Influence of carbon sources on thermal stability of Cdoped base InP/InGaAs heterojunction bipolar transistors

Noriyuki Watanabe, Masahiro Uchida, Hideo Yokohama, Gako Araki

NTT Advanced Technology Corporation,

3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0124, Japan, Tel:+81 46 250 3344

Abstract — We report effects of annealing on InP/InGaAs heterojunction bipolar transistors (HBTs) having an InGaAs base layer C-doped using CBr_4 or $CBrCl_3$ as the C source. It was found that ramp thermal annealing (RTA) after growth removes H atoms, which are located in C-dopedd InGaAs base layer and deactivate C acceptors, resulting in a decrease of base sheet resistance. An RTA simultaneously can deteriorate the C-doped base layer. An evaluation of base sheet resistance and dc current gain indicates that InP/InGaAs HBTs with C-doped InGaAs grown using CBrCl₃ are more stable in terms of thermal stress than those grown using CBr₄.

I. INTRODUCTION

InP/InGaAs heterojunction bipolar transistors (HBTs) are considered to be key-devices for high-speed communications systems operating at over 40 Gb/s. In order to achieve good device characteristics and good reliability, heavy p-type doping with a well-controlled profile is desired for the base layer. Carbon (C) is a promising p-type dopant for III-V compound semiconductors because of its low diffusion coefficient [1-3] and its ability to be doped to extremely high levels [4, 5]. These features make C favorable as a dopant for the base layer of HBTs [6, 7].

When a C-doped InGaAs layer is grown by metalorganic chemical vapor deposition (MOCVD), the hydrogenation of C acceptors is an especially serious problem because it reduces the hole concentration [8]. It has been reported that thermal treatment in inactive gases, such as nitrogen, is effective in removing hydrogen from C-doped InGaAs layers [8-12]. However, thermal treatment for H removal could deteriorate the C-doped InGaAs if it puts too much thermal stress on the C-doped layers, could result in the degradation of device characteristics.

In this report, we investigate the influence of C sources on the thermal stability of C-doped InGaAs base layers. Two C sources (CBr₄ and CBrCl₃) were used for growth of C-doped InGaAs layers. From the evaluation of base sheet resistance and dc current gain, it is revealed that a C-doped InGaAs base grown using CBrCl₃ is more stable in terms of thermal stress than that grown using CBr₄.

II. EXPERIMENTAL PROCEDURE

Carbon-doped InGaAs and C-doped base InP/InGaAs HBT epiwafers were grown by low-pressure MOCVD on (100) oriented Fe-doped semi-insulating InP substrates. The epilayer structrure is shown in Table 1. Two kinds of halomethane (CBr₄ and CBrCl₃) were the C sources. Triethylgarium and trimethylindium were group-III sources, AsH₃ and PH₃ the group-V sources and H₂-diluted Si₂H₆ the Si (n-type dopant) source. Paradium-duffused H₂ was the carrier gas.

C-doped InGaAs epiwafers were annealed in N_2 ambient to remove H atoms that were deactivating C acceptors [11, 12]. Annealing temperature and duration time were 500 °C and 20 minutes, respectively. Hole concentration and mobility were evaluated by the Hall-effect measurement by the Van der Pauw method.

InP/InGaAs HBT epiwafers were annealed after growth in ramp thermal annealing (RTA) equipment. RTA temperatures were 600 and 650 °C, and duration times were 1, 2, and 5 minutes. HBT devices were

Laye	Material	Thickness (nm)	Dopant	Doping (cm ⁻³)
emitter cap	n ⁺ InGaAs	100	Si	3×10^{19}
	n ⁺ InP	20	Si	2×10^{19}
emitter	i InP	70	-	-
base	p ⁺ InGaAs	50	С	4×10^{19}
collector	i InGaAs	300	-	-
subcollector	n ⁺ InP	20	Si	1×10^{19}
	n ⁺ InGaAs	30	Si	1×10^{19}
	n ⁺ InP	340	Si	1×10^{19}
etch stopper	i InGaAs	20	-	-
buffer	i InP	20	-	-

TABEL I The Layer Structure Of InP/InGaAs HBT

electrically small unit cell with inductances/capacitances $L_R/C_L/C_R/L_L$ (H/F) mimicking the incremental cell of Fig. 1a. The corresponding dispersion relation can be computed analytically by using Kirchoff's laws and Bloch-Floquet theorem (also possible in 2D [5] or 3D). This relation is given by

$$\cos\left(\beta a\right) = 1 - \frac{1}{2} \left[\frac{1}{\omega^2 L_L C_L} + \omega^2 L_R C_R - \left(\frac{L_R}{L_L} + \frac{C_R}{C_L}\right) \right]$$
(5)

and plotted in Fig. 2.

