in the long run, they 

adjust the factor proportion, and sustained by the new technology embedded in the new 

capital, they can achieve long-run efficiency and growth. The analysis of the relationship 

between subsidy intensities and TFP growth showed that this is especially true for micro 

and small firms. However, the topic of how the increase in TFP can influence the 

competitiveness of subsidized firms in the global economy is left for future research. 
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Appendix A. Descriptive statistics by technological group 

Table A1. Descriptive statistics by technological group 

 Southern regions  Centre-North regions 

 Treated Not-Treated  Treated Not-Treated 

 Whole sample 
Tangible Capital 478 470  945 542 

Value Added 519 541  1305 939 

Labor cost 314 324  686 583 

# employees 13 13  29 22 

ROE 6.84 5.16  9.71 6.01 

Net liabilities 485 499  883 482 

Cash Flow 123 137  351 198 

N 377 697  264 536 
      

 Low tech firms 
Tangible Capital 517 525  792 494 

Value Added 582 547  1183 828 

Labor cost 361 326  648 531 

# employees 14 13  30 20 

ROE 7.09 4.79  8.27 5.54 

Net liabilities 582 533  703 509 

Cash Flow 136 141  285 156 

N 139 248  90 232 
      

 Medium-Low tech firms 
Tangible Capital 544 616  1332 542 

Value Added 465 589  1372 951 

Labor cost 280 339  698 598 

# employees 12 14  27 23 

ROE 5.49 4.59  11.02 7.11 

Net liabilities 581 544  919 413 

Cash Flow 131 153  402 199 

N 123 248  88 173 
      

 Medium-High and High tech firms 
Tangible Capital 804 655  945 560 

Value Added 736 879  1781 1157 

Labor cost 392 510  974 723 

# employees 17 21  40 25 

ROE 9.09 5.39  10.94 7.87 

Net liabilities 789 715  1076 540 

Cash Flow 204 244  430 273 

N 58 97  61 100 
      

 Non-Manufacturing firms 
Tangible Capital 131 222  945 658 

Value Added 285 298  991 912 

Labor cost 154 173  456 627 

# employees 7 7  18 23 

ROE 8.51 8.21  8.69 3.04 

Net liabilities 174 128  967 618 

Cash Flow 56 63  325 244 

N 57 104  25 31 

Note: Amounts of tangible capital, value added, labor cost, net liabilities, and cash flow are expressed in 
thousands of euros. All euros are measured in 1995 euros. 
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Appendix B. Production frontier estimates and specification tests 

The frontier models are specified for panel data, with both a stochastic frontier 

production function and a technical inefficiency model (Battese and Coelli, 1995). We use 

flexible functional forms as the translog production function:  
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 (10) 

which provides a good local approximation of any twice differentiable arbitrary 

function, and allows the analysis of the underlying production structure through relatively 

simple tests on appropriate groups of estimated parameters. The translog form for the terms 

involving the input levels, kitx , implies that we do not impose any a priori restrictions with 

respect to the internal return to scale. In (10), ityln  is the natural logarithm of the value 

added of firm i in year t. kitxln  is the logarithm of input k, where k = L, K represent the two 

inputs, cost of labour and fixed assets respectively. The production frontier may shift over 

time according to the values of the parameters t  and 2t . The 
it

v s are random variables 

that are assumed to be independent and identically distributed, );0(
2

VN  . The nonnegative 

random variables, (
it

u ), which account for technical inefficiency in production, are assumed 

to be independently distributed, such that 
it

u  is the truncation (at zero) of the );(
2 itN -

distribution, where it  is a function of observable explanatory variables and unknown 

parameters. We choose the truncated normal form because of the hypothesis that the market 

is competitive, that is, the greater proportion of the enterprises operate ‘close’ to efficiency. 

It is assumed that the
it

v s and
it

u s are independent random variables. Furthermore, yearly 

dummy variables Dt are used to model the inefficiency term it
t

t0it
  wD

t
  . 

The parameters of the frontier production function are simultaneously estimated 

with those of the inefficiency model (β, δ, σ2, σ2v), in which the technical inefficiency effects 

are specified as a function of other variables. Maximum-likelihood estimates of the model 

parameters are obtained using the program, FRONTIER 4.1, written by Coelli (1996). The 

variance parameters are defined by 222  
VS

 and 22

/
S

   originally recommended by 

Battese and Corra (1977). The log-likelihood function of this model is presented in the 
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appendix of Battese and Coelli (1993). When the variance associated with the technical 

inefficiency effects converges toward zero (i.e. 
0

2


) then the ratio parameter, γ, 

approaches zero. When the variance of the random error (
2

V ) decreases in size, relative to 

the variance associated with the technical inefficiency effects, the value of γ approaches one.  

