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Abstract
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model. Our idea relies on the auxiliary particle filter algorithm mixed to-
gether with Markov Chain Monte Carlo (MCMC) methodology. Adding
an MCMC step to the auxiliary particle filter prevents numerical degen-
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1 Introduction

In this paper we propose a methodology to analyze the sequential parameter

learning problem for a stochastic volatility model with jumps and a predictable

component, i.e., the conditional mean. We aim at updating the estimates of

the parameters of interest together with the states continuously, following the

flow of information arriving in the markets. There are various reasons why we

think sequential methods are appealing, both from a practical and a theoretical

point of view. Sequential procedures seem suitable when we are interested in

real time applications, where we need to update our estimates regularly. For

example, economic agents need to produce estimates and forecasts in real time,

meaning that we need to adapt our estimates every time a new observation is

available. One of the most compelling advantages of sequential Monte Carlo

methods is their reduced computational burden compared with other Monte

Carlo procedures such as MCMC, which require that for each new observation

we have to restart the inferential procedure from scratch.

Our procedure builds on the particle filtering algorithm of Liu and West (Liu

& West 2001) in which we include an MCMC step to prevent the algorithm

degenerating after a number of iterations. The use of MCMC together with

particle filters has been proposed in Gilks & Berzuini (2001) and Berzuini &

Gilks (2001) and has been proved to be an effective combination between the

computational advantages of sequential algorithms and the statistical efficiency

of MCMC methods. The introduction of the MCMC step is particularly useful

when dealing with long time series, since it sensibly reduces the degeneration
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difficulties connected with sequential Monte Carlo methods.

We apply our methodology in a stochastic volatility context. Time vary-

ing conditional variance modelling represents an important topic for financial

applications, and a large literature has grown up on describing financial time

series using stochastic volatility models (see Ghysels et al. 1996 for a review).

Furthermore, the introduction of a jump component has been proved to give

an improved fit to data, both in relation to the model’s ability to describe the

return’s behavior (Eraker et al. 2003), as well as for the pricing of financial

derivatives (see Bakshi et al. 1997, Pan 2002 and Eraker 2004 amongst other).

Several variants of ARCH and SV models have been proposed so far to ac-

count for the empirical regularities of financial time series. In particular, in

this paper we deal with three such regularities within a stochastic volatility

framework. First, we consider the leverage effect between returns and condi-

tional variances; second, we model the conditional mean, that is the predictable

component of the returns; finally, we take into account a jump’s dynamics to

describe extreme and rare events such as crashes on the market. The leverage

effect has been thoroughly investigated in the GARCH setting in Nelson (1991),

whereas in a stochastic volatility framework this issue has been tackled in Yu

(2005). This characteristic describes the relationship between returns and con-

ditional variances. It is in fact reasonable to think that bad news in the markets,

(e.g., the price decreases), leads to a boost on the variance, which is a measure

of the financial risks. On the other hand, episodes of high volatility induce ex-

pectations of lower future returns, hence, the negative correlation between these
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shocks. Furthermore, Hull & White (1987) noted how financial leverage is also

important for option pricing inference.

In financial applications there is substantial evidence of some predictability

on the returns. This finding has been noticed since the early works of Merton

(1971), that gave a theoretical justification for this behavior. In applications

related to optimal portfolio choices, it is important to take into account this

predictable component. In fact, economic theory shows that an investor gains

from market predictability and volatility timing, even if the impact of these

benefits is difficult to quantify. This is why it is interesting to explicitly model

the conditional expected value of the returns together with the dynamics of the

volatilities.

Finally, in the recent literature, there is also evidence in favor of jumps

on returns and volatilities. In fact, a diffusive behavior of these two processes

seems to be inadequate to describe the underlying dynamics (Eraker et al. 2003,

Raggi 2005). Furthermore, if we consider the asset allocation problem in which

the risky asset follows a jump diffusion process, there is some evidence that an

extreme and rare event influences the conditional mean and the volatility, thus

implying a modification on the optimal portfolio weights (Liu et al. 2003).

