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ABSTRACT
Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for
the presence of magnetic fields extending over ∼ Mpc scales. However, the origin of these
fields remains elusive. With new high-resolution grid simulations, we studied the growth of
magnetic fields in a massive galaxy cluster that in several aspects is similar to the Coma cluster.
We investigated models in which magnetic fields originate from primordial seed fields with
comoving strengths of 0.1 nG at redshift z = 30. The simulations show evidence of significant
magnetic field amplification. At the best spatial resolution (3.95 kpc), we are able to resolve
the scale where magnetic tension balances the bending of magnetic lines by turbulence. This
allows us to observe the final growth stage of the small-scale dynamo. To our knowledge, this
is the first time that this is seen in cosmological simulations of the intracluster medium. Our
mock observations of Faraday rotation provide a good match to observations of the Coma
cluster. However, the distribution of magnetic fields shows strong departures from a simple
Maxwellian distribution, suggesting that the three-dimensional structure of magnetic fields
in real clusters may be significantly different than what is usually assumed when inferring
magnetic field values from rotation measure observations.

Key words: dynamo – MHD – methods: numerical – galaxies: clusters: intracluster medium –
intergalactic medium – large-scale structure of Universe.

1 I N T RO D U C T I O N

The shape, strength and structure of magnetic fields in galaxy
clusters have been inferred from radio observations (e.g. Clarke,
Kronberg & Böhringer 2001; Carilli & Taylor 2002; Feretti
et al. 2012), indicating the presence of ∼Mpc-wide fields with a
strength of a few ∼μG.

The distribution of magnetic fields in the intracluster medium
(ICM) can be probed via rotation measure (RM) of polarized sources
emitting through the cluster volume. For sources located in the back-
ground of the cluster, the signal goes as RM ∝ ∫

B ||nedl, where B ||
is the magnetic field component along the line of sight, ne is the
electron density and dl is the line element along the line of sight.
From the observed distribution of sources across a cluster, it is pos-
sible to infer the three-dimensional distribution of magnetic fields
that reproduces the data best (e.g. Govoni et al. 2001; Clarke, Kro-
nberg & Böhringer 2001; Murgia et al. 2004; Guidetti et al. 2008;
Bonafede et al. 2010; Vacca et al. 2010; Böhringer, Chon & Kro-
nberg 2016). Central to this method is the assumption that the
underlying magnetic fields are isotropic, with Gaussian-distributed
components, and that the magnetic field spectrum is described by a
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power law (e.g. Tribble 1991; Murgia et al. 2004). The Coma cluster
presently gives the most stringent constraints on the ICM magnetic
field, owing to the large number (12) of polarized sources detected
in and behind the cluster (Bonafede et al. 2010, 2013). The best-
fitting model for the central ∼ Mpc region gives B(r) = B0(n/n0)0.5,
with B0 = 4.7μG (n0 is the core gas density). Observed RM data
are consistent with the assumption of a Kolmogorov spectrum of
magnetic fluctuations in the ∼1–50 kpc scale range (Bonafede
et al. 2010). However, this model underestimates the observed
Faraday rotation (FR) signal from the South West (SW) sector
of Coma, in the direction of the radio relic (Coma C, Bonafede
et al. 2013).

The origin of magnetic fields in clusters is not fully under-
stood. High-order fluctuations and non-Gaussianities in the cos-
mic microwave background (CMB) constrain primordial magnetic
fields to be ≤10−9 G (comoving) on scales of ∼ Mpc at the time
of decoupling (Ade et al. 2015). Conversely, lower limits on the
magnetization of voids of ≥10−16 G have been derived from
the spectra of high-z blazar sources (e.g. Neronov & Vovk 2010,
see also Tiede et al. 2017 for a recent review). The amplifica-
tion of primordial weak magnetic fields (Subramanian 2016) via
a turbulent dynamo during structure formation might explain the
observed magnetic fields inside clusters (e.g. Dolag, Bartelmann
& Lesch 1999; Brüggen et al. 2005; Ryu et al. 2008). Still, other
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astrophysical sources of magnetic seeding at lower redshift, such
as supernovae and active galactic nuclei (AGNs), may well con-
tribute to the cosmological magnetic fields seen today (e.g. Bertone,
Vogt & Enßlin 2006; Donnert et al. 2009; Xu et al. 2009; Samui,
Subramanian & Srianand 2017). Distinguishing between competing
magnetogenesis scenarios in the ICM is almost impossible because
the memory of seed fields is believed to be erased by the dynamo
(Cho 2014; Beresnyak & Miniati 2016). However, these models
predict discrepant results at cluster outskirts, in filaments and voids
(e.g. Donnert et al. 2009; Vazza et al. 2015b, and discussion therein).
With a large set of new cosmological simulations, we recently ex-
plored how competing seeding scenarios for extragalactic magnetic
fields affect a wide range of observables and concluded that radio
observations offer the best way to constrain magnetogenesis (Vazza
et al. 2017). In particular, the Square Kilometre Array (SKA) and
its pathfinders (e.g. LOFAR, MWA, MeerKAT and ASKAP ), both,
in continuum (Brown 2011; Vazza et al. 2015a, 2016) and polarized
(Govoni et al. 2013, 2015; Taylor et al. 2015) intensity will have
the potential to probe cluster outskirts and the magnetization of the
cosmic web outside of clusters (Bonafede et al. 2015), also using
stacking techniques (Stil & Keller 2015) or cross-correlation with
galaxy catalogues (Vernstrom et al. 2017; Brown et al. 2017).

The direct numerical simulation of dynamo amplification requires
high spatial resolution. This is necessary to resolve the scale, lA,
below which the magnetic tension can counteract the bending of
magnetic field lines and start the linear growth stage of the small-
scale dynamo in the ICM (e.g. Schekochihin et al. 2004). This scale
varies with time and across space, as the Universe expands and the
magnetic fields and the turbulent motions evolve (e.g. Beresnyak &
Miniati 2016).

The growth of the small-scale dynamo in the ICM has hardly been
observed in cosmological grid simulations (e.g. Brüggen et al. 2005;
Dubois & Teyssier 2008; Collins et al. 2010; Ruszkowski et al. 2011;
Vazza et al. 2014; Marinacci et al. 2015; Egan et al. 2016; Wittor,
Vazza & Brüggen 2017b), owing to the difficulty of reaching
a large enough Reynolds number and thus resolve lA. Magnetic
field configurations close to the observed ones were only ob-
tained by adding cooling and a local amplification from feedback-
induced turbulence (Dubois & Teyssier 2008; Collins et al. 2010;
Ruszkowski et al. 2011; Marinacci et al. 2015, 2017), or by ex-
plicitly including the additional magnetization from AGNs (Xu
et al. 2009, 2011, 2012; Skillman et al. 2013; Vazza et al. 2014).

The results from smoothed-particle hydrodynamical (SPH) cos-
mological simulation disagree with the aforementioned results from
grid simulations, in that they typically find a much larger am-
plification of magnetic fields starting from high redshifts (Dolag,
Bartelmann & Lesch 1999; Gazzola et al. 2007; Dolag, Bykov &
Diaferio 2008; Donnert et al. 2009; Dolag & Stasyszyn 2009;
Bonafede et al. 2011; Beck et al. 2012; Stasyszyn, Dolag &
Beck 2013; Beck et al. 2013).

Here, for the first time (as far as we know) we could (i) show
evidence for the non-linear stage of dynamo amplification in a
Eulerian simulation of the ICM;1 (ii) produce a good match to
the observed FR in the Coma cluster, starting from a primor-
dial weak field. In order to reach the linear dynamo regime, it
is crucial that the effective spatial resolution allows the presence
of flows with a high hydrodynamical Reynolds number (Re ≥

1 We notice that evidence of small-scale dynamo in cosmological simula-
tions of a Milky Way-like galaxy has been recently reported by Pakmor et al.
(2017), using a moving mesh hydrodynamical method.