The ML estimates of the parameters in the panel translog stochastic frontier 

production function for the different Auction groups are given in Table B1. Coefficients have 

signs and sizes that conform to our expectations. All the other estimate and test by groups 

are available on request from the authors. 

 

Table B1. Maximum Likelihood estimates for parameters of the stochastic frontier with 
inefficiency effects model  

Coefficient Auction 2 Auction 3 Auction 4 

Stochastic Frontier       
 

 

1.994*** 2.528*** 2.467*** 

 0.573*** 0.169*** 0.359*** 

 0.110*** 0.387*** 0.174*** 

 0.041*** 0.050*** 0.049*** 
 

0.033*** 0.023*** 0.013*** 
 

 -0.054***  -0.048***  -0.031*** 

  -0.129***  -0.0936***  -0.048*** 
 

0.010*** 0.006*** 0.004*** 
 

0.014*** 0.009*** 0.001 
 

 

 -0.009**  -0.005*** -0.003 

D_Regio2  -0.193***  -0.145*** -0.052 

D_Regio3  -0.162***  -0.076***  -0.117*** 

D_Regio4  -0.082***  -0.060*** 0.029 

D_Regio5 0.037 0.022  - 

D_Regio6  - -0.028 0.117*** 

D_Regio7  - 0.058**  - 

D_Regio8  - 0.086*** 0.016 

D_Regio9 -0.04 0.036 0.013 

D_Regio10  0.144*** 0.235*** -0.013 

D_Regio11  - 0.082***  - 

D_Regio12  -0.158***  -0.096***  -0.133*** 

D_Regio13  -0.140***  -0.257***  -0.182*** 

D_Regio14  -  -0.049** -0.025 

D_Regio15  - 0.087*** 0.120*** 

D_Regio16 -0.036 0.043* -0.011 

D_Regio17  - 0.013  - 

D_ HM2 -0.020 0.033** 0.125*** 

D_HM3 & HM4 0.079*** 0.049*** -0.004 

D_HM5  0.054*** 0.070*** 0.038 
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D_Small  0.085*** -0.007 0.019 

D_Medium & large -0.018 0.018 0.032 

Inefficiency Model       
 

 

 -8.931***  -5.563***  -4.564*** 

D_Period2  -3.474*  -1.109***  -0.854*** 

D_Period3  -1.495*  -2.130***  -2.281*** 

D_Period4  -3.248*  -3.399***  -3.819*** 

D_Period5  -1.253**  -3.752***  -3.113*** 

D_Period6 -0.399  -2.777***  -5.188*** 

D_Period7 2.344**  -1.540***  -2.083*** 

D_Period8  -  -0.148**  -2.785*** 

D_Period9  -  - 0.089 

Variance Parameters 
 

      
 

2.576*** 1.382*** 1.498*** 

γ 0.946*** 0.929*** 0.939*** 

Loglikelihood Function       

LL -2327.870 -3336.724 -1397.143 

LR test of the one sided error 420.564 449.620 388.747 

Number of restrictions 8 9 10 

Number of iterations 100 62 54 

Number of cross-sections 527 1024 366 

Number of time periods 7 8 9 

Total number of observations 3689 8192 3294 

Note: Significant at *10%, **5%, and ***1%. 

In Table B2, the results of the various null hypothesis tests associated with the frontier 

specification and inefficiency effects are reported for the estimated frontiers. Hypotheses 

can be tested using the generalised likelihood ratio statistic, λ, given by 

 ))(ln())(ln(2 10 HLHL  , where )( 0HL and )( 1HL  denote the value of the likelihood 

function under the null and alternative hypotheses, respectively. If the given null hypothesis 

is true, then λ has approximately a Chi-square (or a mixed Chi-square) distribution. If the 

null hypothesis involves 0 , then the asymptotic distribution involves a mixed Chi-

square distribution (Coelli, 1995). 

The first null hypothesis, 0
:  0  ,

jk
H j k    , that the Cobb-Douglas frontier is an 

adequate representation for firms, is strongly rejected by the data for the whole sample as 

well as for firms in the second auction. The second null hypothesis, k  02  kttt   , that 

there is no technical change, is always rejected.  