The remainder of the paper is organized as follows. The basic model is de-

scribed in Section 2. Our inferential solution for that class of models is outlined

in Section 3. Finally, some empirical results based on simulated and real data

are illustrated in section 4.
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2 The Model

A stochastic volatility model for the observable return process is usually specified

as

yt+1 = µt + exp{vt/2}εt+1 + κt+1Jt+1 (1)

vt+1 = µ + φvt + σηηt+1 (2)

µt+1 = α + βµt + σµζt+1. (3)

Returns are defined as yt+1 = 100× (log pt+1 − log pt), where pt is the asset

price. In this framework we assume that the error term εt+1 is standardized

Gaussian white noise. The conditional mean µt+1 and the logarithm of the con-

ditional variance or volatility vt+1 are described by two non observable processes.

The autoregressive specification of the conditional variance is an approximation

of the Euler discretization of the continuous time dynamics proposed in Hull

& White (1987) and in Heston (1993). We assume that the initial state v0 is

distributed according to

N

(
µ

1− φ
;

σ2
η

1− φ2

)
,

which is the invariant law of the autoregressive model, identified by the first

two marginal moments of the log-volatility process. The parameter φ is the

persistence of the volatility that describes the volatility clustering. In empirical

applications this parameter is close to 1 even though it is assumed that |φ| < 1.

This condition implies the stationarity of returns and volatilites. The parameter
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µ is the drift component and ση can be interpreted as the volatility of the

volatility. We assume that the error ηt+1 is a Gaussian white noise. In order to

describe the leverage effect, we assume Cov(εt+1, ηt+1) = ρ. This parameter in

general describes a negative relation between returns and risks even though, in

some application such as in the analysis of exchange rates data, its estimate is

usually close to zero.

In order to properly describe extreme events such as crashes in the markets,

a useful extension is to introduce a jump component in the returns and in the

volatilities. Duffie et al. (2000) for instance propose a model based on a stochas-

tic differential equation with jumps driven by a marked point process. In the

discrete time model, these discontinuities are governed by a sequence of inde-

pendent Bernoulli random variables Jt+1 with fixed intensity1 λ. A Gaussian

random variable κt+1 with mean µy and variance σ2
y describes the size or mark

associated to each jump.

We also directly model the conditional mean via an unobservable autoregres-

sive process µt+1. Chernov et al. (2003) suggest that some serial dependence on

µt+1 can be motivated by the effect of non-synchronous trading and unexpected

stochastic dividends. This dependence is assumed to be mean reverting. Similar

dynamics for the conditional mean have been studied recently in Johannes et

al. (2002b). The conditional mean at time 0 is distributed as

µ0 ∼ N

(
α

1− β
;

σ2
µ

1− β2

)
.

In this paper we assume that the noise ζt+1 is uncorrelated with εt+1 and
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ηt+1 even if there are no theoretical reasons to impose this constraint.

We need also to define the prior distribution for the parameters vector θ. Our

choice is consistent with Kim et al. (1998) and with Eraker et al. (2003). We thus

hypothesize the following prior distributions: µ ∼ N(0; 10), φ ∼ Beta(25; 2),

σ2
η ∼ IG(2.5, 0.05), ρ ∼ U(0,1), α ∼ N(0; 4), β ∼ Beta(25; 2), σ2

ζ ∼ IG(2.5; 0.05),

λ ∼ Beta(2; 100), µy ∼ N(0; 20), σ2
y ∼ IG(2.5; 0.05), where, in particular, IG

denotes the inverse of a Gamma distribution.

3 Sequential Parameter and States Learning

Since their introduction, stochastic volatility models have been an interesting

benchmark for many estimation techniques. Some of these rely on the Efficient

Method of Moments of Gallant & Tauchen (1996), others on the Implied-State

Generalized Method of Moments (IS-GMM) of Pan (2002). Estimation through

Maximum Likelihood has been carried out in Aı̈t-Sahalia (2002), by approximat-

ing analytically the transition density through Hermite polynomials. Recently,

many simulation based methods have been implemented in order to approximate

the likelihood. Simulated maximum likelihood methods have been proposed in

Brandt & Santa-Clara (2002), Durham & Gallant (2002) and Koopman & Hol-

Uspensky (2002) among others. Filtering techniques to evaluate the likelihood

have been implemented in Johannes et al. (2002a) and in Pitt (2002).

