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ABSTRACT 

Bowing of thin marble slabs is a phenomenon affecting both historic monuments and modern 

buildings. In spite of the ubiquity and destructiveness of this phenomenon, no fully satisfactory 

treatment is currently available to arrest and/or prevent bowing. In this study, a treatment based on 

formation of hydroxyapatite (HAP) was investigated as a possible route to arrest and possibly 

prevent bowing of Carrara marble slabs. Four different formulations of the HAP-treatment were 

tested and compared to ammonium oxalate and ethyl silicate (widely used in the practice of marble 

conservation). The treatments were applied onto pre-weathered and unweathered specimens to 

investigate their ability to arrest and prevent bowing, respectively. Marble behavior was studied in 

terms of residual strain and bowing after thermal cycles up to 90°C in dry and wet conditions. Marble 

cohesion was assessed before and after the thermal cycles by ultrasound. The HAP-treatments 

exhibited promising results, as the residual strain and the bowing after the cycles were always lower 

or equal to the untreated references, while marble cohesion was always higher. Surprisingly, 

ammonium oxalate caused marked worsening of marble thermal behavior. In the case of ethyl 

silicate, most of the initial benefit after consolidation was lost after the thermal cycles. In general, the 

results of the study point out the importance of evaluating marble thermal behavior to assess the 

suitability of any conservation treatment and suggest that treatments able to strengthen marble 

without causing excessive pore occlusion and stiffening are preferable to enhance durability to 

thermal cycles.  
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1. INTRODUCTION 

 

Bowing of thin marble slabs is a phenomenon affecting both historic monuments and modern 

buildings (Kieslinger, 1934; Grimm, 1999; Marini and Bellopede, 2009; Royer Carfagni, 1999; 

Siegesmund et al., 2000; Siegesmund et al., 2008) (Fig. 1). Slabs used as gravestones in 

monumental cemeteries and commemorative stones in historic buildings often exhibit severe 

bowing, frequently leading to fracturing and collapse (Sassoni and Franzoni, 2014a). Thin slabs used 

to clad modern façades may exhibit bowing as well, typically some 10-15 years after construction 

(Jounet et al., 2002; Malaga-Starzec et al., 2006), and bowing has even been reported after only 1 

year (Malaga-Starzec et al., 2002). Among modern buildings, the Finland Hall in Helsinki by Alvar 

Aalto (Royer Carfagni, 1999) and the Amoco Building in Chicago (Siegesmund et al., 2000) are 

famous examples where bowing of the slabs used to clad the external surfaces was so pronounced 

that their entire replacement was necessary. In the case of the Amoco Building, this cost as much 

as $ 65 million (Siegesmund et al., 2000). 

 The origins of the bowing phenomenon are quite controversial. The release of locked residual 

stresses (Logan et al., 1993; Royer Carfagni, 1999; Siegesmund et al., 2008), the presence of 

moisture (Koch and Siegesmund, 2004; Siegesmund et al., 2008) and the attack by acid rain (Grimm, 

1999; Royer Carfagni, 1999) have been proposed as possible factors initiating bowing. However, it 

is commonly recognized that thermal excursions play a very important role (Rayleigh, 1934; Royer 

Carfagni, 1999; Siegesmund et al., 2000; Siegesmund et al., 2008; Malaga-Starzec et al., 2006). 

 Because of the anisotropic thermal expansion of calcite crystals upon temperature variations, 

when marble is exposed to repeated heating-cooling cycles, micro-cracks develop at the boundaries 

between grains (Siegesmund et al., 2000; Shushakova et al., 2013a; Shushakova et al., 2013b; 

Weiss et al., 2003). In the case of slabs, a temperature gradient may develop between the external 

side of the slab, directly exposed to air temperature variations and possibly to direct solar radiation, 

and the internal side, more protected from temperature excursions. This gradient in temperature 

between the two sides of a slab may lead to a gradient in the amount of cracks among grains. The 

external side, more affected by micro-cracking, tends to expand, but it is constrained by the internal 

side, which tends to preserve the original size. As a result, convex bowing towards the exterior arises 

(Rayleigh, 1934). Accordingly, it was shown by mercury intrusion porosimetry that the external side 

of convexly bowed slabs has higher porosity and coarser pores than the internal side (Koch, 2006) 

and that porosity and pore size increase with increasing level of bowing (Siegesmund et al., 2008).   