Table B2. Hypotheses testing for the functional form of the stochastic production 
function  

  Auction 2 Auction 3 Auction 4 
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H0 λ 

Decision 
whit 
respect to 
H0 

λ 

Decision 
whit 
respect to 
H0 

λ 
Decision whit 
respect to H0 

 
 

 

128.456*** 

 
Rejected 390.68*** 

 
Rejected 133.36*** 

 
Rejected 

 46.080*** Rejected 39.69*** Rejected 18.20*** Rejected 
 

20.522*** Rejected 5.91** Rejected 2.64 Not Rejected 
 

12.851*** Rejected  21.40*** Rejected  1.70 Not Rejected  

* 415.629*** Rejected 449.62*** Rejected 388.747*** Rejected 

Note: Significant at *10%, **5%, and ***1%. 

We also check, separately, for the presence of neutral technical change and other 

biased technical change. The neutral technical change leaves the ratio of inputs constant, 

and shifts the production frontier in parallel and outwards. The biased technical change is 

the technical change embedded in at least one of the inputs; it changes the slope of the 

production frontier and shifts it outwards. The rejection of tests of the null hypotheses

2
0

t t
    and 0  k

kt
    indicate the presence of both of the two-dimensional technical 

changes. On average over the sample period, investment in fixed assets negatively affects 

the frontier, shifting it downward; while on the contrary, labour force positively contributes 

to an upward movement of the frontier. This means that on average firms make lower 

productive use of fixed assets in their production and a higher productive use of their labour 

force. 

As regards the model efficiency, the LR test of the one sided error for the null 

hypothesis i
i

  0  of no technical efficiency is strongly rejected for all the models. The 

LR tests are in fact equal to 420.564, 449.620 and 388.747 for the second, third and fourth 

action respectively, which exceeds the corresponding upper five per cent point for the mixed 

Chi-square distribution (Kodde and Palm, 1986). The value of the estimates of the γ-

parameters are higher than 0.93 for all the models which implies that a significant 

proportion of the total variability is associated with technical inefficiency of production.  
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Appendix C. Non-parametric and parametric RDD estimates for each TFP component by technology 

Table C1. Non-parametric and parametric RDD estimates (SOUTH) Low tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

-0.00001 -0.00288 -0.00377 0.00824 0.01997  -0.00052 -0.00237 -0.00205 0.00573 0.01404 
(0.00405) (0.00561) (0.00865) (0.00970) (0.01100)*  (0.00372) (0.00509) (0.00695) (0.00852) (0.01040) 

Scale Effect 0.01523 -0.00904 0.00628 -0.00333 -0.01208  0.01438 0.00213 0.01139 0.00454 0.00255 

(0.01417) (0.01112) (0.01173) (0.01802) (0.01911)  (0.01431) (0.01288) (0.01289) (0.01638) (0.01803) 

Allocative 
Efficiency 

-0.11206 -0.32236 -0.12252 0.19394 0.12848  -0.11596 -0.23711 -0.01121 0.13721 0.08209 
(0.10485) (0.11325)*** (0.10750) (0.12153) (0.10764)  (0.09803) (0.10524)** (0.09053) (0.10448) (0.09732) 

Technical 
Efficiency 

-0.03332 -0.17961 -0.05878 -0.01933 -0.15516  0.00116 -0.04410 -0.03163 -0.00672 0.16325 

(0.05685) (0.09129)** (0.04857) (0.07113) (0.11293)  (0.04647) (0.05438) (0.04260) (0.07238) (0.09674)* 

Total Factor 
Productivity 

-0.22021 -0.48297 -0.25708 0.16112 0.15175  -0.15330 -0.23286 -0.03166 0.14774 0.30382 

(0.13188)* (0.16414)*** (0.15568)* (0.11397) (0.21103)  (0.12546) (0.12604)* (0.11997) (0.11904) (0.17781)* 

Note: There are 387 observations (139 treated firms and 248 control firms); however, for non-parametric estimates, the actual number of observations within the 
bandwidth ranges between 106 (61 T and 45 NT) and 185 (95 T and 90 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 

variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table C2. Non-parametric and parametric RDD estimates (SOUTH) Medium-low tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00415 0.00763 0.00989 0.01162 0.01296  0.00235 0.00514 0.00784 0.00918 0.01065 
(0.00306) (0.00585) (0.00865) (0.01127) (0.01384)  (0.00261) (0.00502) (0.00745) (0.00974) (0.01201) 