In the recent literature, Monte Carlo algorithms have provided a flexible

yet powerful tool for inference on complex models possibly with non observable

components. MCMC methods have been introduced in Jacquier et al. (1994)
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and in Kim et al. (1998). Applications to models with jumps have been devel-

oped in Chib et al. (2002) and in Eraker et al. (2003). Furthermore, MCMC

methods for inference on continuous time models have been implemented in

Eraker (2001) and in Elerian et al. (2001). MCMC methods provide efficient

and accurate estimates when applied to off-line applications, but seem to be

inadequate when dealing with real time applications where we need to update

regularly our estimates at each time step.

Particle filter algorithms, introduced in Gordon et al. (1993), have been suc-

cessfully used in a variety of fields such as engineering, econometrics and biology.

They provide a sub-optimal but feasible solution to the Bayesian filtering prob-

lem. A detailed review on adaptive sequential algorithms is given in Liu & Chen

(1998) and in Doucet et al. (2001), whereas an useful tutorial is Arulampalam

et al. (2002).

We first describe the mechanics of these algorithms when the parameters

are known. We then extend our solution to the parameter learning problem.

Consider, for example, the general state-space model

yt+1 = hm(xt+1, εt+1) (4)

xt+1 = hs(xt, ηt+1) (5)

where (4) and (5) are respectively the measurement and the state equations.

Here xt+1 is the so called state sequence, yt+1 is the observed process, (εt+1, ηt+1)

is a white noise and hs(·) and hm(·) are possibly nonlinear functions. Our

goal is to estimate the distribution p(xt+1|y1:t+1) given p(xt|y1:t) in which
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y1:t = (y1, . . . , yt) is the past history of the observable process up to time t.

To implement the filter, we require the knowledge of the initial distribution

p(x0), of the transition distribution p(xt+1|xt), t ≥ 0 and of the measurement

distribution p(yt+1|xt+1), t ≥ 1. The key idea is to approximate the filtering

density p(xt+1|y1:t+1) by a discrete cloud of points called particles xj
t+1, j =

1, . . . N , and a set of weights ωj
t+1 as follows

p̂(xt+1|y1:t+1) =
N∑

j=1

ωj
t+1δ(xt+1 − xj

t+1), (6)

where δ(·) is an indicator function. The cloud of points at time t+1 can be gen-

erated from a proposal distribution q(xt+1|xi
t, yt) and then weighted according

to

ωi
t+1 ∝ ωi

t

p(yt+1|xt+1)p(xi
t+1|xi

t)
q(xi

t+1|xi
t, yt)

i = 1, . . . N (7)

With this setup, it can be proved that the variance of the weights increases

systematically over t with the consequence that we eventually associate unit

weight to one particle and zero to the others. For this reason a resampling

step is added to this simple scheme in order to avoid numerical degeneracies by

getting rid of the points with low probability.

An important variant of the basic filter is the auxiliary particle filter sug-

gested by Pitt & Shephard (1999) in which the proposal depends on the whole

stream of particles through an auxiliary variable J that is an index for the past

trajectories (more details on this method are provided in Liu & Chen 1998 and

in Godsill & Clapp 2001). In practice, the probability ωt+1 is corrected by an

adjustment multiplier that should diversify the particles. In general this factor
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is taken to be dependent on a likely value of p(xt+1|xj
t ) such as the mean or the

mode. In many applications this extension helps to generate particles that are

likely to be close to the filtering distribution.

Monte Carlo filtering techniques provide a viable and efficient solution to the

filtering problem when the parameters are known. However, inference for the

parameters is a challenging question. Recently a number of papers have tackled

the problem of estimating the fixed parameters in a sequential context. For ex-

ample Storvik (2002) proposes a filter in which the parameters are sequentially

updated by simulating from their conditional distribution p(θ|y1:t+1) through

MCMC. A different approach, named the practical filter by Johannes et al.