 In spite of the ubiquity and the destructiveness of the bowing phenomenon, only a few studies 

have investigated possible treatments to mitigate marble thermal weathering (Malaga et al., 2004; 

Malaga-Starzec et al., 2006; Ruedrich et al., 2002; TEAM project, 2005). The EU-funded TEAM 

project (2005) investigated the use of microcrystalline wax, colloidal silica, an hydrophobic acrylic 
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product and an hydrophobic siloxane product to reduce bowing. Even if the treatments were able to 

reduce bowing to some extent (Malaga et al., 2004), impregnation by these products did not prevent 

strength loss after thermal cycles (TEAM project, 2005). In the case of marble impregnated with 

polymethyl-methacrylate, the residual strain after thermal cycles was found to be even higher than 

in the untreated marble (Ruedrich et al., 2002; Siegesmund et al., 1999), with possible acceleration 

of marble deterioration. 

 In this study, a treatment based on hydroxyapatite (HAP), recently proposed for protection of 

marble (Graziani et al., 2016; Naidu et al., 2011; Naidu et al., 2016; Possenti et al., 2016; Sassoni 

et al., 2018a; Yang and Liu, 2014) and consolidation of marble and limestone (Liu and Zhang, 2011; 

Ma et al., 2017; Matteini et al., 2011; Molina et al., 2017; Sassoni and Franzoni, 2014a; Sassoni et 

al., 2015; Sassoni et al., 2018a; Yang et al., 2011), was investigated as a possible route to arrest 

and prevent bowing of thin marble slabs. The treatment was originally developed to create an 

insoluble, protective layer of HAP on marble, taking advantage of the much lower solubility and 

slower dissolution rate of HAP compared to calcite (Naidu et al., 2011; Naidu and Scherer, 2014). 

HAP can be formed from the reaction between PO4
3- ions coming from an aqueous solution of 

diammonium hydrogen phosphate (DAP, (NH4)2HPO4), that marble is treated with, and Ca2+ ions 

coming from marble dissolution and/or externally added to the DAP solution (Naidu and Scherer, 

2014; Sassoni et al., 2011). Several different formulations of the treatment have been developed 

through the years, to improve the HAP layer microstructure (absence of cracks and pores) and 

composition (absence of metastable calcium phosphate phases), providing promising results 

(Graziani et al., 2016; Naidu and Scherer, 2014; Sassoni et al., 2015; Sassoni, 2017; Sassoni et al., 

2018a). The treatment also demonstrated a remarkable ability to consolidate weathered marble, 

thanks to HAP formation inside the micro-cracks between calcite grains. This leads to more effective 

bonding of grains and improved mechanical properties (Sassoni and Franzoni, 2014a; Sassoni et 

al., 2015; Sassoni et al., 2018a). In a previous study by the Authors (Sassoni et al., 2017), marble 

thermal behavior after application of the HAP-treatment was investigated and encouraging results 

were found. The residual strain after thermal cycles was found to be reduced in treated marble, 

which implies better behavior in terms of resistance to bowing (Sassoni et al., 2017). However, in 

the cited study no direct measurement of the tendency of marble to bow was performed. 

 In the present study, dilatometric tests and direct bowing measurements were carried out to 

estimate: (i) the ability of the HAP-treatment (tested in 4 formulations and compared to ammonium 

oxalate and ethyl silicate) to arrest further bowing of already bowed slabs; (ii) the ability of the most 

promising HAP-treatment formulation (as assessed by preliminary dilatometric tests) to prevent 

bowing of unweathered marble. A scheme illustrating the rationale of the study is reported in Fig. 2. 
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2. MATERIALS AND METHODS 

 

2.1. Marble 

A particular type of Carrara marble (“Gioia Venato”), known to undergo severe bowing (Jornet et al., 

2002; Logan, 2004; Siegesmund et al., 2008), was selected for the tests. From a single block 

(supplied by Elle Marmi s.r.l., Italy), slabs with 40×10×2 cm3 size were obtained for the bowing tests. 

The slabs were sawn along two orthogonal directions, parallel (“verso”) and perpendicular (“contro”) 

to foliation, to evaluate warping behavior in different directions. From a 10 cm-cube, cylindrical 

specimens (1.5 cm diameter, 5 cm height) were core-drilled for the dilatometric tests, again along 

the “verso” and “contro” directions. 