Scale Effect 0.00253 -0.00100 0.00020 0.01317 0.00521  0.00936 0.01155 0.01714 0.02457 0.02451 

(0.01131) (0.01197) (0.01260) (0.01039) (0.01298)  (0.01290) (0.01346) (0.01107) (0.01075)** (0.01248)** 

Allocative 
Efficiency 

-0.05838 -0.03742 0.13405 0.14952 0.05023  -0.04943 -0.01816 0.12349 0.12979 0.06744 
(0.09784) (0.09281) (0.10652) (0.09610) (0.10407)  (0.10369) (0.10721) (0.10983) (0.10044) (0.11020) 

Technical 
Efficiency 

-0.11860 -0.00725 -0.10205 -0.00110 -0.12354  -0.09090 -0.04993 -0.06949 -0.04724 -0.11713 
(0.06787)* (0.07551) (0.06668) (0.07310) (0.06380)*  (0.07148) (0.07752) (0.07449) (0.07690) (0.07024)* 

Total Factor 
Productivity 

-0.14470 -0.03227 0.06879 0.17655 -0.06073  -0.08159 -0.06669 0.06269 0.14407 -0.00047 

(0.15415) (0.15141) (0.13709) (0.14173) (0.14149)  (0.16881) (0.15511) (0.14502) (0.14368) (0.14468) 

Note: There are 371 observations (123 treated firms and 248 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 168 (83 T and 85 NT) and 226 (99 T and 127 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 
variable. Parametric regressions include a third order polynomial in the forcing variable. These functions are estimated on both sides of the threshold separately. 
Significant at *10%, **5%, and ***1%. 
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Table C3. Non-parametric and parametric RDD estimates (SOUTH) Medium-high or high tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00471 0.00882 0.00299 0.01059 0.01993  -0.00159 -0.00538 -0.01238 -0.01229 -0.01185 
(0.00789) (0.01525) (0.02194) (0.03046) (0.03771)  (0.00840) (0.01570) (0.02274) (0.03156) (0.03947) 

Scale Effect 0.00908 0.01710 -0.00327 0.00115 0.01960  0.01450 0.00932 -0.00111 -0.00108 0.01389 

(0.01931) (0.02627) (0.01590) (0.01677) (0.01771)  (0.01760) (0.02621) (0.01555) (0.01535) (0.01731) 

Allocative 
Efficiency 

-0.10170 -0.12175 -0.04433 0.01089 -0.09240  -0.24197 -0.20857 -0.08067 0.00766 -0.13739 
(0.11969) (0.20806) (0.14867) (0.14351) (0.15223)  (0.11058)** (0.17238) (0.17116) (0.13637) (0.14162) 

Technical 
Efficiency 

-0.02169 -0.00285 -0.02919 0.01485 -0.05074  -0.02568 -0.01349 0.03328 0.01092 -0.00027 
(0.10623) (0.07302) (0.09760) (0.07732) (0.09979)  (0.10272) (0.07002) (0.08419) (0.07534) (0.08586) 

Total Factor 
Productivity 

-0.12583 -0.16440 -0.10795 0.02622 -0.05533  -0.22683 -0.23727 -0.10447 0.02647 -0.04897 

(0.14589) (0.21550) (0.21461) (0.16955) (0.17820)  (0.13434)* (0.17905) (0.23932) (0.15156) (0.15946) 

Note: There are 155 observations (58 treated firms and 97 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 58 (31 T and 27 NT) and 96 (45 T and 51 NT) (it depends on the dependent variable and the year analyzed). Results are from local linear 
regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector developed by 
Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a 
quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing variable. Parametric 
regressions include a third order polynomial in the forcing variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, 
**5%, and ***1%. 
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Table C4. Non-parametric and parametric RDD estimates (SOUTH) Non-manufacturing firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00935 0.01268 0.02490 0.04066 0.05349  0.01036 0.01315 0.02356 0.04064 0.05615 
(0.00653) (0.01579) (0.02228) (0.02931) (0.03613)  (0.00738) (0.01616) (0.02317) (0.03068) (0.03788) 

Scale Effect -0.00462 0.00876 -0.03283 -0.00541 -0.05369  0.00559 0.00838 -0.02440 -0.01603 -0.04376 