Fig. 2 Dispersion relation computed for the balanced and unbalanced CRLH-TL. Balanced: $L_R = L_L = 1$ nH, $C_R = C_L = 1$ pF; unbalanced: $L_R = 1$ nH, $L_L = 5.5$ nH, $C_R = 1$ pF, $C_L = 2$ pF. The inset shows the dispersion curve of a balanced non periodic CRLH-TL.

III. PARAMETERS EXTRACTION

An accurate parameters extraction of CRLH structures is crucial for efficient design. The first two applications of the next section use a microstrip implementation of the CRLH structure, as shown in Fig. 3. This implementation was also successfully used in a novel backfire-to-endfire leaky-wave antenna presented in [6].

Fig. 3 Layout of the unit cell of the microstrip implementation of the CRLH-TL, including a series interdigital capacitor of value C_L and a shunt stub inductor of value L_L shorted to the ground plane by a via.

The extraction procedure can be performed with the help of Fig. 4. It consists in the following steps: (1) full-

wave simulate or measure, separately, the interdigital capacitor and the stub inductor; (2) transform their Sparameters into Y (for C) and Z (for C) parameters, whose matrixes are known for the Π (for C) and T (for C) networks; (3) then all the values in the top circuits of Fig. 5 are known; (4) finally, obtain the CRLH parameters as

$$L_{R} = L_{s}^{\text{int}}, C_{R} = 2C_{p}^{\text{int}} + C_{p}^{\text{stub}}, L_{L} = L_{p}^{\text{stub}}, C_{L} = C_{s}^{\text{int}}$$
, (6)

where the series inductance of the stub could be neglected.

Fig. 4 Circuit model for the unit cell shown in Fig. 3.

IV. SELECTED APPLICATIONS

A. Arbitrarily Tight Coupled-Line Coupler

A novel broadband tight backward-wave directional coupler with level [7] is obtained by replacing the microstrip lines of the conventional coupled-line coupler by the CRLH line described in Fig. 3. A rigorous even/odd mode analysis revealed that this device exhibits unique properties:

- It can achieve any arbitrary level of coupling. In comparison, conventional backward coupled-line couplers are typically limited to less than -10 dB coupling.
- It is based not only of capacitive-electric coupling (conventional), but also on *inductive-magnetic* coupling.
- Its *electrical length* βd , is not 90 degrees (conventional), as in the conventional case, but *zero degrees*.
- The previous point is a consequence of the fact that the *even/odd* equivalent TLs are operating in *a frequency gap*: their characteristic impedances Z_{0e} / Z_{0o} are purely imaginary, and $\gamma_{e,o} = \alpha_{e,o}$, where the

monotonically regardless of the C source, and higher RTA temperature enhanced the reduction rate of dc current gain. The current gain is linear to the minority carrier lifetime in base layer, $\tau_{\rm B}$. In a heavily doped layer like the base in an HBT, minority lifetime is ideally decided by the Auger recombination process. In this case, $\tau_{\rm B}$ should be linear to $(R_{\rm s}({\rm BE}))^2$, that is, β should show linear dependence on $(R_{\rm s}({\rm BE}))^2$. Figure 5 shows the dependence of β on $R_s(BE)$. For the HBT with the C-doped base grown using CBr_4 , the values of β were much less than the expected value when the Auger recombination is dominant. This suggests that RTA could induce some non-radiative recombination centers in the C-doped base layer even if it does not seem to have any adverse influence (an increase in $R_s(B)$, for instance). Similar behavior was observed for the HBT with the Cdoped base grown using CBrCl₃. As shown in Fig. 5, the value of β of the sample with RTA at 650°C for 5 min was lower than that in the case that β was linear to $(R_{\rm S}({\rm BE}))^2$, although the other gains well fit the $(R_{\rm S}({\rm BE}))^2$ tendency. From results shown in Fig. 3, RTA does not deteriorate $R_{\rm S}({\rm B})$ of CBrCl₃-doped samples. The results in Fig. 5 suggest that RTA might cause some thermal damage to the C-doped InGaAs base even if $R_s(B)$ shows no change. Nevertheless, from Fig. 5, it can be stated that a base C-doped using CBrCl₃ shows good thermal stability compared with that doped using CBr₄.

IV. SUMMARY

In this work, we investigated the influence of C sources on the thermal stability of C-doped base InP/InGaAs HBTs. Hydrogen atoms in the C-doped layer, which deactivate C acceptors, can be removed by RTA. However, RTA at higher temperature and for longer durations could deteriorate the crystal quality of

Fig. 4 The dependence of dc current gain on RTA time. The value of β is the dc current gain at collector current density of 1 kA/cm².

the C-doped InGaAs base, resulting in an increase in base sheet resistance and a reduction in dc current gain. The detarioration of the C-doped InGaAs base can be suppressed by using $CBrCl_3$ as the C source.