 

2.2. Chemicals 

For the treatments, diammonium hydrogen phosphate (DAP, (NH4)2HPO4, assay > 99%, Fisher-

Scientific), calcium chloride (CaCl2·2H2O, assay > 99%, Fisher-Scientific), ethanol (EtOH, Fisher-

Scientific), isopropanol (IPA, Fisher-Scientific), calcium hydroxide (Ca(OH)2, Fisher-Scientific), 

ammonium oxalate ((NH4)2C2O4·H2O, assay > 99%, Fisher-Scientific) were used. For the treatment 

based on ethyl silicate, the commercial product Estel 1000 by CTS s.r.l. (Italy) was used. The product 

is composed of 75 wt% ethyl silicate (also containing 1% dibutyltin dilaurate as catalyst) and 25 wt% 

white spirit. All water was deionized. 

 

2.3. Preliminary weathering 

To evaluate the ability to arrest bowing, for each treatment condition and each direction two slabs 

and one cylinder were preliminarily artificially aged, so as to apply the consolidants on already 

bowed/already thermally damaged specimens (Fig. 2). In this phase of the study the aim was not to 

reproduce realistic weathering conditions, but only to cause realistic damage as quickly as possible, 

so the specimens were subjected to severe, unrealistic conditions, as described in the following. 

To produce bowed specimens, 28 slabs (14 for each direction) were subjected to thermal cycles 

using the apparatus illustrated in Fig. 3a,b. Each cycle consisted in heating to 120 °C for 70 min, 

then cooling for at least 5 hours. The temperature at the two sides of the specimens (i.e., the upper 

side facing the lamps, “Top”, and the lower side in contact with water, “Bottom”) was measured by 

an infrared gun at 10 min intervals during the test. The variation in temperature at the two sides as 

a function of time is plotted in Fig. 3,c. The high maximum temperature ensured severe damage and 

the rapid heating ensured a big thermal gradient between the two sides of the slabs. The thermal 

cycles were repeated until bowing reached 1.1±0.1 mm/m. This level of bowing was selected based 
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on data obtained in a previous study (Siegesmund et al., 2008) for the same type of marble (Gioia 

Venato): at about this level of damage, the bowing rate started to slow down (although bowing kept 

on increasing slowly). In the present study, this level of bowing was chosen as the moment to stop 

the preliminary weathering cycles and to apply the consolidants because, if a higher initial level of 

damage had been reached, the risk of entering the phase of “slower bowing” would have risen. In 

such a case, the effects of the consolidants would have become less clear and less easy to evaluate, 

because in this phase even untreated marble exhibits a slower bowing rate (even though bowing 

keeps on increasing). Bowing (i.e., deviation from planarity) was determined by measuring the 

displacement in the middle, using a gauge with 0.5 μm accuracy and a metal frame to ensure the 

measurement was carried out always exactly in the sample position, as described in EN16306 

(2013). The desired level of preliminary bowing was reached after 17±2 cycles, the number varying 

because heating is not perfectly uniform among all the specimens during the test. In fact, the central 

specimens receive heat from more than one lamp at a time (Fig. 3a,b), thus experiencing more 

damage in a single cycle. To minimize the difference in damage among different specimens, their 

positions were switched after each cycle, so that after 6 cycles each specimen had sat once in each 

position inside the box. At the end of the thermal cycles, the residual dynamic elastic modulus (Ed) 

of the slabs was determined, as described in § 2.5.1. The aim was to quantify the level of mechanical 

damage experienced by the slabs, so that it could be reproduced also in the cylinders to be used for 

the dilatometric tests. 

Once assessed the residual Ed of the slabs (~30% of the initial value), preliminary tests were 

carried out to identify the heating conditions (temperature and time) necessary to reproduce in an 

accelerated way the same level of damage in the cylinders. Consistent with the temperature-Ed 

relationship determined in a previous study on Carrara marble (Figure 7 in Sassoni et al., 2018b), 

heating in an oven at 100 °C for 1 h caused an Ed decrease to ~60% of the initial value, while heating 

at 200 °C for 1 h caused a further reduction to ~30% of the initial value. As this was the same 

reduction in Ed experienced by the slabs subjected to the preliminary bowing cycles, these conditions 

were selected for accelerated ageing of the cylinders for the dilatometric tests (Fig. 2). In total, 14 

cylinders (7 for each direction) were heated to 200 °C for 1 hour in an oven. The reason why a higher 

heating temperature was necessary in the case of the cylinders (200 °C) compared to the slabs (120 

°C) is to be found in the different heating duration (1 h for the cylinders against 17 cycles of heating 

for 70 min for the slabs).  