(0.03224) (0.02765) (0.03036) (0.02530) (0.03196)*  (0.02934) (0.03684) (0.03054) (0.02561) (0.03253) 

Allocative 
Efficiency 

0.01025 -0.01874 0.08064 0.22436 0.06449  -0.10818 -0.11373 -0.00885 0.08155 0.03227 
(0.10441) (0.14281) (0.08221) (0.07498)*** (0.06727)  (0.09240) (0.11631) (0.08819) (0.07885) (0.08224) 

Technical 
Efficiency 

-0.06414 -0.05394 -0.08444 -0.11355 -0.05612  -0.07451 -0.01045 -0.06430 -0.04843 -0.02470 
(0.07417) (0.05947) (0.06103) (0.08661) (0.08138)  (0.07668) (0.06112) (0.05898) (0.07973) (0.06991) 

Total Factor 
Productivity 

-0.08840 0.00595 -0.00657 0.06457 0.10603  -0.12397 -0.08234 -0.07296 0.11213 0.04561 

(0.15089) (0.15393) (0.10359) (0.09922) (0.12379)  (0.14613) (0.14851) (0.11063) (0.10761) (0.12427) 

Note: There are 161 observations (57 treated firms and 104 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 59 (23 T and 36 NT) and 87 (34 T and 53 NT) (it depends on the dependent variable and the year analyzed). Results are from local linear 
regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector developed by 
Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a 
quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing variable. Parametric 
regressions include a third order polynomial in the forcing variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, 
**5%, and ***1%. 
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Appendix D. Non-parametric and parametric RDD estimates for each TFP component by technology (CENTRE-
NORTH) 

Table D1. Non-parametric and parametric RDD estimates (CENTRE-NORTH) Low tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

-0.00066 0.00007 -0.00273 -0.00129 -0.00044  -0.00534 -0.00753 -0.01159 -0.01251 -0.01497 
(0.00254) (0.00409) (0.00634) (0.00782) (0.00933)  (0.00268)** (0.00443)* (0.00603)* (0.00760)* (0.00895)* 

Scale Effect -0.00882 -0.00291 -0.01094 -0.01545 -0.02576  -0.00547 0.01962 -0.00538 0.00232 0.00005 

(0.01357) (0.01105) (0.00910) (0.01490) (0.01822)  (0.01566) (0.01151)* (0.01034) (0.01404) (0.01406) 

Allocative 
Efficiency 

0.08468 0.01998 -0.05317 -0.12527 -0.06239  -0.00504 -0.10845 -0.08104 -0.12614 -0.13898 
(0.08329) (0.09126) (0.07791) (0.10822) (0.08403)  (0.07755) (0.08420) (0.07179) (0.10090) (0.06531)** 

Technical 
Efficiency 

0.01740 0.03796 0.01096 0.11421 -0.12493  0.03194 0.02448 0.00727 0.10304 -0.09755 

(0.03448) (0.02572) (0.02605) (0.09416) (0.10377)  (0.03255) (0.02581) (0.02588) (0.08249) (0.08293) 

Total Factor 
Productivity 

0.07110 0.02330 -0.07053 0.01421 -0.25213  0.02152 -0.07401 -0.08478 0.00580 -0.25719 

(0.08942) (0.09146) (0.08199) (0.15348) (0.12547)**  (0.08568) (0.09668) (0.08024) (0.13498) (0.11465)** 

Note: There are 322 observations (90 treated firms and 232 control firms); however, for non-parametric estimates, the actual number of observations within the 
bandwidth ranges between 77 (47 T and 30 NT) and 144 (61 T and 83 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 

variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table D2. Non-parametric and parametric RDD estimates (CENTRE-NORTH) Medium-low tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

-0.00028 0.00194 0.00716 0.00805 0.01058  -0.00040 -0.00015 0.00166 0.00185 0.00298 
(0.00208) (0.00438) (0.00618) (0.00765) (0.00997)  (0.00187) (0.00356) (0.00449) (0.00560) (0.00692) 

Scale Effect 0.00346 0.00712 -0.01173 0.00595 0.00455  0.00499 0.00291 -0.01305 0.00585 0.00024 

(0.00969) (0.00785) (0.01271) (0.00698) (0.00811)  (0.00886) (0.00851) (0.01038) (0.00744) (0.01167) 

