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Abstract  —  We report effects of annealing on
InP/InGaAs heterojunction bipolar transistors (HBTs)

having an InGaAs base layer C-doped using CBr4 or CBrCl3
as the C source.  It was found that ramp thermal annealing
(RTA) after growth removes H atoms, which are located in

C-dopedd InGaAs base layer and deactivate C acceptors,

resulting in a decrease of base sheet resistance.  An RTA
simultaneously can deteriorate the C-doped base layer.  An

evaluation of base sheet resistance and dc current gain

indicates that InP/InGaAs HBTs with C-doped InGaAs
grown using CBrCl3 are more stable in terms of thermal

stress than those grown using CBr4.  

I. INTRODUCTION

InP/InGaAs heterojunction bipolar transistors (HBTs)

are considered to be key-devices for high-speed

communications systems operating at over 40 Gb/s.  In

order to achieve good device characteristics and good

reliability, heavy p-type doping with a well-controlled

profile is desired for the base layer.  Carbon (C) is a

promising p-type dopant for III-V compound

semiconductors because of its low diffusion coefficient

[1-3] and its ability to be doped to extremely high levels

[4, 5].  These features make C favorable as a dopant for

the base layer of HBTs [6, 7].  

When a C-doped InGaAs layer is grown by

metalorganic chemical vapor deposition (MOCVD), the

hydrogenation of C acceptors is an especially serious

problem because it reduces the hole concentration [8].

It has been reported that thermal treatment in inactive

gases, such as nitrogen, is effective in removing hydrogen

from C-doped InGaAs layers [8-12].  However, thermal

treatment for H removal could deteriorate the C-doped

InGaAs if it puts too much thermal stress on the C-doped

layers, could result in the degradation of device

characteristics.  

In this report, we investigate the influence of C sources

on the thermal stability of C-doped InGaAs base layers.

Two C sources (CBr4 and CBrCl3) were used for growth

of C-doped InGaAs layers.  From the evaluation of base

sheet resistance and dc current gain, it is revealed that a

C-doped InGaAs base grown using CBrCl3 is more stable

in terms of thermal stress than that grown using CBr4.  

II. EXPERIMENTAL PROCEDURE

Carbon-doped InGaAs and C-doped base InP/InGaAs

HBT epiwafers were grown by low-pressure MOCVD on

(100) oriented Fe-doped semi-insulating InP substrates.

The epilayer structrure is shown in Table 1.  Two kinds

of halomethane (CBr4 and CBrCl3) were the C sources.

Triethylgarium and trimethylindium were group-III

sources, AsH3 and  PH3 the group-V sources and H2-

diluted Si2H6 the Si (n-type dopant) source.  Paradium-

duffused H2 was the carrier gas.  

C-doped InGaAs epiwafers were annealed in N2

ambient to remove H atoms that were deactivating C

acceptors [11, 12].  Annealing temperature and duration

time were 500 °C and 20 minutes, respectively.  Hole

concentration and mobility were evaluated by the Hall-

effect measurement by the Van der Pauw method.  

InP/InGaAs HBT epiwafers were annealed after

growth in ramp thermal annealing (RTA) equipment.

RTA temperatures were 600 and 650 °C, and duration

times were 1, 2, and 5 minutes.  HBT devices were

Laye Material Thickness (nm) Dopant Doping (cm-3)

emitter cap n+ InGaAs 100 Si 3¥1019

n+ InP 20 Si 2¥1019

emitter i  InP 70 - -

base p+ InGaAs 50 C 4¥1019

collector i  InGaAs 300 - -

subcollector n+ InP 20 Si 1¥1019

n+ InGaAs 30 Si 1¥1019

n+ InP 340 Si 1¥1019

etch stopper i  InGaAs 20 - -

buffer i  InP 20 - -

TABEL I

The Layer Structure Of InP/InGaAs HBT
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electrically small unit cell with inductances/capacitances 
LR / CL  / CR / LL (H/F) mimicking the incremental cell of 
Fig. 1a. The corresponding dispersion relation can be 
computed analytically by using Kirchoff’s laws and 
Bloch-Floquet theorem (also possible in 2D [5] or 3D). 
This relation is given by 
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 and plotted in Fig. 2. 
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Fig. 2 Dispersion relation computed for the balanced and 
unbalanced CRLH-TL. Balanced: LR = LL = 1 nH, CR = CL = 1 
pF;  unbalanced: LR = 1 nH, LL = 5.5 nH, CR = 1 pF, CL = 2 pF.  
The inset shows the dispersion curve of a balanced non periodic 
CRLH-TL. 