 

2.4. Treatments 

The 7 treatment conditions (including the untreated reference) listed in Table 1 were applied to: (i) 

the 28 bowed slabs and the 14 thermally damaged cylinders, with the aim of evaluating the ability of 

the treatment to arrest bowing; (ii) 14 unweathered cylinders, with the aim of evaluating the ability to 
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prevent bowing. For the latter purpose, 2 unweathered slabs (1 for each direction) were subjected 

to the “1 M DAP” treatment, while 2 unweathered slabs were left untreated and used as reference. 

The “1 M DAP” treatment was selected based on results of dilatometric tests on unweathered 

cylinders, as this treatment provided the highest Ed increase after consolidation (cf. § 3.2). 

The treatment solutions were prepared as described in detail in previous studies by Sassoni et 

al. (2018) for treatments “EtOH”, “IPA” and “1 M DAP”; Franzoni et al. (2015a) for “3 M DAP”; Sassoni 

et al. (2015) for “AmOx” and “ES”. In brief, the “1 M DAP” treatment (the first one proposed by Naidu 

and Scherer (2014)) involves a relatively high DAP concentration (1 M), to ensure that enough PO4
3- 

ions are available to form HAP. It also involves addition of a calcium source (CaCl2, in 1:1000 molar 

ratio to DAP), to favor complete coverage of marble by the new calcium phosphates (Naidu and 

Scherer, 2014). The “EtOH” and “IPA” treatments involve addition of 10 vol% of the respective 

alcohols, with the aim of increasing the amount of PO4
3- ions dissociated from DAP, thanks to the 

weakening effect of alcohols on the hydration sphere of PO4
3- ions in the solution (Sassoni et al., 

2018a). This results in a continuous, crack-free and pore-free coating, even at low DAP and CaCl2 

concentrations (0.1 M and 0.1 mM, respectively) (Sassoni et al., 2018a). The “3 M DAP” treatment 

involves a high DAP concentration, close to saturation, as an alternative way to increase the amount 

of PO4
3- ions available to form HAP (although, in these conditions, the resulting coating is thick and 

cracked) (Sassoni et al., 2015). This treatment also involves application of a limewater poultice as a 

second step after DAP application and drying, with the aim of supplying additional Ca2+ ions for the 

reaction and removing unreacted DAP during drying (Franzoni et al., 2015a; Graziani et al., 2017). 

In all cases where CaCl2 was added as an external calcium source (namely, treatments “1 M DAP”, 

“EtOH” and “IPA”), no risk owing to formation of harmful chloride salts is expected. In fact, in previous 

studies where 0.1 mM CaCl2 was added to a 0.1 M DAP solution (treatments “EtOH” and “IPA”), no 

chloride trace was found by either XRD or EDS, which indicates that all the chlorides (present only 

in millimolar concentration) were effectively removed by rinsing with water at the end of the treatment 

(Sassoni et al., 2018a). When 1 mM CaCl2 was added to a 1 M DAP solution (treatment “1 M DAP”), 

no trace of chloride salts was detected by XRD (Naidu and Scherer, 2014) and only in a few cases 

(but not systematically) a small chloride peak was found by EDS (Naidu et al., 2015). Because the 

chloride peak in the EDS spectrum appeared even after extensive rinsing with water, chlorides are 

thought to be incorporated in the HAP crystal, that easily undergoes ionic substitutions (Naidu et al., 

2015). 

All the treatments were applied until apparent refusal, reached after the number of strokes 

reported in Table 1. At the end of the brush application, all the specimens except the “ES” ones 

(cured as described in the following) were wrapped in a plastic film to avoid evaporation, then left to 

react for 48 hours in laboratory conditions and finally abundantly rinsed with water. After drying, the 

“3 M DAP” specimens were further treated by a limewater poultice for 24 hours (Franzoni et al., 

2015a), then again rinsed with water and dried at room temperature. The “ES” specimens were left 
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to react in laboratory conditions for 7 days, then a water poultice was applied for 4 days to complete 

the curing reactions of ethyl silicate, as described in detail in (Franzoni et al., 2015b).  