1000) and to resolve the local magnetohydrodynamic (MHD) scale
(Section 3.3). We present a number of diagnostics, such as the evo-
lution of distribution functions, power spectra of the magnetic field,
as well as the statistics of field curvature, as described in Sections
3.1–3.3. The structure of the paper is the following: in Section 2,
we present in detail the numerical setup used to simulate magnetic
fields in galaxy clusters; in Section 3, we show our results, and
in Section 4, we discuss their possible limitations and relevance
for future radio observations. Finally, our conclusions are given in
Section 5.

The assumed cosmology in this work a �cold dark matter model
with: h = 0.72, �M = 0.258, �b = 0.0441 and �� = 0.742, as in
Vazza et al. (2010).

2 SI M U L AT I O N S

We simulated the formation of a massive, ∼1015 M� galaxy clus-
ter using a customized version of the cosmological grid code ENZO

(Bryan et al. 2014). As in our previous work (Vazza et al. 2014),
we used the Dedner formulation of MHD equations (Wang &
Abel 2009) and used adaptive mesh refinement (AMR) to increase
the dynamical resolution (e.g. Xu et al. 2009; Egan et al. 2016).

In this work, we only present the result of non-radiative cosmo-
logical simulations that include only the effects of cosmic expan-
sion, gravity and (magneto)hydrodynamics. In forthcoming work,
we will simulate intracluster magnetic fields with increasing phys-
ical complexity. In this first step, we focus on the role of numerical
resolution in the simulation of turbulence and magnetic fields, start-
ing from the simplest magnetic field seed. The limitations of this
model are discussed in Section 4.1.

This cluster forms in a volume of (260 Mpc)3 (comoving), and is
simulated starting from an initially uniform grid of 2563 cells and
using 2563 dark matter particles. The initial density perturbation
field is taken from a suite of existing cluster simulations (e.g. Vazza
et al. 2010, and other works derived from this). We focused on
resimulating this specific object because it has a total mass very
close to the mass of the Coma cluster. The Coma cluster is an ideal
test bed for magnetic field studies since its large angular extent on
the sky allowed for the largest number of RMs from background
sources.

The innermost ∼ 25 Mpc3 volume, centred on where the cluster
forms, has been further refined using AMR. Refinement is initiated
wherever the gas density is ≥1 per cent higher than its surroundings.
In a resolution study, we produced six resimulations of the same
object by increasing the maximum refinement level, to monitor
how magnetic field amplification evolves with resolution, from the
coarsest resolution of �xmax = 126.4 kpc to the highest resolution
of �xmax = 3.95 kpc (see Table 1 for a list of our runs).

Fig. 1 shows the radial profile of the mean and maximum number
of AMR levels for the same snapshot (in the same plot, we addition-
ally show also the profiles of mean and maximum magnetic field
strength for the cluster). Basically, the entire volume of the cluster
is refined at least up to the sixth AMR level (15.8 kpc) at z = 0,
and the vast majority of the central volume within ≤1 Mpc from
the cluster centre is simulated at the highest possible resolution of
3.95 kpc per cell.

Unlike previous work (Vazza et al. 2010), in most of our runs we
do not employ nested initial conditions to selectively increase the
mass resolution of dark matter particles within the cluster as this
would increase the necessary computational resources. Therefore,
our mass resolution is limited to mDM = 1.04 × 1011 M�. We
comment on the effect of a limited mass resolution in Section 4,
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Table 1. Main parameters of our MHD run for the cluster simulated in
this work. The first column gives the maximum number of AMR levels for
each run, the second the corresponding maximum spatial resolution and the
third the mass resolution of dark matter particles; the fourth column gives
the initial seed field (in comoving units, starting from z = 30), and the last
column gives the ID used throughout the paper.

NAMR �xmax(kpc) mDM (M�) Seeding ID

3 126.4 1.04 × 1011 B0 = 0.1 nG AMR3
4 63.2 1.04 × 1011 B0 = 0.1 nG AMR4
5 31.6 1.04 × 1011 B0 = 0.1 nG AMR5
6 15.8 1.04 × 1011 B0 = 0.1 nG AMR6
7 7.9 1.04 × 1011 B0 = 0.1 nG AMR7
8 3.95 1.04 × 1011 B0 = 0.1 nG AMR8
8 3.95 1.30 × 1010 B0 = 0.1 nG AMR8dm
8 3.95 1.30 × 1010 B0X = 0.1 nG AMR8bx
8 3.95 1.30 × 1010 B0 = 0.03 nG AMR8b0.03nG
8 3.95 1.30 × 1010 B0 = 0.1 nG AMR8dm_E14

Figure 1. Radial distribution of the refinement levels in our AMR8 run at
z = 0 (black lines) and of the magnetic field at the same radius (purple). The
solid lines show the average quantities and the dotted lines the maximum
values at each radius.

where we include the comparison with a resimulation of the same
object at eight times higher mass resolution for the DM component
(run AMR8dm in Table 1).

All our runs assume a simple primordial seeding scenario, in
which we initialized the magnetic field to a uniform value B0

across the entire computational domain, along each coordinate axis.
The initial magnetic seed field of 0.1 nG (comoving) is chosen
to be below the upper limits from the analysis of the CMB (e.g.
Subramanian 2016).2 In this work, we simply imposed the same
initial value for each magnetic field component at the starting red-
shift (z = 30). This initialization is obviously simplistic and neglects
other possible initial distributions of magnetic fields, which would
be allowed by CMB observations (Ade et al. 2015). However, this
initialization can be compared most easily to previous work. As a
sanity check, we also tested a few simple variations at the highest
resolution, by (i) imposing the initial seed field only along the x-axis
(keeping the same B0 strength, run AMR8bx in Table 1); (ii) testing
a halved initial seed field (B0 = 0.03 nG, run AMR8b0.03nG). We
analyse the outcome of these models in Section 4.

2 Upper limits of similar strength have been derived for present-day magnetic
fields in the intergalactic medium, using statistical analysis of FR at high
redshift (e.g. Pshirkov, Tinyakov & Urban 2016).

Fig. 2 shows the magnetic field in a thin slice [thickness
(≈100 kpc)] across the entire (25 Mpc)3 volume where we used
AMR, and a close-up view of the innermost 4 Mpc (in this case
limited to a thinner slice of ≈8 kpc).

3 RESULTS

3.1 The volumetric distribution of magnetic fields

The map of gas mass-weighted magnetic fields averaged along the
line of sight for runs with different resolutions and starting from
a reference seed field of 0.1 nG (comoving, starting from z = 30)
is shown in Fig. 3, for a line of sight of 250 kpc. As is clear from
the image, the increase in spatial resolution causes an enhanced
level of tangling of the magnetic field lines in the cluster centre, as
well as an increased overall magnetic field strength in the innermost
volume. Assessing whether this magnetic field growth is indeed a
manifestation of the emerging small-scale dynamo amplification in
high Reynolds number flow is one of the main goals of this work.

For each run, we compute the radial profile of the average mag-
netic field, shown in Fig. 4 as well as the radial profiles of gas density
and gas temperature for reference. While the thermal structure of
the cluster appears converged in runs AMR4–AMR8, the magnetic
field keeps growing with increasing spatial resolution. The mean
magnetic field is increased by a factor ∼10 in most volume go-
ing from run AMR3 (maximum resolution of 126 kpc) to AMR8
(3.95 kpc). In the cluster core (≤300 kpc), the increase is nearly two
orders of magnitude going from AMR3 to AMR8, meaning that the
magnetic energy there has increased by ∼104 just as a result of
the increased resolution. Since the gas density profile is basically
the same in all runs, the excess magnetic field we observe at all
radii for increasing resolutions suggests that a dynamo develops as
the local Reynolds number of the flow can be larger (Re ∝ N4/3,
where N is the one-dimensional number of cells in the volume, see
Section 3.2 for a discussion). This is confirmed by the additional
thin black lines in our third panel, which show the expected mag-
netic field profile in case of simple compression of magnetic field
lines (B = B0(n/〈n〉)2/3, where the density is the one corresponding
to each run). The profile of our lowest resolution run is similar to
the expectation from pure compression (albeit with a broader distri-
bution, likely as an effect of numerical diffusion) at high resolution
the average mean magnetic field is ≥30–50 times larger at all radii
compared to the frozen-in prediction.