(2006), is based on the idea that p(xt+1, θ|y1:t+1) can be expressed as a mixture

of lag-filtering distributions. The estimate is then based on a rolling-window

MCMC algorithm. In the context of stochastic volatility models, however,

these methods seem to provide unstable results for some parameters2. Fur-

thermore, a common practice is to artificially define an autoregressive dynamics

for the parameters, say θt+1, and then include it in an augmented state vector

(xt+1, θt+1) (see Gordon et al. 1993 and Kitagawa 1998 for example). The main

point against this approach is that it leads to time varying and not to fixed pa-

rameter estimates. To correct for this artificial evolution, West (1993) and Liu

& West (2001) propose to approximate the posterior distribution p(θ|y1:t+1) by

a smooth kernel density, leading to

p(θ|y1:t+1) ≈
N∑

i=1

ωi
tN(mi

t+1;h
2Σt+1). (8)
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The quantity mi
t+1 = aθi

t+1 + (1 − a)θ̄t+1 is the kernel location for the

i-th component of the mixture whereas the matrix Σt+1 and the vector θ̄t+1

are respectively estimates of the variance-covariance matrix and of the mean

of the posterior distribution at time t + 1. Furthermore, θi
t+1, i = 1, . . . , N is

a sample from p(θ|y1:t+1). The constants h and a, which measure the extent

of the shrinkage and the degree of overdispersion of the mixture, are given

by h2 = 1 − ((2δ − 1)/2δ)2 and a =
√

1− h2, whereas the discount factor δ

ranges between 0.95-0.99. It can be proved that the variance of the mixture

approximation in (8) is Σt+1 and the mean is obviously θ̄t+1. According to this

setup, at time t + 1, a reasonable proposal for the posterior is then

θt+1|θt ∼ N
(
aθt + (1− a)θ̄t, h

2Σt

)
. (9)

This methodology has been successfully used in Liu & West (2001) in a

dynamic factor stochastic volatility context and in Carvalho & Lopes (2006) in

a switching regime stochastic volatility framework.

For the stochastic volatility model with jumps defined in eq (1)-(3) we found

that the basic setup described above perform poorly. The major drawback with

this algorithm is that the estimated posterior variance-covariance matrix Σt+1

collapses to zero after a few hundred iterations. This problem is probably due

to the sample impoverishment phenomenon caused by the resampling procedure

and also by the discontinuous nature of the jump process. In fact, particles with

high probability are selected many times causing a loss of diversity in the cloud

of points. This effect is severe when the noise of the latent process is small3. A

possible remedy is to choose an efficient resampling scheme that keeps low the

11



Monte Carlo variance. The residual sampling proposed in Liu & Chen (1995)

is a useful alternative. Instead of resampling N particles with replacement, this

strategy first takes bNωj
t+1c copies of xj

t+1 and then samples the remaining

according to a probability proportional to Nωj
t+1−bNωj

t+1c, where the symbol

bzc refers to the greatest integer less or equal to z. The procedure can be

synthesized as follows

Residual Sampling

• Retain kj = bNωj
t+1c copies of xt+1;

• Sample the remaining N −∑N
i=1 ki with probability proportional to

Nωj
t+1 − bNωj

t+1c;

• Reset the weights to
1
N

.

Another approach to increase the sample variability is to resort to MCMC

moves. This should also help to reduce the correlation between particles after

resampling. This idea has been recently developed in Gilks & Berzuini (2001)

and in Berzuini & Gilks (2001). In practice, calling x̃t+1 = (xt+1,θ), the parti-

cles x̃i
t+1 approximating p(θ, xt+1|y1:t+1), can be moved to a different location

x̃′it+1 according to a Markov transition kernel T (x̃t+1, x̃
′
t+1), that is invariant

with respect to the same filtering distribution. For this reason, a burn-in period

for the MCMC step is not necessary.