III. PARAMETERS EXTRACTION 

An accurate parameters extraction of CRLH structures 
is crucial for efficient design. The first two applications 
of the next section use a microstrip implementation of the 
CRLH structure, as shown in Fig. 3. This implementation 
was also successfully used in a novel backfire-to-endfire 
leaky-wave antenna presented in [6]. 
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Fig. 3 Layout of the unit cell of the microstrip implementation 
of the CRLH-TL, including a series interdigital capacitor of 
value CL and a shunt stub inductor of value LL shorted to the 
ground plane by a via. 
 
 

The extraction procedure can be performed with the 
help of Fig. 4. It consists in the following steps: (1) full-

wave simulate or measure, separately, the interdigital 
capacitor and the stub inductor; (2) transform their S-
parameters into Y (for C) and Z (for C) parameters, 
whose matrixes are known for the  (for C) and T (for 
C) networks; (3) then all the values in the top circuits of 
Fig. 5 are known; (4) finally, obtain the CRLH 
parameters as 

 
int int stub stub int, 2 , ,R s R p p L p L sL L C C C L L C C  , (6) 

 
where the series inductance of the stub could be 
neglected. 
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Fig. 4  Circuit model for the unit cell shown in Fig. 3. 
 

IV. SELECTED APPLICATIONS 

A.  Arbitrarily Tight Coupled-Line Coupler 

A novel broadband tight backward-wave directional 
coupler with level [7] is obtained by replacing the 
microstrip lines of the conventional coupled-line coupler 
by the CRLH line described in Fig. 3. A rigorous 
even/odd mode analysis revealed that this device exhibits 
unique properties: 

 It can achieve any arbitrary level of coupling. 
In comparison, conventional backward 
coupled-line couplers are typically limited to 
less than -10 dB coupling. 

 It is based not only of capacitive-electric 
coupling (conventional), but also on 
inductive-magnetic coupling. 

 Its electrical length d, is not 90 degrees 
(conventional), as in the conventional case, 
but zero degrees. 

 The previous point is a consequence of the 
fact that the even/odd equivalent TLs are 
operating in a frequency gap: their 
characteristic impedances Z0e / Z0o are purely 
imaginary, and e,o = e,o, where the 
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monotonically regardless of the C source, and higher

RTA temperature enhanced the reduction rate of dc

current gain.  The current gain is linear to the minority

carrier lifetime in base layer, tB.  In a heavily doped

layer like the base in an HBT, minority lifetime is ideally

decided by the Auger recombination process.  In this

case, tB should be linear to (RS(BE))2, that is, b should

show linear dependence on (RS(BE))2.  Figure 5 shows

the dependence of b on RS(BE).  For the HBT with the

C-doped base grown using CBr4, the values of b were

much less than the expected value when the Auger

recombination is dominant.  This suggests that RTA

could induce some non-radiative recombination centers

in the C-doped base layer even if it does not seem to have

any adverse influence (an increase in RS(B), for instance).

Similar behavior was observed for the HBT with the C-

doped base grown using CBrCl3.  As shown in Fig. 5,

the value of b of the sample with RTA at 650°C for 5 min

was lower than that in the case that b was linear to

(RS(BE))2, although the other gains well fit the (RS(BE))2

tendency.  From results shown in Fig. 3, RTA does not

deteriorate RS(B) of CBrCl3-doped samples.  The results

in Fig. 5 suggest that RTA might cause some thermal

damage to the C-doped InGaAs base even if RS(B) shows

no change.  Nevertheless, from Fig. 5, it can be stated

that a base C-doped using CBrCl3 shows good thermal

stability compared with that doped using CBr4.  

IV. SUMMARY

In this work, we investigated the influence of C

sources on the thermal stability of C-doped base

InP/InGaAs HBTs.  Hydrogen atoms in the C-doped

layer, which deactivate C acceptors, can be removed by

RTA.  However, RTA at higher temperature and for

longer durations could deteriorate the crystal quality of

the C-doped InGaAs base, resulting in an increase in base

sheet resistance and a reduction in dc current gain.  The

detarioration of the C-doped InGaAs base can be

suppressed by using CBrCl3 as the C source.
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