In Fig. 5, we plot the magnetic field profile and compare it to
the observed profile in the Coma cluster (Bonafede et al. 2010),
considering also the dispersion around the mean. The profile of
the Bonafede et al. (2010) model is directly computed from the
three-dimensional model generated following the recipe in Murgia
et al. (2004) and Bonafede et al. (2010), i.e. we use the MIRÓ code
(Bonafede et al. 2013) to generate three-dimensional magnetic field
components drawn from a Rayleigh distribution of the vector po-
tential (yielding by construction a Gaussian probability distribution
function (PDF) of magnetic field components and to a Maxwellian
distribution of magnetic field strengths), with a fixed range of spatial
wavenumbers and with a fixed power-law distribution of magnetic
fields (here PB ∝ k−5/3). At all radii, the dispersion in our simula-
tion is significantly larger than in Bonafede et al. (2010), while the
mean field is smaller. However, as we will see in Section 3.3,
the simulated RM profile in our AMR8 run gives a good match
to the observed RM profile in Coma. The two profiles only match
at the ∼2σ level around their mean. Indeed, we find that the radial
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Figure 2. Map of projected mean magnetic field for our most resolved run, showing the entire zoom AMR region (left) and a closeup view at the highest
resolution (right) for our AMR8 run at z = 0.

Figure 3. Map of projected mean magnetic field strength for resimulations of our cluster at an increasing resolution, for regions of 8.1 × 8.1 Mpc2 around the
cluster centre at z = 0. Each panel shows the mass-weighted magnetic field strength (in units of log10[µG] for a slice of ≈250 kpc along the line of sight.

profile of the AMR8 run can be fitted (χ2 = 0.00024) by a simple
relation of the kind

B(n) ≈ 1.55 μG (n/n0)η, (1)

with n0 = 3.5 × 10−3 cm−3, with η = 0.487, consistent with the
model by Bonafede et al. (2010) (who find η = 1/2), and a
∼3 times lower normalization for the magnetic field in the core
(B0 = 1.55 μG instead of B0 = 4.77 μG in Bonafede et al. 2010).
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Figure 4. Radial profile of gas density (top panel), gas temperature (central
panel) and magnetic fields (bottom panel) for our reference cluster as a
function of resolution at z = 0. In the third panel, the additional thin black
lines show the expected fields in case of simple adiabatic compression of
magnetic field lines for every model.

By comparing with the range of model parameters investigated in
Bonafede et al. (2010), as shown in the inset of Fig. 5, we can
see that while the slope agrees with the range of values derived
from RM observations, the central field value is entirely outside
the region of values constrained by these observations. One of the
key results is that the intracluster magnetic fields does not fol-
low a Maxwellian distribution that would result from a Gaussian

Figure 5. Radial profile of magnetic field in our most resolved run AMR8,
compared to the magnetic field profile inferred by Bonafede et al. (2010)
from observed RM. The dashed region of the profiles show the ±1σ disper-
sion around the mean. The dashed line shows the best fit to our measured
profile, while the inset show the uncertainty region of the best fit in Bonafede
et al. (2010). The best-fitting solution for the profile of our simulated cluster
is shown by the purple cross.

distribution of magnetic field components as assumed in the inter-
pretation of Faraday RM (e.g. Tribble 1991; Murgia et al. 2004;
Bonafede et al. 2010, 2013).

This is clear in Fig. 6 where we show the volume PDF of magnetic
field strength in our runs, extracted from the central (1.25 Mpc)3 at
z = 0.

In the same figure, we also show the same PDFs, shifted so that
their peaks are coincident and the differences in shapes are best
highlighted. Finally, the right-hand panel shows the distribution
of the magnetic field components for the same run, in compari-
son with a purely Gaussian distribution matching the same peak
of the PDF of magnetic field strength of the AMR8 run (ob-
tained as above). The magnetic fields measured in all our sim-
ulations are not Maxwellian/Gaussian, with departures from this
model that increase with increasing resolution. In the most resolved
AMR8 run, we observed a tail of values ∼2–3 times larger than
in the Maxwellian case, as is highlighted by the central panel.
The distribution of magnetic field components also shows the
presence of a non-Gaussian tail of values with both signs in the
AMR8 run.

As way to quantify the departure from the Gaussian expectation,
we measured the kurtosis of the PDF in our runs (averaged between
the various magnetic field components) in (Fig. 7). The values of
kurtosis sharply increase with resolution, from a quasi-Gaussian
distribution of fields in the AMR3 run to the pronounced non-
Gaussianity of the AMR8 run.

Unlike simpler ‘turbulence-in-a-box’ simulations (e.g. Bhat &
Subramanian 2013; Santos-Lima et al. 2014), the ICM is an open
system where gas with different dynamical histories is continuously
mixed. In particular, each merger drives turbulent motions on differ-
ent scales and with different strengths. In a complex multicompo-
nent turbulent flow, the same mechanism also mixes magnetic field
components which have been subject to different amplification pat-
terns over their life. Most of the vorticity in the ICM is injected by
overdense substructures, which inject vorticity across a wide range
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Figure 6. Volumetric distribution of magnetic fields in our galaxy cluster, as a function of resolution. Left-hand panel: distribution functions of the magnetic
field strength for the central (1.25 Mpc)3 volume in our runs at z = 0. Central panel: the same distribution functions of the previous panel, shifted to match
the peak of the AMR8 run, in order to compare the evolution of their shape. The additional dotted black line shows the distribution function of magnetic field
values for the Gaussian model that best matches the observed profile of FR in the Coma cluster (Bonafede et al. 2010), also shifted to match the same peak of
the AMR8 run. Right-hand panel: distribution of magnetic field components for all runs; the additional dotted line show the distribution of components for the
same Gaussian model of the central panel.
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Figure 7. Analysis of the departures from Gaussianity in the magnetic field
distribution of our runs: mean kurtosis in the distribution of magnetic field
components of Fig. 6 as a function of spatial resolution.

of scales and via multiple mergers across several Gyr (e.g. Wittor
et al. 2017a). The co-existence of different components to the total
ICM fields remains visible for ∼ Gyr, reflecting the patchiness of
turbulent motions in the ICM (Miniati 2014; Schmidt et al. 2016;
Vazza et al. 2017). We notice that these effects are independent
of other mechanisms that introduce non-Maxwellian behaviour in
turbulent flows, such as intermittency (e.g. Shukurov et al. 2017).
As we will discuss in Section 4.1, the exact shape of the PDF of
magnetic field strengths depends quite strongly on the dynamical
state of the host cluster. Hence, we do not attempt to provide a fitting
formula for it.

3.2 Evidence for small-scale dynamo

In order to quantify the effects of the small-scale dynamo, we per-
formed several tests to monitor the temporal, spatial and spectral
evolution of the magnetic fields.

For our most resolved run (AMR8), the evolution of the PDF
of magnetic fields in the innermost cluster region across redshifts

Figure 8. Evolution of magnetic fields from z = 30 to 0 in our galaxy
cluster: distribution functions of (comoving) magnetic field strength for the
central Mpc3 in our AMR8 run.

is shown in Fig. 8. The evolution is displayed in comoving units.3

The maximum of the PDF steadily grows in time from ∼0.1 nG to
0.1 μG. At the same time, the PDF broadens until it develops a non-
Maxwellian tail, also characterized by transient features following
the accretion of substructures.