More formally, given the posterior distribution p(x̃t+1|y1:t+1), the impor-

tance weights ωt+1(x̃t+1) and the proposal q(x̃t+1|x̃t+1, yt), it is easy to check
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that

p(x̃t+1|y1:t+1) =
∫

ωt+1(x̃t+1)q(x̃t+1|x̃t, yt)T (x̃t+1, x̃
′
t+1) dx̃t+1

= p(x̃′t+1|y1:t+1). (10)

In other words, we move all the particles (xi
t+1, θ

i), that approximate the

posterior, through T (·, ·) thus obtaining a further approximation of the filtering

distribution based on the weighted sample (θ′i, x′it+1, ω
i
t+1).

Our proposal is to apply the MCMC correction to the parameter learning

methodology proposed in Liu & West (2001). We now provide the details of the

algorithm considering the version we implement for the model described in eq.

(1)-(3). Using the notation introduced in Johannes et al. (2002a), we write the

vector of the states as xt+1 = (vt, µt, Jt+1, κt+1) and we estimate the posterior

distribution p(vt, µt, Jt+1, κt+1, θ|y1:t+1).

In order to perform the MCMC step we need to keep track of the whole trajec-

tory of each particle. A useful way to store all of these information is through

a set of sufficient statistics St (Fearnhead 2002). For our model, the sufficient

statistics up to time t are

St =

(
v0,

t∑

i=1

vi,

t∑

i=1

vi−1,

t∑

i=1

v2
i−1,

t∑

i=1

v2
i ,

t∑

i=1

vivi−1,

t∑

i=1

aibi,

t∑

i=1

aibivi−1,

t∑

i=1

aibivi,

t∑

i=1

a2
i b

2
i , µ0,

t∑

i=1

µi,

t∑

i=1

µi−1,
t∑

i=1

µ2
i ,

t∑

i=1

µ2
i−1,

t∑

i=1

Ji,
t∑

i=1

κi,
t∑

i=1

κ2
i

)
.

where ai = yi − µi−1 − κiJi and bi = exp {−vi−1/2}. It can be noticed that
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the sufficient statistics may depend on vt and µt that belong to xt+1. In this

case we estimate these quantities by simulating them from their dynamics. The

amount of computer memory required is, thus, sensibly reduced. The resulting

algorithm is summarized as follows

Parameter learning algorithm

0. Simulate N particles from the prior p(θ), from p(v0) and from p(µ0), J0 = 0

and κ0 = 0 with equal weights;

For t = 1 to T :

1. Given xj
t = (vj

t−1, µ
j
t−1, J

j
t , κj

t , θ
j
t ) and ωj

t , j = 1, . . . , N , compute

v̄j
t = E[vt|vj

t−1,θ
j
t ]

µ̄j
t = E[µt|µj

t−1, θ
j
t ]

mj
t = aθj

t + (1− a)θ̄t

J̄j
t+1 = 0

2. Draw an integer τ from τ ∈ {1, . . . , N} using residual sampling with prob-

abilities

gj
t+1 ∝ ωj

t p(yt+1|v̄j
t , µ̄

j
t , J̄t+1, m

j
t )

3. Update θt+1 from N(mτ
t , h2Σt)

4. Update vt from p(vt|vτ
t−1,θ

τ
t+1)

5. Update µt from p(µt|µτ
t−1,θ

τ
t+1)
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6. Update Jt+1 from p(Jt+1|θτ
t+1)

7. Update κt+1 from p(κt+1|θτ
t+1)

8. Update the sufficient statistics according to the draws in step 3 to 7.

9. Compute ωτ
t+1 ∝ p(yt+1|vτ

t ,µτ
t θτ

t+1)

p(yt+1|µ̄τ
t ,v̄τ

t ,mτ
t )

10. Repeat step (2)-(9) N times. Record xj
t+1 = (vj

t , µ
j
t , J

j
t+1, κ

j
t+1, θ

j
t+1) .

11. (Optional) Move the former particles according to MCMC with invari-

ant distribution equal to the posterior and update the sufficient statistics

according to the former MCMC move.