Allocative 
Efficiency 

0.04601 0.21188 0.24962 0.29050 0.19756  0.08872 0.06512 0.16935 0.19361 0.19021 
(0.09255) (0.13140) (0.14701)* (0.13983)** (0.11752)*  (0.10752) (0.11333) (0.11896) (0.11631)* (0.11438)* 

Technical 
Efficiency 

0.03667 -0.01568 0.01866 0.02307 0.02102  0.03837 0.00595 0.02110 0.01853 0.04339 
(0.01391)*** (0.03271) (0.02051) (0.02727) (0.03365)  (0.01800)** (0.02313) (0.02363) (0.02797) (0.03957) 

Total Factor 
Productivity 

0.11376 0.15184 0.24785 0.34521 0.26112  0.15826 0.10301 0.19550 0.24783 0.27808 

(0.09761) (0.12187) (0.13764)* (0.15067)** (0.13800)*  (0.11660) (0.11780) (0.11996) (0.13110)* (0.13712)** 

Note: There are 261 observations (88 treated firms and 173 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 62 (39 T and 23 NT) and 117 (58 T and 59 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 
variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table D3. Non-parametric and parametric RDD estimates (CENTRE-NORTH) Medium-high or high tech firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00194 0.00148 0.00312 0.00502 0.00826  0.00134 0.00240 0.00354 0.00685 0.01138 
(0.00287) (0.00573) (0.00735) (0.01002) (0.01253)  (0.00277) (0.00551) (0.00711) (0.00933) (0.01148) 

Scale Effect 0.00007 -0.01693 -0.01427 -0.03288 -0.03124  -0.00360 -0.01102 -0.00980 -0.01010 -0.00935 

(0.01635) (0.01750) (0.01444) (0.02223) (0.01816)*  (0.01823) (0.01784) (0.01417) (0.01898) (0.01769) 

Allocative 
Efficiency 

-0.21653 -0.20059 -0.12298 -0.17350 -0.14335  -0.13820 -0.15851 -0.08752 -0.19122 -0.12169 
(0.11493)* (0.11538)* (0.10388) (0.10062)* (0.09995)  (0.10675) (0.10177) (0.09167) (0.09483)** (0.09736) 

Technical 
Efficiency 

-0.00261 -0.00681 0.06482 -0.09423 0.03672  0.00235 -0.01531 0.03898 -0.05200 0.02868 
(0.01834) (0.02232) (0.04360) (0.05983) (0.04241)  (0.01808) (0.02328) (0.03410) (0.05209) (0.04471) 

Total Factor 
Productivity 

-0.20380 -0.23549 -0.09791 -0.36408 -0.09555  -0.14155 -0.18243 -0.07180 -0.29016 -0.06106 

(0.11391)* (0.12555)* (0.07795) (0.16502)** (0.08942)  (0.10606) (0.10490)* (0.07459) (0.14210)** (0.09171) 

Note: There are 161 observations (61 treated firms and 100 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 55 (33 T and 22 NT) and 90 (47 T and 23 NT) (it depends on the dependent variable and the year analyzed). Results are from local linear 
regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector developed by 
Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a 
quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing variable. These 
functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table D4. Non-parametric and parametric RDD estimates (CENTRE-NORTH) Non-manufacturing firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00613 -0.00173 0.00112 -0.00057 -0.00096  0.00336 -0.00378 -0.00002 -0.00437 -0.00248 
(0.00651) (0.01456) (0.02014) (0.02561) (0.02170)  (0.00590) (0.01322) (0.01974) (0.02403) (0.02366) 

Scale Effect -0.02434 0.13414 0.11376 0.10706 -0.17050  -0.09858 -0.02854 -0.09574 -0.01684 -0.15834 

(0.07144) (0.06191)** (0.05563)** (0.04927)** (0.17447)  (0.10262) (0.08752) (0.09757) (0.07781) (0.17907) 

Allocative 
Efficiency 

0.11074 0.55586 0.38723 0.21040 0.22965  0.25213 0.51601 0.40897 0.23568 0.25522 
(0.28629) (0.24645)** (0.26545) (0.21848) (0.26787)  (0.36908) (0.27403)* (0.27602) (0.24029) (0.26551) 

Technical 
Efficiency 

-0.05884 0.16619 0.07573 -0.25383 0.18023  -0.04994 0.13538 0.10197 -0.30480 0.27846 
(0.12454) (0.16785) (0.08085) (0.18348) (0.23167)  (0.12176) (0.15256) (0.07137) (0.20281) (0.24466) 