It is interesting to investigate whether the spectral signature for
a small-scale dynamo amplification is reflected in the power spec-
tra of the magnetic fields for the same runs. For the same cubic
selections of Fig. 6, we computed the power spectra (Fig. 9) of
the velocity and the magnetic fields with a standard fast Fourier
transform (FFT) approach assuming periodicity (for a discussion,
see e.g. Vazza et al. 2017). In order to allow for a consistent com-
parison of the kinetic and magnetic energies per mode, the ve-
locity spectra are obtained by multiplying the velocity with

√
n

(where n is the gas density), so that PB(k) and Pv(k) have the same
code units. The slope of the power spectra for low wavenumbers

3 Bphys = Bcomoving/a2, where a is the scalefactor of the Universe. Displaying
the evolution in comoving units is interesting because it immediately shows
the efficiency of the dynamo, which is measured in the comoving reference
frame.
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the bottom lines show the magnetic field power spectra for the innermost
(1 Mpc)3 volume of our cluster at z = 0, for different spatial resolutions.
The additional grey lines show the k3/2 and the k−5/3, −2 trends to guide the
eye.

is compatible with the Kasantsev model of dynamo PB ∝ k3/2 (e.g.
Schekochihin et al. 2004), while after the peak the spectrum rapidly
steepens from ∝ k−5/3 to ∝ k−2 or less, consistent with e.g. Porter,
Jones & Ryu (2015) and Rieder & Teyssier (2017). While the shape
of the velocity power spectra is hardly modified by a change in
resolution, the magnetic field spectra show an abrupt change at the
AMR5 run, followed by the formation of a small-scale (≤50 kpc)
pile-up of magnetic energy for runs with a larger resolution. In the
AMR8 run, the energy ratio between magnetic and kinetic energy in
the k ∼ 10–50 range (corresponding to 100–20 kpc) reaches a max-
imum of βv ∼ 0.2–0.3, i.e. not far from energy equipartition at these
modes. The final configuration observed in the AMR8 run confirms
that by z ∼ 0, the small-scale dynamo process has reached the non-
linear growth regime, i.e. the magnetic tension at the peak scale is
large enough to oppose the further bending of magnetic lines by
kinetic pressure on smaller scales. These are also the scales which
are mostly responsible for the observed FR (see Section 3.3), and
are consistent with other recent numerical studies (e.g. Beresnyak &
Miniati 2016).

The initial length-scale at which magnetic tension can withstand
the further bending by hydrodynamic forces can be estimated from
the Kolmogorov model of velocity fluctuations as observed in our
simulations (Fig. 9) is (equation 3 in Brunetti & Lazarian 2007):

lA ≈ 0.3kpc

(
B

μG

)3
L

kpc

(
n

10−3 part cm−3

)−3/2 ( σL

km s−1

)3
, (2)

where L is a typical eddy size (ideally the injection scale of tur-
bulence) and σ L is the rms velocity within the scale L. Based
on this equation, we extracted the turbulent rms velocity within
L = 100 kpc, by filtering out motions on larger scales (with a simi-
lar procedure as in Vazza et al. 2017). Based on this, we computed
the distribution of lA for each cell in our central Mpc3 volume at
z = 0, finding the distribution of values given in Fig. 10 for vari-
ous simulations. The vertical dashed lines show the corresponding
maximum resolution for each run; only cells to the right of these
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Figure 10. Capabilities of our runs in resolving the MHD scale (equation 2,
see the main text for details). Each histogram gives the distribution of MHD
scales in the innermost Mpc3 region in our runs at z = 0, and additionally
for z = 0.8 in the AMR8 run (dot–dashed line).

lines are resolving the local MHD scale estimated in equation (2).
As resolution is increased, the critical length lA gets resolved in a
larger fraction of the volume, up to ∼50 per cent in the AMR8 run.
Assessing how this fraction would increase at even larger resolution
is difficult. Still, this confirms that at least in a half of our innermost
volume, the small-scale dynamo has approached its linear growth
regime. Within the same figure, we show the distribution of lA lim-
ited to run AMR8 at the earlier epoch of z = 0.8. Interestingly, lA is
resolved for an even larger fraction of the innermost volume at this
early epoch. Based on equation (2), this is a result of the combined
effect of having enhanced turbulence levels below 100 kpc com-
pared to z = 0 (due to fast accretions within the forming cluster)
as well as the stronger ∝(1 + z)2 magnetic fields. We note that,
especially prior to the cluster virialization, it is non-trivial to disen-
tangle laminar from turbulent motions, and therefore in this regime,
the estimate of lA from equation (2) may be overestimated in our
approach. In any case, this test suggests that even at high redshift,
the MHD scale may be resolved already in a significant fraction of
the innermost cluster volume, and that therefore the dynamo growth
can start soon after the cluster forms.

Due to the lA ∝ B3 dependence and based on this data, we can
also expect that runs with an even slightly increased initial seed field
and using the same AMR scheme may enter into the linear growth
stage earlier, and for a larger fraction of their volume. However, the
analysis of the CMB place the upper limit on the seed fields at the
∼ nG level (Ade et al. 2015), i.e. only a factor ∼10 above the initial
seed field used here. The detailed investigation of how the timing
and efficiency of dynamo amplification changes with the seed field
values (as well as for other possible seeding mechanisms) will be
subject of follow-up work.

In the final stage of small-scale dynamo growth, we expect that
the curvature of magnetic field lines inversely correlates with their
intensity because stronger fields get increasingly harder to bend.
We therefore computed the line curvature of the magnetic field
distribution following Schekochihin et al. (2004), K, defined as

�K = ( �B · ∇) �B
|B2| . (3)
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Figure 11. Mean magnetic field as a function of curvature (top) and dis-
tribution function of curvature (bottom) for the innermost volume of our
AMR8 run at z = 0. In the top panel, we show in dark and light blue the 1σ

and 2σ deviation around the mean (black).

When the magnetic field gets amplified by adiabatic compression,
the curvature should stay almost constant because B ∝ S ∝ 1/K,
where S is a surface area. On the other hand, when a dynamo
operates, the curvature will anticorrelate with the magnetic field
strength. The evolution of curvature in a turbulent magnetic field can
be predicted based on the Kasantsev theory (e.g. Schober et al. 2015,
for a recent review), as in Schekochihin et al. (2002), who predicted
stationary distribution of K with a power-law slope ∝K−13/7.

In Fig. 11, we show the distribution of the curvature, K, in our
AMR8 run, compared to the prediction by Schekochihin et al.
(2004): the average curvature as a function of magnetic field (top)
and the volume distribution function of K in the innermost Mpc3

(bottom). Both statistics show a good agreement with the results
from small-scale dynamo theory across a wide range of scales. This
supports the notion that amplified fields are indeed counteracting the
further bending of field lines with their increased tension, consistent
with the small-scale dynamo model.

Finally, we wish to investigate whether the final magnetic field
observed in the AMR8 run at z = 0 is energetically consistent with
the kinetic turbulent budget available for the ICM. To this end, we

repeated a similar analysis as in Beresnyak & Miniati (2016), i.e.
we measured the kinetic energy flux across the turbulent cascade
in our run, and compared its evolution to the measured growth of
magnetic fields within the same volume.