We perform the MCMC step through a Gibbs sampler. In this way, we

update the parameters θ every 50 iteration of the algorithm, whereas Jt+1 and

κt+1 are updated systematically. This choice provides a reasonable compromise

between statistical precision and computational burden. It is also convenient to

use some transformation of the parameters θ in order to extend their support

to the real line. In fact the posterior is approximated by a mixture of Normals,

and then a convenient reparameterization of the model is in terms of parameters

lying on the real line. This is important in order to perform step 3 of the

algorithm. We then consider the transformed parameter φ∗ = log φ− log(1−φ)

and β∗ = log β − log(1 − β). We also define ρ∗ = log(1 + ρ) − log(1 − ρ). For

the same reason we consider the logarithm of ση, σµ, σζ and of the intensity λ.
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4 Empirical Results

In this section we provide some illustrative examples to show the performance

of the algorithm. More precisely we apply our parameter learning procedure to

simulated and real data, i.e., daily Standard’s & Poor 500 index returns and

daily 3-months Treasury bill. All the calculations are based on software written

using the Ox c©3.2 language of Doornik (2001).

4.1 Simulated Data

We simulate a time series of length T = 2000 from the model described by

equations (1)-(3). The true parameters, consistent with empirical findings on

similar stochastic volatility models with jumps, are the following

• Volatility process: µ = 0.06, φ = 0.95, ση = 0.15, ρ = −0.5;

• Conditional mean: α = 0.001, β = 0.90, σµ = 0.1;

• Jump Process: λ = 0.01, µy = −4, σy = 2.

We approximate the posterior distributions of interest through a cloud of

25,000 particles. Figure 1 reports the sequential learning process for the pa-

rameters, i.e., the evolution of the posterior mean together with the 2.5 and the

97.5 percent posterior quantiles.

Our algorithm provides accurate estimates for the parameters of the log-

volatility process and, in fact, the posterior means of φ, ση and ρ quickly con-

verge to their true values. In particular, the algorithm provides very precise

estimates of the leverage ρ and of the persistence φ. It is also interesting to
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Figure 1: Estimated parameters together with the 2.5 and the 97.5 percent
posterior quantiles
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note the accuracy obtained for the volatility of volatilities parameter ση. This

is surprising since, in the sequential literature, this parameter seems really sen-

sitive to outliers, (see Johannes et al. 2006 for further comments on this point).

The top panel of Figure 3 shows that the estimated log-volatility closely follows

the true process.

More difficulties arise with the conditional mean parameters. Even though

Figure 3 suggests that the true trajectory of µt is well approximated by its

estimate, we find that the persistence parameter β is slightly under-estimated,

while the estimate of σµ is slightly bigger than its true value. However, we note

that these estimates are of a similar magnitude as the true values. We think that

this effect can be reduced by introducing a non null correlation between yt+1

and µt+1 in order to strengthen the bonds between the observable and the latent

processes. This adjustment should make the observed data more informative

for the conditional mean’s parameters.

It is interesting to note that the algorithm detects the jumps accurately. This

feature is displayed in Figure 2. In a few other cases we have noted an occasional

inability of the algorithm to distinguish between outliers and actual jumps. This

is especially evident when an extreme return is observed at the beginning of

the series and when the jump size is small. However, Figure 2 suggests that

the algorithm is very accurate in detecting expected size and timing. In some

occasions difficulties arise when estimating the parameters related to the jump

process, in which case some care has to be taken in the empirical analysis. The

reason for these occasional pitfalls is most likely due to the rare nature of the
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Figure 2: The simulated data are in the top left panel; in the bottom left panel
the estimated probabilities of jumps; on the right the true and estimated impact
of a jump event.

jumps. It is thus difficult to identify the parameters describing κt, i.e., µy and

σy. Difficulties related to the lack of identification of jump models are however

a common problem in this field and have also been noticed in Chib et al. (2002)

and in Eraker et al. (2003). The algorithm, however, provides a precise estimate

for λ.