 

2.5. Characterization 

2.5.1. Consolidation 

Before and after preliminary weathering, consolidation and thermal cycles, the dynamic elastic 

modulus (Ed) of the specimens was determined, as reported in Fig. 2. Ed was calculated according 

to the formula Ed = ρ·UPV2, where ρ is the density and UPV is the ultrasonic pulse velocity. The UPV 

was measured across the 5 cm height of the cylinders and across the 2 cm thickness of the slabs, 

using a Geotron Elektronik instrument with 46 kHz transducers, inserting a rubber couplant between 

the specimens and the transducers to improve the contact. Ed was measured because it provides a 

quantitative and non-destructive evaluation of the conservation state of marble, since UPV and Ed 

are highly sensitive to formation and closure of micro-cracks among grains (Köhler, 1988; Pamplona 

and Simon, 2012; Weiss et al., 2002). 

The morphology of the new phases was determined by observation with a scanning electron 

microscope (Philips XL20 SEM), after coating the samples with aluminum to make them conductive. 

The variations in total open porosity and pore size distribution caused by formation of the new 

phases were evaluated by mercury intrusion porosimetry (MIP), using a using a Fisons Macropore 

Unit 120 and Porosimeter 2000 Carlo Erba. Samples for MIP were obtained from the cylindrical 

specimens by chisel. 

The composition of the new phases was determined by Fourier transform infrared spectroscopy 

(FT-IR) on powdered samples obtained from the cylinders. A Spectrum Two Perkin Elmer 

Spectrometer was used (ATR mode, 16 scans, range 4000-400 cm-1, resolution 1 cm-1). 

 

2.5.2. Dilatometry 

The residual strain after heating-cooling cycles was evaluated on pre-weathered and unweathered 

cylinders using a sophisticated dilatometer, able to test 6 specimens at a time and to work both in 

dry and wet conditions (Koch and Siegesmund, 2004). The thermal cycles were designed to 

resemble natural thermal excursions, so a maximum temperature of 90 °C was selected 

(Siegesmund et al., 2008). In fact, surface temperatures up to 80 °C have been recorded for dark 

stones in hot climates (Bonazza et al., 2009). Each cycle was as follows: (i) holding at 20 °C for 3 h, 

to allow equilibration; (ii) heating from 20 °C to 90 °C at a rate of 1 °C/min; (iii) holding at 90 °C for 6 

h; (iv) cooling from 90 °C to 20 °C at a rate of 1 °C/min; (v) holding at 20 °C for 3 h. After running 4 

dry cycles, the Ed was measured as described above. Afterwards, 4 additional cycles were run in 
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wet conditions, meaning that the specimens were immersed in deionized water during the heating-

cooling cycles (performed as above). Because of water evaporation when the maximum temperature 

was reached, water was refilled at the end of each wet cycle. At the end of the 4 wet cycles, Ed was 

measured again and then variations in open porosity and pore size distribution were evaluated by 

performing MIP on samples obtained from the specimens used for dilatometry. 

 

2.5.3. Bowing  

After consolidation, the slab tendency to bow was evaluated by subjecting specimens to thermal 

cycles (using the same apparatus adopted for preliminary bowing, Fig. 3a,b) and then determining 

the deviation from planarity by measuring the displacement in the middle of the slabs, as described 

above. To resemble realistic conditions (unlike the phase of preliminary weathering, § 2.3), in this 

phase the maximum temperature was limited to 90 °C (Siegesmund et al., 2008). Each cycle 

consisted in heating to 90 °C for 240 min, then cooling for at least 5 hours (Fig. 3,d). After each cycle, 

the sample position was switched, so that after 6 cycles each sample had sat once in each position. 

In total, 12 cycles were performed on preliminarily bowed slabs (all the 7 conditions in Table 1) and 

18 cycles on the unweathered slabs (untreated and treated by “1 M DAP”). At the end of the cycles, 

Ed was measured again and compared to the initial condition. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Preliminary weathering 

Artificial weathering by heating at 200 °C for 1 hour reduced the Ed of cylindrical specimens down to 

31% (“verso”) and 27% (“contro”) of the initial values (gray bars of pre-heated samples in Fig. 4b). 