The turbulent rms velocity is here measured by filtering out
the large-scale velocity field, and the solenoidal component (rel-
evant to the dynamo amplification) is extracted from the filtered
field with a procedure similar to what outlined in Vazza et al.
(2014, 2017). In summary, we used a high-pass filter on the veloc-
ity field with a fixed L = 100 kpc scale,4 and we FFT-transformed
the turbulent velocity vector field, �V (�k) = F (�v(�r)). The solenoidal
velocity component in Fourier space (�k · �vsol(�k) = 0), is computed
as ṽi,sol(�k) = ∑3

j=1(δi,j − kikj

k2 )ṽj(�k), and then the solenoidal com-
ponent in real space is found via inverse FFT. The kinetic en-
ergy flux across the turbulent cascade measured in every cell is
εs = 1/2(ρσ 3

v,s/L). In Fig. 12 (top panel), we show the evolution
of the total thermal, kinetic, turbulent (also in its compressive and
solenoidal components) and of the magnetic energy within a co-
moving volume of 1 Mpc3 centred on the cluster core. The kinetic
energy in the innermost cluster regions becomes stationary only in
the last Gyr. During its late evolution z ≤ 0.1, the kinetic energy in
the innermost region of the cluster is ∼20 per cent of the thermal
energy, while the small-scale turbulent energy is ∼5 per cent. Note
the clear dominance of the solenoidal component. By z = 0, the
magnetic energy is a few per cent of the small-scale turbulent en-
ergy, and ∼1 − 2 · 10−4 of the thermal energy, which corresponds to
a βpl ∼ 1000 (where βpl is the ratio between thermal and magnetic
pressure). Following Beresnyak & Miniati (2016), the saturated
magnetic field produced by the small-scale dynamo is:

Bturb = [8π

∫
t

CEεsdt]0.5, (4)

where CE is a small number ∼O(10−2), for which slightly different
values have been found by different authors (Schober et al. 2015;
Porter et al. 2015; Beresnyak & Miniati 2016). We iterated equation
(4) at every time-step, using t as the elapsed physical time between
two time-steps. In what follows, we will present the evolution of
Bturb and we will assume a constant CE = 0.04.

In Fig. 12, we show the evolution of the magnetic field strength
directly measured in the simulation, compared with the Bturb esti-
mated as above and the magnetic field which can be obtained via
simple compression (Bcomp = B0(n/ < n > )2/3) based on the gas
density in the simulation and starting from our initial seed field.

On average, the magnetization in the innermost Mpc3 (coincident
with the cluster centre at z = 0) grows by four orders of magnitude
from z = 30 to 0. Based on the observed trend, the initial growth
down to z ≈ 1 is mostly explained by gas compression, and after
this point the turbulent amplification takes over, amplifying the
volume-weighted field ∼10 times above the compressed field level.
At several redshifts, we observe a clear correlation between blips in
the magnetic field growth and in Bturb, which suggests that indeed
close to these epochs turbulence is transported at small scales and
the simulated magnetic fields grows accordingly.

Overall, this comparison confirms that the development of
turbulence and magnetic field growth are tightly correlated for

4 In other works, we proposed other filtering techniques to disentangle lami-
nar from small-scale turbulent motions (Vazza, Roediger & Brueggen 2012;
Vazza et al. 2017), yet for the purposes of this work this technique is accu-
rate enough to measure the kinetic energy flux on small scales in the central
cluster regions.
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Figure 12. Top panel: gas and magnetic field energy evolution within a
Mpc3 comoving region around the cluster core in our AMR8 run. The
total energy values shown here are for the thermal energy (ETH), the ki-
netic energy (EK), the small-scale filtered turbulent energy (ETURB, see
Section 3.2 for details), the solenoidal and compressive components of the
turbulent energy (ETURB, SOL) and ETURB, COMP) and the magnetic field en-
ergy (EB). Bottom panel: comparison between the magnetic field growth
observed in our simulation and the theoretical expectations from a small-
scale dynamo and gas compression. The black area gives the magnetic field
strength in innermost comoving Mpc3, compared to the prediction from a
frozen-in compression (blue) and from the dynamo amplification model by
Beresnyak & Miniati (2016), assuming a 4 per cent dynamo amplification
efficiency. The dashed areas show the scatter of values obtained within the
selected volume.

z ≤ 1, and that the observed field growth is consistent with an
amplification efficiency of the order of a few per cent, i.e. in the
range of what is found in other works (e.g. Schober et al. 2015;
Beresnyak & Miniati 2016).

3.3 Comparison with observed Faraday rotation measure

Finally, we produced projected maps of RM for our AMR8 run,
and compared this model with the Very Large Array observations
of the Coma cluster by Bonafede et al. (2010, 2013). We computed

Figure 13. Simulated map of FR from our cluster at z = 0 (AMR8).

the RM along each of the coordinate axes of the simulation, by
measuring for each (x, y) pixel:

RM(x, y)[rad m−2] = 812
∑

l

B||(x, y, z)

μG

n(x, y, z)

cm3
�x, (5)

where || denotes the component parallel to the line of sight and we
then computed the mean of RM and the dispersion of RM within a
reference area in order to compare with the observations available
for the Coma cluster (Bonafede et al. 2010, 2013). An example of
the RM map (along the same axis of the previous maps) is given
in Fig. 13. A detailed comparison with observations of the Coma
cluster by Bonafede et al. (2010) is not straightforward because of
the different resolution of simulations (3.95 kpc) and observations
(∼0.7 kpc). Having the highest possible resolution is important to
include the RM fluctuations produced by the magnetic fields on
small spatial scales.

In addition, the RM images analysed in Bonafede et al. (2010)
have a small size, and the high resolution of those observations was
crucial to obtain RM values over several independent beams.

Degrading the resolution in RM studies has two potential disad-
vantages: (i) reducing the number of independent beams over which
the RM can be derived. As a consequence, the sampling errors on
〈RM〉 and σ RM – proportional to (Nbeams)−1/2 – increase and (ii)
increasing the beam depolarization. Hence, the RM can be derived
over less regions and with lower accuracy. In the case of the Coma
cluster, it is mainly (i) which prevents us from a detailed compari-
son with the simulations presented in this paper. If observations are
rescaled to the resolution of 3.95 kpc, no source has an adequate
number of measurements of RM to derive 〈RM〉 and σ RM (i.e. an
RM value in more than three independent beams).

The best compromise that we found is to compare the simulations
with observations rescaled at the resolution of ∼2 kpc, which leaves
enough independent measurements of RM per sources for three
sources, and have a spatial resolution that is only a factor 2 (rather
than 6) higher than the original data.

To derive the RM images at 2 kpc resolution, we started from
the maps of Stokes Q and U and convolved them with a Gaussian
beam having the full width at half-maximum of 4 arcsec × 4 arcsec.
Then, following the same procedure as explained in Bonafede et al.
(2010), we derived the RM images and the RM statistics. The
values of 〈RM〉 and σ RM are shown in Fig. 14. We note that the
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Figure 14. Comparison between simulated and observed radial trends of FR. Left-hand panel: radial profile of mean RM for our AMR8 run at z = 0
(considering the distribution along three different coordinate axes). The shaded area shows the percentile distributions (from 10 per cent to 90 per cent, while
the coloured points with error bars show the observed data for the Coma cluster, considering the RM data for the innermost region (Bonafede et al. 2010)
and limited to the outer arm where the Coma C source is Bonafede et al. (2013). The additional black line shows the mean RM profile in our simulation in
a narrow sector running along a filamentary accretion within the cluster. Right-hand panel: profile of the dispersion of RM in our simulated mock RM map
(same percentiles as in the previous panel) measured within areas equivalent to real observed sources in Bonafede et al. (2010). The additional red points with
error bars show the original data from Bonafede et al. (2010). In both panels, we additionally show in blue the result of our regridding procedure at 2 kpc of
the original radio data from Bonafede et al. (2010), see Section 3.3 for more explanations.

values of σ RM are slightly smaller, and errors are larger because
of the increased sampling errors. For the source at ∼0.45R100, our
degrading procedure only yields upper limits in both quantities.