As a final experiment, we consider a simulated time series with T = 2500,

the same true parameters as before, but in which we add some positive jumps

in order to check whether the algorithm is able to detect extreme observations

with heterogeneous sizes. More precisely we add jumps of size +5% at t = 1150

and at t = 2095. The jump at t = 1150 corresponds to a positive jump in

a period of quiet (no jumps immediately before that observation) whereas the
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Figure 4: In the top panel we report the true data, whereas in the middle and
in the bottom there are the true expected jump’s impact and the estimated one.

second follows a sequence of negative jumps. The results are reported in Figure

4.

It is evident that the algorithm still detects all of the major jumps, including

the two with positive size. For the first one we also obtain an accurate estimate

of its expected size. We estimate the jump at t = 1150 with probability 1

and size 5.85%. We detect the second jump with a probability of about 96%
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although the expected size is lower than the true value at around 3.56%. It is

worth noting that the parameter estimates are in line with the results of the

first Monte Carlo experiment.

4.2 S&P 500 Index

In this section we report some empirical results based on the S&P 500 in-

dex observed daily from January 1985 to July 2003. The data set has been

downloaded from Datastream. As usual, the returns are defined as yt+1 =

100 × (log pt+1 − log pt). We estimate the model by approximating the distri-

butions of interest through 50,000 particles, though, halving this number leads

to an analysis with similar results. The output is summarized in Figures from

5 to 8.

Figure 5 provides the plot of the observed time series together with the

estimates of the latent processes. For the log-volatility and the conditional mean

we also give 95% confidence bands. It is remarkable to note that associated with

each spike on the original data set is an estimated high probability of jump. This

is particularly evident for the crash observed during October 1987. Furthermore,

it seems that other jumps observed in the last six years are properly estimated.

Together with the jumps, it is easy to note that the log-volatility bursts every

time a jump is detected, which is a reasonable feature since an extreme and

negative event leads to a sudden and huge increase on the variability of the

financial asset. The impact of the jump process on explaining the total marginal

variance is about 20.4 percent. This estimate provides further evidence on the

importance of the jumps to explain the variability of the returns.
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Figure 5: On the top left panel we report the original dataset. Filtered estimates
of the unobservable processes are reported on the other panels. For volatility
and conditional means, the figures display the 2.5% and the 97.5% confidence
bands. For the jump times and sizes we report posterior means.
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Figure 6: Estimated parameters of the volatility dynamic µ, φ, ση, ρ (solid line)
and the 95% confidence bounds (dotted line).
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In Figure 6 we show the sequential evolution of the parameters involved in

equation 2. The estimate of ρ is approximately -0.33 and confirms a marked

leverage effect, since it is negative and substantially different from zero. The

log-volatility process is persistent since φ is greater than 0.92. We found that

φ tends to increase slightly in time, but this behavior can be explained by

the rising volatility observed during the last four years. The parameter ση is

approximately 0.21, which is slightly higher than the MCMC estimate obtained

with the simpler stochastic volatility model with no jumps and no time varying

conditional mean4.

The analysis of µt provides evidence about the predictability of the returns.

The intercept α is positive but close to zero and the persistence parameter β

converges to 0.76. This high estimate of β clearly implies a non null autocor-

relation of µt and suggests that the effect of a jump is persistent over time,

thus influencing future returns. We think it is important to notice this feature,

since in the current literature jumps are often taken to be independent with a

transient impact on returns. This is one of the reasons why jumps are usually

added to the volatility process.

Finally, the parameter estimates related to Jt and κt are plotted in Figure

8. The intensity λ suggests that the model detects about three extreme events

per year. However, this estimate is about 6 times larger during the 1987 crisis.

During that period, in fact, there are a number of small jumps close to the main

one dated 19th of October. Concerning µy and σy, the expected size and the

variability of κt, we obtain that µy ≈ 0.33 and σy ≈ 3.63. This high value
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line) and the 95% confidence bounds (dotted line).
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of σy implies that the impact of jumps on the returns is heterogeneous. More

precisely, it seems that the model accurately describes the timing of the jumps,

but their effect is quite variable. The estimates reported, in fact, indicate that

κt likely ranges between ±7 percent.