This was a consequence of the opening of new cracks during heating, because of the anisotropic 

thermal behavior of calcite crystals (Siegesmund et al., 2000; Shushakova et al., 2013b). As a result, 

the response of unweathered and pre-weathered specimens to dilatometric tests was remarkably 

different, as illustrated in Fig. 4a, where the residual strain after the thermal cycles is illustrated.  

Unweathered cylinders exhibited a significant residual strain after 4 dry cycles, the first cycle 

causing the highest damage and the following three dry cycles only causing a minor increase in 

residual strain. This was expected, because of the so-called “buffering effect”: micro-cracks formed 

during the first cycle allow some grain deformation during the following cycles, which leads to 

reduced stress, reduced formation of new micro-cracks and reduced additional residual strain after 

the thermal cycles (Ruedrich et al., 2002; Sassoni and Franzoni, 2014b; Sassoni et al., 2017). When 

4 additional wet cycles were carried out, a significant further increase in residual strain was 
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experienced. This points out the negative effect of the presence of moisture in the micro-cracks 

among grains, because water facilitates the growth of cracks between grains, by weakening the 

strained bonds at crack tips (Atkinson, 1984), and because water acts like a lubricant, thus making 

it easier for grains to slide with respect to each other (Koch and Siegesmund, 2004). 

Correspondingly, the unweathered specimens underwent a significant reduction in Ed after the 4 dry 

cycles and a further decrease after the 4 wet ones (respectively, red and blue bars in Fig. 4b).  

The pre-weathered specimens exhibited no significant residual strain after the 4 dry cycles, which 

again can be attributed to the “buffering effect” of the micro-cracks opened during the preliminary 

weathering (Sassoni and Franzoni, 2014b). Consistently, no further decrease in Ed was experienced 

by pre-weathered specimens (red bars in Fig. 4b). After the additional 4 wet cycles, the specimens 

exhibited a negative residual strain, which can be attributed to a progressive collapse of the 

microstructure (Ruedrich et al., 2002). Correspondingly, during the wet cycles, specimens underwent 

some further (although limited) decrease in Ed (blue bars in Fig. 4).  

As for anisotropy, the two tested directions gave quite similar results, the “contro” direction 

generally experiencing a little more damage than the “verso” direction. The lack of remarkable 

anisotropy in Gioia Venato marble is in agreement with previous results (Siegesmund et al., 2008). 

A comparison of bowing of not pre-bowed and pre-bowed slabs is reported in Fig. 4c,d. The pre-

bowed slabs (which had already been subjected to 17 thermal cycles up to 120 °C before the start 

of the cycles reported in Fig. 4) exhibited lower additional bowing in the “verso” direction and 

substantially the same bowing in the “contro” direction. Even if lower bowing would be reasonably 

expected for pre-bowed slabs (because progressive development of micro-cracks among grain is 

expected to reduce the effect of further heating-cooling cycles), the similar bowing registered in the 

“contro” direction is presumably owing to the fact that the level of bowing beyond which the bowing 

rate slows down had not been reached yet. In a previous study by Siegesmund et al. (2008) this 

level of bowing had been found to be ~1 mm/m, hence the choice of limiting preliminary bowing to 

1.1 mm/m in the present study (cf. § 2.3). However, it is possible that the level of bowing after which 

the bowing rate slows down was higher in the specific case of the marble tested here. 

 

3.2. Consolidation 

For each direction, the increase in Ed after consolidation is reported in Fig. 5 for cylinders (a) and 

slabs (b) preliminarily subjected to artificial weathering.  

In the case of cylinders, all the treatments were able to completely restore Ed and, in the case of 

the “1 M DAP”, “3 M DAP” and “ES” treatments, to even cause some improvement. The consolidating 

efficacy was increasing in the order “AmOx” < “EtOH” ≈ “IPA” ≈ “3 M DAP” < “ES” < “1 M DAP”. The 

mechanical improvement was possible thanks to formation of new phases inside the micro-cracks 

formed during preliminary weathering. These new phases, visible in the SEM images reported in Fig. 