Fig. 14 shows the two-dimensional profile of RM from the mock
observation, considering the average profile of the three RM maps
along the coordinate axes of the simulation. Although all the caveats
explained above should be kept in mind, the average profile of RM
in the simulation is fairly similar to the observed trend of RM in
the innermost Coma region, and all observed RM values are con-
sistent with the simulated profile within the 20 per cent–80 per cent
confidence interval. Even in the outer region where Bonafede et al.
(2013) probed the trend of RMs limited to a narrow sector located
in the direction of the radio relic in the Coma cluster, our mean RM
trend is compatible with observations. In this case, we computed
the mean profile of RM along the narrow ≈0.5 Mpc × 2 Mpc fil-
amentary accretion pattern north of our cluster (see Fig. 2), which
gives the black line in the figure. The gas properties of this region
of Coma are not very well constrained (see discussion in Bonafede
et al. 2013). Therefore, while a systematic comparison with sim-
ulated filaments is not yet possible, our simulated trend can only
confirm that while the RM level in the relic sector of Coma is
not compatible with the regular profile of the cluster, overdensities
associated with filaments can indeed explain such large RM.

Others have predicted the distribution of RMs in large-scale struc-
tures, comparing simulated clusters to collections of observed RM
from various clusters (e.g. Donnert et al. 2009; Xu et al. 2011) or
to a compilation of RM values from surveys in polarization (e.g.
Stasyszyn et al. 2010; Samui et al. 2017). Comparing to a het-
erogeneous RM data set is non-trivial because the effect of beam
depolarization affect objects at different distances to different de-
grees, and the scatter in RM of large data sets is increased by the
presence of cool core and non-cool core systems. Such problems are
mitigated when comparing to a sample of RM from a single object,
in which case the effect of beam depolarization can be accounted
for (however, the role of cosmic variance may be more significant).
To our knowledge, no direct comparison to the observed RM profile

of the Coma cluster (probably the object for which we have more
information from continuum and polarization radio data) has been
performed before. For example, Xu et al. (2011) performed a similar
procedure to compare their simulated RM maps to observed ones.
However, they compared to clusters at higher redshift and with data
probing a lower frequency. As a result, the probed a smaller range
of physical scales compared to our simulation.

In summary, the analysis of RM data from our best-resolved
simulation confirms that the level of magnetic field amplification
produced in our cosmological simulation is compatible with ob-
servations. Hence, it is conceivable that the magnetic field in the
Coma cluster comes from the dynamo amplification of primordial
fields (in this case 0.1 nG). As far as we know, this is the closest
a simulation has come to reproduce the RM profile of the Coma
cluster starting from a realistic value for the primordial seed field.

4 DI SCUSSI ON

4.1 Numerical and physical uncertainties

In the simulations discussed in this paper, we neglected all phys-
ical mechanisms other than gravity and (magneto)hydrodynamics,
which are otherwise crucial to model galaxy formation (e.g. ra-
diative gas cooling, chemical evolution, star formation and AGN).
The complex physical interplay of these mechanisms is numeri-
cally difficult to handle, and only a few works showed evidence of
rather successful prescriptions for galaxy formation in cosmolog-
ical simulations (e.g. Vogelsberger et al. 2014; Dolag, Mevius &
Remus 2017; Hahn et al. 2017; Hopkins et al. 2017). Moreover,
the process of galaxy formation itself can contribute to the seeding
of magnetic fields (Bertone et al. 2006; Donnert et al. 2009; Xu
et al. 2009; Samui et al. 2017; Vazza et al. 2017). The purpose of
focusing on non-radiative physics was to identify the properties of
magnetic field amplification by a small-scale dynamo. In radiative
simulations with feedback, it will be considerably more difficult
to identify sources of magnetic field amplification. The fact that
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Figure 15. Tests on the degree of conservation of ∇ · �B of our MHD solver:
radial volume-weighted profile of h|∇ · �B/B| for the AMR8 run (bottom),
compared with the volume-weighted profile of magnetic field strength in
the same volume (top).

at a large enough spatial resolution even a non-radiative simula-
tion can produce magnetic fields compatible with RM observations
may suggest that large-scale magnetic fields in the ICM can be ex-
plained purely by structure formation. However, in future work, we
also plan to increase the realism of the simulations by gradually
including more physical processes, as in Vazza et al. (2017).

4.1.1 The role of spatial resolution

The resolution and accuracy of our numerical scheme are the es-
sential points in our study. In all our runs, we relied on the Dedner
cleaning algorithm (Dedner et al. 2002), whose main limitation is
the reduction of dynamical range achieved for a given grid size, due
to the intrinsic dissipation of the scheme. Compared to other MHD
method such as Constrained Transport, the Dedner scheme is more
affected by small-scale dissipation of magnetic fields, due to the
∇ · �B cleaning waves it generates to keep the numerical divergence
under control (Kritsuk et al. 2011). Nevertheless, several works in
the literature have shown that the method is robust and accurate for
most idealized tests in MHD (e.g. Wang & Abel 2009; Wang, Abel &
Kaehler 2010; Bryan et al. 2014). Additional works comparing this
scheme to others in more realistic astrophysical applications con-
cluded that this method converges to the right solution in idealized
tests, unlike other common cleaning or ∇ · �B preserving techniques
(Stasyszyn, Dolag & Beck 2013; Hopkins & Raives 2016; Tricco,
Price & Federrath 2016).

First, we verified in the AMR8 run at z = 0 how well the ∇ · �B = 0
condition is preserved in our simulations. Fig. 15 gives the radial
(volume weighted) profile of h|∇ · �B/B| for AMR8 run, where
h = 2 cells is the stencil used to compute the divergence with a
simple first-order finite-difference scheme (i.e. (∇ · �B)x = Bx(i +
h/2) − Bx(i − h/2) for the x-component, etc.). In the largest part
of the simulation box, the numerical divergence is ∼2−3 per cent
of the local magnetic field value, which makes the level of spurious
magnetic energy ≤10−4 of the magnetic energy on larger scales.
This confirms that in our application the numerical effects are small
enough, and that the energy produced by the small-scale dynamo is
much larger than local spurious fluctuations that may be caused by
the Dedner scheme.

Estimating the typical kinematic and magnetic Reynolds numbers
attained in these simulations is made non-trivial by many factors:
gas flows are not stationary and characterized by several different
scales, the system is not closed and the effective viscosity and
resistivity are set by the numerical scheme, which has a variable
spatial resolution because of AMR. An upper limit on the Reynolds
number in numerical flows can be obtained by assuming an ideal
Kolmogorov model of turbulence (e.g. Kritsuk et al. 2011):

Re,max ≈ (0.5L/�x)4/3, (6)

where L is the maximum correlation scale in the flow and �x is the
spatial resolution. Limited to the central high-resolution region L ≈
2 Mpc, this estimate yields Re, max ≈ 1600. Conversely, a lower limit
is given by assuming a first-order numerical scheme (e.g. Rieder &
Teyssier 2017):

Re,min ≈ L/�x, (7)

yielding Re, min ≈ 500 in this case. If we consider the entire virial
volume (L ≈ 6 Mpc) at the resolution corresponding to the sixth
refinement level (16 kpc), the above estimates yield Re, min ≈ 380
and Re, max ≈ 1100.

Clearly, these estimates are still relatively crude as flows in the
ICM are not stationary, turbulence and magnetic fields have inter-
mittent distributions, and multiple injection scales can be present at
the same time (e.g. Vazza et al. 2012, 2017).

For the magnetic Reynolds number, we can in principle assume
Re ≈ RM, given that the artificial viscosity and resistivity are of
the same order PM = RM/Re = ν/η ≈ 1. However, the small-
scale ∇ · �B waves generated by the Dedner scheme may reduce the
effective RM further. Given the rapid growth of the magnetic field,
we conclude that at least towards the end of our most resolved runs
the magnetic Reynolds number is large enough to allow for the
development of a small-scale dynamo up to the final linear amplifi-
cation stage. This implies that RM � 100. We notice that following
similar considerations, Rieder & Teyssier (2017) observed the on-
set of the linear growth stage of the small-scale dynamo inferring a
minimum magnetic Reynolds number in the range RM ∼ 100–200.