This analysis suggests that the model can be generalized to allow for a time

dependent intensity λt. On closer inspection, Figure 5 suggests that jumps

arrive in clusters. For example, we estimate many jumps between 1986 and

1991, none in the subsequent five years and then several jumps again in the

final period. It is also easy to note that jumps with high size are more frequent

in periods with high volatility, thus suggesting that the intensity λ and the

jump’s size κt may be time varying and dependent on the volatility.

4.3 Short-term interest rates

We now apply the stochastic volatility model with jumps to short-term interest

rates data. Recently, Johannes (2004) and Andersen et al. (2004) argued that

the introduction of jumps on the interest rates dynamics should provide a better

description of the statistical characteristic of the data and of the term structure

of interest rates. Johannes (2004) also develops a test to detect the presence of

the jumps dynamics based on the ability of a model that describes the kurtosis

of the data. It is clear from that framework that pure diffusive models are

unable to properly describe higher moments of the data.

From an economic point of view, Johannes (2004) suggests that large move-

ments on interest rates are motivated by the need to describe the impact of

some unexpected macroeconomic announcement. In fact, interest rates are not
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Figure 9: Interest rates data. Estimated parameters together with the 2.5 and
97.5 percent posterior quantiles

influenced by macroeconomic news, but rather by the surprise effect induced

by the news themselves. We perform our analysis on the daily series of the

3-months Treasury bill (T-bill) rt, from January 1990 to the 22nd of February

2007, downloaded from the H.15 release of the Federal Reserve System. In this

analysis we consider the movements of the interest rates in basis point, that is,

yt = 100× (rt+1 − rt). The results are displayed in Figure 9 and in Figure 10.
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There is strong evidence that the conditional means and conditional vari-

ances are persistent. In fact both the parameter estimates φ and β are greater

than 0.93. It is interesting to compute the half-life of the two autoregressive

processes, defined as the number of periods required for the impulse response

to a unit shock to a time series to dissipate by half. In practice, if the per-

sistence parameter is φ, the half-life is defined as
log 0.5
log φ

. The half-life for the

log-volatility process is about 10.57 whereas for the conditional mean it is 10.64.

These quantities imply that it takes about two weeks for the two processes to

absorb 50% of a shock.

In this application we find that ρ is significantly negative and is about −0.42.

This is quite different from the results of Andersen et al. (2004) in which this

parameter is set to 0. This difference is probably due to the different choice of

the drift term of yt. Similar findings have been reported in Raggi (2005) on a

study of equity returns through affine models.

The parameter λ describes the intensity of the jump process. According

to its estimate at time T we expect 0.08363 × 250 ≈ 21 jumps per year. The

expected size of the jumps is negative (µy ≈ −1.63) and σy is approximately

4.29. These estimates implies that a reasonable range for the jumps size lies

between -10.70% and 6.8%.

The introduction of the jump factor is also useful on explaining the second

moment of the interest rates process. We compute the ratio
Var[(Jtκt)]

Var[yt]
that

expresses the percentage of the total variance due to jumps. In our analysis

we find that jumps explain 15.89% of the total variance. This result is consis-
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tent with the findings reported Eraker et al. (2003) for their analysis on equity

indexes.

5 Conclusions and Further Developments

Monte Carlo sequential methods represent a valuable and reliable methodology

to estimate non linear and non gaussian state-space models. Their application

also seem to be useful to the analysis of stochastic volatility models. In this

paper we have proposed an algorithm based on the kernel smoothing approxi-

mation of the posterior suggested in Liu & West (2001) in which an MCMC step

is incorporated in order to reduce sampling impoverishment problems related to

sequential Monte Carlo strategies. Furthermore, in our empirical applications,

we noticed that the algorithm also provides consistent and stable results with

longer time series that are typical in financial econometrics.

An interesting economic issue to explore is to quantify how an extreme event

has an impact on the optimal portfolio weights. In an affine jump diffusive

framework (see Duffie et al. 2000 for a theoretical treatment for these models),

Liu et al. (2003) prove that these optimal weights can be computed through

the solution of an ordinary differential equation. We believe it would be inter-

esting to estimate sequentially these quantities immediately before and after a

crash, taking into account the parameters and states uncertainty related to the

inferential procedure.
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