This is a post-peer-review, pre-copyedit version of the article: Sassoni E., Andreotti S., Scherer G.W., Franzoni E., 
Siegesmund S., Bowing of marble slabs: can the phenomenon be arrested and prevented by inorganic treatments?, 
Environmental Earth Sciences 77 (2018) 387. The final version is available online at DOI: 10.1007/s12665-018-7547-7 

10 
 

6, improved the bonding among calcite grains, resulting in the measured increase in cohesion. As a 

consequence of formation of new phases, some reduction in the pore volume occurred (Fig. 7), but 

in no case did complete pore occlusion take place. The lack of complete pore occlusion is a positive 

feature, because otherwise the “buffering effect”, made possible by the presence of voids among 

grains, would be impeded (Sassoni and Franzoni, 2014b), with possible worsening of the thermal 

behavior.  

In terms of composition of the new phases (Fig. 8), the new bands in the FT-IR spectra of the 

“EtOH”, “IPA”, “1 M DAP” and “3 M DAP” treatments are compatible with HAP, although formation 

of octacalcium phosphate (OCP) cannot be excluded (Koutsopoulos, 2002). The presence of strong 

bands owing to calcite makes it difficult to conclusively identify the new phosphate phases; in 

particular, carbonated HAP might be formed after treatment, but the bands owing to carbonate 

groups in the HAP lattice might be covered by the bands owing to carbonate groups in the substrate. 

By combination of results obtained in this study by FT-IR with results obtained in previous studies 

by grazing incidence XRD and μ-Raman spectrometry, it is likely that OCP was the main phase 

formed by the “EtOH” and “IPA” treatments (Sassoni et al., 2018a), whereas HAP and OCP are both 

formed in the case of the “1 M DAP” (Naidu and Scherer, 2014) and “3 M DAP” (Sassoni et al., 2015) 

treatments. The possible formation of OCP alongside (or even instead of) HAP is not expected to 

negatively affect the treatment effectiveness and durability, because OCP is much less soluble than 

calcite (although more soluble than HAP) (Naidu and Scherer, 2014). In the case of the other 

treatments, the FT-IR bands indicate formation of calcium oxalate monohydrate (whewellite) after 

the “AmOx” treatment (Conti et al., 2015) and silica after the “ES” treatment (Franzoni et al., 2015b).  

In contrast to the cylinders, in the case of the slabs, only the “1 M DAP”, “3 M DAP” and “ES” 

treatments were able to restore Ed to the value before preliminary weathering, while the “EtOH”, 

“IPA” and “AmOx” treatments caused some mechanical improvement but not complete Ed 

restoration.  

The fact that all treatments were more effective on the cylinders than on the slabs can be 

attributed, at least in part, to the different thicknesses of the two types of specimens (15 mm diameter 

in the case of cylinders, 20 mm thickness in the case of the slabs). The different effectiveness 

between the two types of specimens is particularly marked for the “EtOH” and “IPA” treatments, 

which have in common the addition of alcohol to the DAP solution. A possible reason for the 

reduction in the consolidating effectiveness for increasing thickness may be the volatility of the 

solution, responsible for a lower penetration depth of these two treatments. More detailed 

investigations will be carried out in future research to elucidate this point. A sensible reduction of the 

consolidating effectiveness was present also in the case of the “AmOx” treatment. This can be 

explained considering that the reaction between the ammonium phosphate solution and calcite is 

quick, which leads to a limited depth of whewellite formation (Osticioli et al., 2017). This reduced 

depth of whewellite formation could be enough to cause some mechanical improvement in the 
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cylinders (15 mm diameter) but much less in the slabs (20 mm thickness). More tests are in progress 

to confirm this hypothesis. 

 

3.3. Arrest of bowing 

The consolidant’s ability to limit the residual strain after thermal cycles was first investigated by 

dilatometry on pre-weathered specimens, with the results shown in Fig. 9. Whereas the untreated 

references (red curves) exhibited a negative residual strain, which is indicative of a collapse of the 

microstructure (Ruedrich et al., 2002), all the consolidated specimens exhibited zero or positive 

residual strain (with the exception of one of the “IPA” specimens). Because a negative residual strain 

indicates microstructure collapse, but a high positive residual strain indicates irreversible damage in 

the sample, the closer the residual strain is to zero, the better. Notably, all the HAP-based treatments 

(with the exception of one of the “IPA” specimens) gave residual strain values very close to zero, 

which indicates little or no damage. In contrast, specimens treated by “ES” and especially by “AmOx” 

exhibited very high residual strain, particularly after the 4 wet cycles. This is an indication that severe 

damage occurred in these samples after the thermal cycles.  