Given that other MHD methods less prone to numerical dissipa-
tion can reach the same dynamical range at a ∼2–4 coarser effective
resolution, we suspect that similar magnetic Reynolds numbers can
be achieved by higher order MHD methods at a spatial resolution of
∼8–16 kpc, provided that the initial seed fields are similar to what
we have assumed.

4.1.2 The role of mass resolution

Our limited mass resolution for dark matter particles
(mDM = 1.04 × 1011 M�) may prevent the injection of turbulence
from self-gravitating satellites due to the shallower potential which
can form if the mass resolution is coarse. Self-gravitating gas sub-
structures are an important driver of turbulence (e.g. Iapichino &
Niemeyer 2008; Wittor et al. 2017a) and the resolution for DM
particles we used here is significantly larger than in our previ-
ous work (Vazza et al. 2010, 2014). In order to study the effect
of an increased mass resolution, we resimulated the AMR8 run
with an eight times increased mass resolution (run AMR8dm), i.e.
mDM = 1.3 × 1010 M�, using two levels of nested initial condi-
tions as in Vazza et al. (2010), which introduce twice as many DM
particles. We find that the resulting three-dimensional distribution
of magnetic fields at z = 0 does not show significant differences
compared to our reference AMR8 run, at least the modest scatter
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Figure 16. Radial profiles of the median magnetic fields at z = 0 for
additional resimulations testing the role of the initial seed field (AMR8b0x
and AMR8b0.03nG, see Table 1 for details) and of the mass resolution
(AMR8dm).

Figure 17. Spectra of magnetic field energy at z = 0 for runs starting with
an initial seed field (AMR8b0x and AMR8b0.03nG), with an increased mass
resolution (AMR8dm), and for a relaxed galaxy cluster (AMR8dm_E14, see
Table 1 for details).

which is expected for the increased number of substructures in the
run with more DM resolution: the radial profile of magnetic field
is consistent with the reference AMR8 run at all radii (Fig. 16),
and also the power spectrum of the magnetic energy has nearly the
same shape and normalization (Fig. 17). We conclude that, while
the increase in DM resolution is surely mandatory to properly re-
solve galaxy formation within simulated clusters, its impact on the
simulated magnetic fields is minor.

4.1.3 Sensitivity to the initial seed field

In order to assess the dependence of our final field configuration on
the amplitude and geometry of the initial seed field, we performed
a few more resimulations of the AMR8dm case: in particular we
tested a lower initial field of 0.03 nG at z = 30 (AMR8b0.03nG)
or an initial field of 0.1 nG as in AMR8dm but only aligned in
the X-direction (AMR8bx). As can be seen in Figs 16 and 17, the
radial field distribution and the spectral properties of the fields at
z = 0 are very similar to the AMR8dm case, suggesting at the
highest resolution our simulated cluster is in the non-linear dynamo

Figure 18. Distribution of magnetic field strength in objects with a different
dynamical state: we show the PDF of the magnetic field strength for the
central (1.25 Mpc)3 region of our AMR8dm run (the perturbed cluster
studied in the main paper) and for the AMR8dm_E14 simulation of a relaxed
cluster with a similar mass, in both cases at z = 0. The Gaussian distribution
matching the peak of the two simulated PDF is additionally given as a black
line.

regime indeed, and that the field configuration in the innermost
cluster regions is fairly independent on the seed field (e.g. Marinacci
et al. 2015; Marinacci & Vogelsberger 2016). This is consistent with
the idea that the origin of cosmic magnetism is better investigated
in cluster outskirts or in filaments (Vazza et al. 2017). We shall
note, however, that for initial field strengths ≤0.03 nG, the final
field in our cluster gets increasingly smaller, suggesting that for
seed fields below this threshold our resolution is not enough to
properly resolve the lA for most of the cluster evolution, and the
non-linear amplification regime develops too late (or never begins),
as noted by Beresnyak & Miniati (2016). Only with future (even
more resolved) simulations, we will be able to test to which extend
is the final field configuration in simulated clusters independent on
the assumed primordial seed field.

4.1.4 Comparison with a relaxed cluster

Finally, we present a second cluster with a similar final mass, sim-
ulated with an identical AMR scheme and a DM mass resolution
as in the AMR8dm (run AMR8dm_E14 in Table 1). This clus-
ter has a total virial mass of ≈1.0 × 1015 M� at z = 0, but has
a very different dynamical history compared to our fiducial clus-
ter. In particular, this cluster shows no evidence of a major merger
for z ≤ 1 and is the most relaxed system in the sample (Vazza
et al. 2010). The magnetic power spectrum has a similar shape as
the reference AMR8dm case (Fig. 17), but with a slightly larger
maximum scale for the field (∼200 kpc compared to ∼100 kpc),
possibly suggesting an earlier start of the dynamo amplification.
Again, the field strengths do not follow a Maxwellian distribution
(Fig. 18), even if the tail of the distribution is less pronounced
than in the AMR8dm run. This is consistent with the view that the
specific merger history of each cluster determine the amount of mul-
tiple (∼Gaussian) components which co-exist in the ICM at a given
time, although an extensive study of magnetic field configurations
for clusters with different dynamical states and masses is deferred to
future work.
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Figure 19. Analysis on the possibility of observing departures from Gaussianity in the observed distribution of RM: the histograms show the differential
distribution function of RMs at several distances from the cluster centre of our AMR8 run (red lines) compared to the differential distribution expected from a
Gaussian model as in Bonafede et al. (2010). Each distribution is computed considering a shell of 200 kpc at each radius. The thick lines show the cumulative
distribution function of RMs within the same circular shells.

4.2 Observational perspectives

Whereas turbulence-in-a-box simulations of a dynamo have high-
lighted the potential of RM to constrain the microphysics of the
ICM (e.g. Nakwacki et al. 2016; Santos-Lima et al. 2017), our work
suggests the presence of departures from the commonly assumed
Gaussian model of ICM magnetic fields, even on large scales. Even
though the number of RMs that are typically observed per clusters is
still rather small (maximum seven sources at ∼Mpc distance from
the centre of Coma, and seven in the SW sector of the cluster),
future radio surveys can test our results (e.g. Bonafede et al. 2015;
Johnston-Hollitt et al. 2015).

In Fig. 19, we show how the distribution of RMs (considering
only the projection along one axis) compares between our AMR8
model and the Gaussian case at four different distances from the
cluster centre (assuming projected shells of 200 kpc width). While
the presence of non-Gaussian features in the distribution of RMs
is present at all radii, the difference relative to the Gaussian model
becomes more significant at radii ≥1 Mpc (≥0.3R100), where the
peak of the RM distribution in the AMR8 model clearly differs
from the Gaussian scenario. At radii ≥1Mpc, we predict no RM
larger than ∼40–50 rad m−2 in the Gaussian model, while a non-
negligible fraction of background sources (∼20–30 per cent) should
have larger values if the magnetic field is non-Gaussian. At radii
≥0.5 R100, we should have a few detections of RM ≥ 10 rad m−2

only in the non-Gaussian case.
In order to produce the necessary statistics from observations (i.e.

a few tens of bright polarized background sources in the outer region
of nearby clusters), we will have to wait for the next generation of ra-
dio telescopes as present facilities (e.g. the Jansky Very Large Array)

require very long integration times to reach a 3σ sensitivity higher
than ≈10 rad m−2. Moreover, very few polarized sources are ex-
pected per square degree, making the creation of a finely spaced RM
grid – even around local clusters – extremely difficult (Rudnick &
Owen 2014). Finally, only clusters at high and low Galactic latitudes
are suitable targets, as the Galactic RM can easily hide a difference
in the RM of the order of 10 rad m−2.