ACKNOWLEDGEMENT

The authors are indebted to Ms. Minako Fujisaki and Dr. Kenji Shiojima for their experimental support, and to Dr. Yasuhiro Oda, Dr. Haruki Yokoyama, and Mr. Takashi Kobayashi for their valuable discussions. They also thank Dr. Hiroaki Hiratsuka for his continuous encouragement. This work was financially supported by New Energy and Industrial Technology Development Organization (NEDO).

REFERENCES

- N. Kobayashi, T. Makimoto, and Y. Horikoshi, "Abrupt *p*type doping profile of carbon atomic layer doped GaAs grown by flow-rate mofulation epitaxy," *Applied Physics Letters*, Vol. 50, Issue 20, pp. 1435-1437, May 1987.
- [2] T. F. Kuech, M.A. Tischler, P. -J. Wang, G. Scilla, R. Potemski, and F. Cardone, "Controlled carbon doping of GaAs by metalorganic vapor phase epitaxy," *Applied Physics Letters*, Vol. 53, Issue 14, pp. 1317-1319, October 1988.
- [3] K. Saito, E. Tokumitsu, T. Akatsuka, M. Miyauchi, T. Yamada, M. Konagai, and K. Takahashi, "Characterization of *p*-type GaAs heavily doped with carbon grown by metalorganic molecular-beam epitaxy," *Journal of Applied Physics*, Vol. 64, Issue 8, pp. 3975-3979,
- [4] MictKlorraga88. Yamada, T. Akatsuka, S. Nozaki, R. Miyake, K. Saito, T. Fukamachi, E. Tokumitsu, and K. Takahashi, "Metallic *p*-type GaAs and InGaAs grown by MOMBE," *Journal of Crystal Growth*, Vol. 105, Issue 1-4, pp. 359-365, October 1990.
- [5] M. C. Hanna, Z. H. Lu, and A. Majerfeld, "Very high

Fig. 5 The relationship between dc current gain and intrinsic base sheet resistance.

carbon incorporation in metalorganic vapor phase epitaxy of heavily doped *p*-type GaAs," *Applied Physics Letters*, Vol. 58, Issue 2, pp. 164-166, January 1991.

- [6] O. Nakajima, H. Ito, T. Nittono, and K. Nagata, "Current-Induced Degradation of AlGaAs/GaAs Heterojunction Bipolar Transistors and Its Suppression by Thermal Annealing in As Overpressure," *Japanese Journal of Applied Physics*, Vol. 31, Part 1, No. 8, pp. 2343-2348, August 1992.
- [7] K. Kurishima, S. Yamahata, H. Nakajima, H. Ito, and N. Watanabe, "Initial Degradation of Base-Emitter Junction in Carbon-doped InP/InGaAs HBT's Under Bias and Temperature Stress," *IEEE Electron Device Letters*, Vol. 19, No. 8, pp. 303-305, August 1998.
- [8] S. A. Stockman, A. W. Hanson, C. M. Colomb, M. T. Fresina, J. E. Baker, and G. E. Stillman, "A Comparison of TMGa and TEGa for Low-Temperature Metalorganic Chemical Vapor Deposition Growth of CCl₄-doped InGaAs," *Journal Electronic Materials*, Vol. 23, No. 8, pp. 791-799, (1994) 791.
- [9] H. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, and Y Matsuoka, "Growth and Characterization of High-Speed Carbon-Doped-Base InP/InGaAs Heterojunction Bipolar Transistors by Metalorganic Chemical Vapor Depotion," *Japanese Journal of Applied Physics*, Vol. 35, Part 1, No. 6A, pp. 3343-3349, June 1996.
- [10] H. Ito, "Hydrogen Diffusion in C-Doped InGaAs," Japanese Journal of Applied Physics, Vol. 35, Part 2, No. 9B, pp. L1155-L1157, September 1996.
- [11] N. Watanabe, S. Kumar A. K., S. Yamahata, and T. Kobayashi, "Annealing effect on C-doped InGaAs grown by metalorganic chemical vapor deposition," *Journal of Crystal Growth*, Vol. 195, Issue 1-4, pp.48-53, December 1998.
- [12] N. Watanabe, S. Yamahata, and T. Kobayashi, "Hydrogen removal by annealing from C-doped InGaAs grown on InP by metalorganic chemical vapor deposition," *Journal of Crystal Growth*, Vol. 200, Issue 3-4, pp.599-602, April 1999.