Total Factor 
Productivity 

0.07837 0.58029 0.47934 -0.12899 0.02553  0.10509 0.62975 0.46638 -0.05743 0.30500 

(0.24876) (0.27684)** (0.18681)** (0.34355) (0.26538)  (0.30727) (0.29125)** (0.21937)** (0.33999) (0.26513) 

Note: There are 56 observations (25 treated firms and 31 control firms); however, for non-parametric estimates, the actual number of observations within the 

bandwidth ranges between 19 (9 T and 10 NT) and 48 (22 T and 26 NT) (it depends on the dependent variable and the year analyzed). Results are from local linear 
regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector developed by 
Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is estimated with a 
quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing variable. These 
functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 



47 
 

Appendix E. Heterogeneity of the results due to intensity of treatment (TC, SC, 
AE, TE) 
 

Figure E1. Relationship between TC growth rate (1st and 5th years), subsidy intensity, 
and forcing variable 

 

 

Notes: See notes of Figure 1. 
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Figure E2. Relationship between SE growth rate (1st and 5th years), subsidy intensity, 
and forcing variable 

 

Notes: See notes of Figure 1. 
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Figure E3. Relationship between AE growth rate (1st and 5th years), subsidy intensity, 
and forcing variable 

 

 

 

Notes: See notes of Figure 1. 
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Figure E4. Relationship between TE growth rate (1st and 5th years), subsidy intensity, 
and forcing variable 

 

Notes: See notes of Figure 1. 
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Appendix F. Robustness tests 

Table F1. RDD estimates of the pre-treatment differences in TC, SE, AE, TE, and TFP between subsidized and non-subsidized firms 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable Low tech 

Medium-
low tech 

Medium-
high and 
high tech 

Non-
manufact

uring 
All 

 
Low tech 

Medium-
low tech 

Medium-
high and 
high tech 

Non-
manufact

uring 
All 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

-0.00301 0.00052 -0.02425 -0.03124 -0.00756  -0.00224 0.00062 -0.00245 -0.03246 -0.00591 
(0.00948) (0.00736) (0.03174) (0.02270) (0.00684)  (0.00984) (0.00665) (0.03165) (0.02545) (0.00751) 

Scale Effect -0.00567 -0.01583 0.01283 0.01308 -0.00528  -0.01390 -0.01482 -0.00463 -0.00217 -0.01100 
(0.00987) (0.00852)* (0.01304) (0.02339) (0.00580)  (0.01119) (0.00978) (0.01497) (0.02349) (0.00672) 

Allocative 
Efficiency 

0.03011 -0.03065 0.11052 -0.02342 0.01170  0.02832 -0.04434 0.14428 0.00849 0.01946 

(0.06324) (0.07835) (0.14312) (0.05784) (0.04513)  (0.06446) (0.08388) (0.12344) (0.06305) (0.04201) 

Technical 
Efficiency 

0.03965 0.04929 -0.00014 0.08031 0.04149  -0.02109 0.06410 -0.01278 0.04451 0.01790 
(0.02863) (0.04406) (0.07618) (0.05862) (0.02640)  (0.02304) (0.05311) (0.07026) (0.05432) (0.02359) 

Total Factor 
Productivity 

0.06863 0.04470 0.12050 -0.00403 0.05825  0.03307 0.01268 0.12179 0.03142 0.03982 
(0.09140) (0.09956) (0.15467) (0.07949) (0.05579)  (0.08914) (0.11275) (0.13100) (0.08368) (0.05477) 

Note: For the aggregated estimates (5) and (10) we used the weighting scheme based on the number of treated firms within the optimal bandwidth. Results are 
from local linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth 
selector developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). 
Bias is estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the 
forcing variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Table F2. Non-parametric and parametric Multiple RDD estimates (SOUTH) using an alternative weighting scheme 

 Weighting scheme: Inverse-variance weighting 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00356 0.00318 0.00448 0.01146 0.01924  0.00189 0.00163 0.00279 0.00783 0.01343 
(0.00220) (0.00380) (0.00570) (0.00694)* (0.00818)**  (0.00199) (0.00340) (0.00485) (0.00616) (0.00756)* 