On the other hand, the SKA–MID should be able to recover the
radial dependence of RMs of polarized sources behind clusters up
to a large radius, far beyond the capabilities of current instruments
(e.g. Govoni et al. 2013; Taylor et al. 2015; Govoni et al. 2015;
Johnston-Hollitt et al. 2015; Bonafede et al. 2015). In particular,
the planned deep polarization survey with SKA–MID is expected
to detect between ∼300 and ∼1000 polarized sources per square
degree at 1.4 GHz (e.g. Bonafede et al. 2015; Taylor et al. 2015).
For a Coma-sized galaxy cluster, this corresponds to measuring RM
on ∼50 background sources, with a formal error of the order of few
rad m−2.

Before the advent of SKA1, deep surveys in polarization with
ASKAP (Possum) and Meerkat (Mightee-Pol survey) may approach
this limit.

Even in the presence of non-Gaussian magnetic fluctuations, as
predicted by these simulations, the detection of RMs from sources in
the cluster outskirts will depend on the amplitude of the seed field. In
these external regions, we expect dynamo amplification to be small
(e.g. Ryu et al. 2008; Donnert et al. 2009; Vazza et al. 2014), the de-
tection of significant RMs can be used to rule out competing scenar-
ios. For example, the systematic detection of RMs ≥10 rad m−2 at
the virial radius of galaxy clusters and separated from local sources
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of magnetization such as radio galaxies can only be explained by
the presence of primordial seed fields of the order of 0.1−1 nG, or
by an anomalous amplification of magnetic fields beyond what can
be currently resolved by simulations. At present, such large values
of RM have been measured only along the SW sector of the Coma
cluster (Bonafede et al. 2013), which makes it difficult to derive
general conclusions.

4.3 Comparison with previous MHD simulations

The results shown in this paper are in line, both, with our previ-
ous work on the subject (Vazza et al. 2014) as well as with ear-
lier non-radiative AMR MHD simulations (Brüggen et al. 2005;
Dubois & Teyssier 2008; Collins et al. 2010). The latter demon-
strated the growth of magnetic fields beyond what is be achieved
by compression, albeit without clear evidence of having reached
the non-linear amplification stage, consistent with the fact that the
dynamical range achieved in our newest runs is larger. As a result
of overcooling, runs including radiative losses reported larger mag-
netic fields (∼μG) in clusters starting from similar primordial seed
field (Dubois & Teyssier 2008; Collins et al. 2010; Ruszkowski
et al. 2011). Xu et al. (2009, 2011) also reported indications of
dynamo amplification in MHD simulated clusters, but it is difficult
to relate their results to ours, due to the entirely different seeding
mechanism (e.g. strong seeding by AGN at low redshift).

A few recent papers, investigated the amplification of primordial
magnetic fields in large-scale structure, using either a moving stencil
method (Marinacci et al. 2015) or a meshless Lagrangian technique
(Hopkins & Raives 2016) in the cosmological context. The MHD
methods applied in both cases are qualitatively similar to our choice
here (i.e. divergence ‘preserving’ or ‘cleaning’ methods) and in
both cases large values of magnetic field amplification in clusters
are reported, even though it is difficult to say which stage of the
dynamo amplification regime is attained in the two cases.

Finally, we find some disagreement with the results reported by
cosmological SPH simulations (Dolag et al. 1999, 2008; Donnert
et al. 2009; Dolag & Stasyszyn 2009; Bonafede et al. 2011; Beck
et al. 2012, 2013). There, already at high redshifts (z ≥ 2), larger
amplification factors for the magnetic energy are found, and this
despite the seemingly smaller Reynolds number achieved in these
simulations. Understanding these differences is beyond our goal
here, and we can only speculate that the effective Reynolds in SPH
simulations may not be entirely understood.

5 C O N C L U S I O N S

We have presented evidence for resolved dynamo growth of intra-
cluster magnetic fields in cosmological grid simulations. This was
obtained with high-resolution resimulations of a Coma-like galaxy
cluster, using the MHD version of ENZO (Bryan et al. 2014) and
aggressive AMR.

Our simulations covered an unprecedented dynamical range in
the innermost region of a cluster and showed evidence of a small-
scale dynamo and local amplification of magnetic fields up to val-
ues similar to what is found in observations. Starting with a weak
seed field of 0.1 nG (comoving) at z = 30, in cluster centres, the
magnetic fields approach energy equipartition with the kinetic en-
ergy flow on ≤100 kpc scales, and display clear spectral signa-
tures consistent with the standard small-scale dynamo theory (e.g.
Schober et al. 2015; Schekochihin et al. 2002). At our best resolution
(3.95 kpc), we constrain an overall efficiency of order ∼4 per cent
in the transfer between turbulent kinetic energy (in the solenoidal

component) and the magnetic energy field. Our best run reaches a
typical magnetic field level of ∼2 μG in the innermost Mpc3 region,
starting from an initial magnetic field of 0.1 nG (comoving), with
maxima of ∼10μG.

In flows with an effective Reynolds number much larger than
what we achieved here (e.g. Brunetti & Lazarian 2011; Santos-Lima
et al. 2014), the dynamical time-scale to go from the kinematic to
the non-linear growth regime is greatly reduced, from ∼Gyr to
∼kyr in case the Reynolds number is Re ∼ 1012 (Beresnyak &
Miniati 2016). Hence, the non-linear amplification that we see at
low redshifts might have started much earlier, and the final field
might be stronger and have larger spatial scales than what we found.
Yet even within the present limitations mirrored by the Reynolds
number, the efficiency of the transfer of kinetic energy into magnetic
energy in the innermost cluster regions at z ∼ 0 is ≈4 per cent and
thus close to the one derived by Beresnyak & Miniati (2016) for the
saturated stage of dynamo amplification.

Moreover, the topology of the magnetic fields seem to be consis-
tent with the most stringent observational constraints for the Coma
cluster. In particular, the FR of background polarized sources is in
good agreement with the observations of RMs from real sources
located behind Coma. This applied to, both, the average RM profile
and its dispersion, even if in the latter case the comparison is limited
to the first four sources owing to resolution effects.

A significant result is the fact that the RM observations ap-
pear to be reproduced by a significant non-Gaussian distri-
bution of magnetic fields. Interestingly, these magnetic fields
show a radial profile with a ∼3 times lower normalization
than what is usually inferred from these observations (Bonafede
et al. 2010, 2013). The departures from Gaussianity get more signif-
icant with increasing resolution, while the opposite trend is usually
found in more idealized turbulence-in-a-box simulations (Bhat &
Subramanian 2013; Santos-Lima et al. 2014). Our results are ex-
plained by the superposition of different magnetic field components
along the line of sight, which in turn makes the inversion of any ob-
served RM trend into a three-dimensional model of magnetic field
more complicated than in a single Gaussian component model.

Here, we focused on the amplification of one value for the initial
magnetic field and simulated only the dynamo amplification caused
by turbulence induced by structure formation. Therefore, additional
sources of turbulence and magnetization, such as AGNs, galactic
winds and shocks, have been neglected. While the injection of tur-
bulence on cluster-wide scales is still expected to be dominated by
structure formation processes (e.g. Subramanian, Shukurov & Hau-
gen 2006; Vazza et al. 2012), it is not clear what role other sources
of magnetization play (e.g. Widrow et al. 2012; Ryu et al. 2012;
Brüggen 2013; Falceta-Gonçalves & Kowal 2015, and references
therein). The application of high-resolution MHD simulation to the
study of extragalactic magnetic fields and to the prediction of their
observational signatures will be essential to interpret future radio
observations that aim to reveal the origin of cosmic magnetism.
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