Scale Effect 0.00702 -0.00246 -0.00009 0.00615 0.00060  0.01176 0.00702 0.00917 0.01105 0.01235 
(0.00780) (0.00749) (0.00733) (0.00757) (0.00883)  (0.00809) (0.00853) (0.00718) (0.00742) (0.00852) 

Allocative 
Efficiency 

-0.06289 -0.12476 0.03028 0.17335 0.05870  -0.12406 -0.13485 0.01355 0.09612 0.03149 
(0.05293) (0.06129)** (0.05214) (0.04985)*** (0.04752)  (0.05025)** (0.05925)** (0.05216) (0.04967)* (0.05092) 

Technical 
Efficiency 

-0.06229 -0.00504 -0.07200 -0.02434 -0.09746  -0.03503 -0.02947 -0.03771 -0.02158 -0.01752 

(0.03543)* (0.03614) (0.03128)** (0.03820) (0.04168)**  (0.03290) (0.03201) (0.02936) (0.03797) (0.03923) 

Total Factor 
Productivity 

-0.1499 -0.15659 -0.04730 0.10893 0.03281  -0.15422 -0.15777 -0.03240 0.10835 0.05785 
(0.07245)** (0.08320)* (0.06911) (0.06165)* (0.07689)  (0.07056)** (0.07432)** (0.06801) (0.06339)* (0.07383) 

Note: See notes of Table 2. 

 

  



54 
 

Table F3. Non-parametric and parametric Multiple RDD estimates (SOUTH) using a time-variant specification of u 

 Weighting scheme: Number of treated firms within the optimal bandwidth 

 Non-parametric estimates  Parametric estimates 

Dependent 
variable 

Year 1 Year 2 Year 3 Year 4 Year 5  Year 1 Year 2 Year 3 Year 4 Year 5 

(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Technological 
Change 

0.00088 -0.00033 -0.00045 0.00290 0.00669  0.00053 -0.00076 -0.00101 0.00164 0.00482 
(0.00147) (0.00191) (0.00278) (0.00344) (0.00402)*  (0.00139) (0.00194) (0.00264) (0.00328) (0.00399) 

Scale Effect 0.00770 0.00832 0.00200 0.01162 0.00217  0.01716 0.01897 0.01136 0.01641 0.01068 

(0.01122) (0.01157) (0.01128) (0.01395) (0.01302)  (0.01128) (0.01240) (0.01133) (0.01231) (0.01292) 

Allocative 
Efficiency 

-0.06269 -0.14462 0.03447 0.17234 0.07682  -0.12989 -0.15761 0.03439 0.12363 0.03595 

(0.06922) (0.07253)** (0.07139) (0.07369)** (0.07426)  (0.06475)** (0.07225)** (0.06788) (0.06430)* (0.06693) 

Technical 
Efficiency 

-0.00032 -0.00056 -0.00075 -0.00087 -0.00089  -0.00016 -0.00025 -0.00028 -0.00025 -0.00015 
(0.00042) (0.00082) (0.00118) (0.00153) (0.00186)  (0.00046) (0.00087) (0.00126) (0.00161) (0.00195) 

Total Factor 
Productivity 

-0.05306 -0.14778 0.01396 0.18161 0.08330  -0.10325 -0.14740 0.03957 0.13792 0.05610 

(0.06465) (0.07029)** (0.06607) (0.06869)*** (0.06915)  (0.06230)* (0.06934)** (0.06442) (0.06075)** (0.06351) 

Note: There are 1074 observations (377 treated firms and 697 control firms); however, for non-parametric estimates, the actual number of observations within the 
bandwidth ranges between 463 (228 T and 235 NT) and 541 (255 T and 286 NT) (it depends on the dependent variable and the year analyzed). Results are from local 
linear regression with triangular kernel using the robust confidence intervals and CCT implementation of mean-squared-error optimal bandwidth selector 
developed by Calonico, Cattaneo & Titiunik (2014b). Estimation is implemented in the Stata package rdrobust by Calonico, Cattaneo & Titiunik (2014a). Bias is 
estimated with a quadratic polynomial. 95% robust confidence intervals are in brackets. Parametric regressions include a third-order polynomial in the forcing 
variable. These functions are estimated on both sides of the threshold separately. Significant at *10%, **5%, and ***1%. 
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Figure F1. McCrary test for the analyzed rankings 

 

Note: This test is based on an estimator for the discontinuity at the cut-off in the density function of the 
forcing variable. The test is implemented as a Wald test of the null hypothesis that the discontinuity is 
zero. 