Correspondingly, in terms of dynamic elastic modulus Ed, after the cycles the “ES” and “AmOx” 

specimens basically lost all the benefit derived from consolidation. This is indicated by Ed decreasing 

back to the level before consolidation (actually, at the end of the tests the “AmOx” specimens 

exhibited Ed even lower than the untreated specimens) (Fig. 9c,d). Although Ed decreased after the 

dry cycles and especially after the wet cycles, at the end of the tests the HAP-treated samples still 

had higher Ed than the untreated reference (Fig. 9c,d). The magnitude of the benefit was higher for 

treatments involving more concentrated DAP solutions. However, because some decrease in Ed 

occurred also in the HAP-treated specimens, further tests should be carried out in the future to 

ascertain the behavior of the HAP-treated samples after a higher number of thermal cycles. 

The results of the bowing tests on pre-bowed slabs (Fig. 10) are in good agreement with those 

of the dilatometric tests. 

First, it is immediately evident that the “AmOx” specimens experienced much higher bowing than 

all the other specimens, even the untreated references. After 12 cycles, the “AmOx” samples 

reached a value of bowing that is more than 3 times that of the untreated references (Fig. 10c,d). 

Consistently, at the end of the bowing cycles the Ed of the “AmOx” slabs is definitely lower than 

that of the untreated references (Fig. 10e,f). Such a behavior of the “AmOx” specimens is quite 

unexpected: the “AmOx” treatment is known to generally reach quite low penetration depth (because 

of the speed of the reaction between calcite and the ammonium oxalate solution) (Osticioli et al., 

2017) and consequent modest efficacy (Sassoni et al., 2015), but in turn it is expected to cause 

limited alteration in pore size distribution. This latter feature is positive, because it ensures that the 

“buffering effect” (allowed by voids among grains) is not inhibited after consolidation. Nonetheless, 
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MIP revealed that the dilatometric cycles caused a big increase in open porosity in the “AmOx” 

samples (Fig. 7), which is consistent with the dilatometric and bowing results, but still unexpected. 

Several possible explanations for the damage observed in the “AmOx” samples after the thermal 

cycles (in terms of porosity increase, residual strain and bowing) might exist. First, the mineral formed 

by the “AmOx” treatment (i.e. calcium oxalate monohydrate or whewellite) might have a significantly 

different thermal expansion coefficient, compared to calcite, which might result in stress generation 

upon temperature variations. However, no data were found in the literature about whewellite thermal 

expansion coefficient to confirm this hypothesis. A second reason might be the stability of whewellite 

as the temperature increases. Whewellite is known to transform into anhydrous calcium oxalate at 

162 °C (Frost and Weier, 2004), well beyond the maximum temperature reached during the cycles 

(90 °C). However, investigations by high temperature X-ray diffraction camera have pointed out that 

an intermediate phase (not better identified) starts to form at 90 °C (Wiedemann and Bayer, 1988). 

The formation of this new phase, possibly in combination with the presence of water inside the micro-

cracks, might have resulted in stress among the grains. A third possible explanation is that whewellite 

formed inside the micro-cracks is very stiff, so that (even if grains are not completely occluded) 

deformation of calcite grains upon temperature variations is impeded, which results in stress. 

However, to confirm any of these hypotheses specific experimental tests, beyond the scope of this 

study, are necessary and will be carried out in future research. 

 In the case of the “ES” samples, differently from the dilatometric results, at the end of the bowing 

cycles the remaining Ed was higher than that of the untreated references (Fig. 10e,f), which suggests 

that “ES” was able to mitigate the effect of the thermal cycles. Consistently, the measured bowing 

was lower (“contro”) or only slightly higher (“verso”) than the reference (Fig. 10c,d). 

 For all the HAP-treatment formulations, in agreement with dilatometric results, bowing was lower 

than (or very close to) that of the untreated reference (Fig. 10a-d), meaning that the treatments 

provided some protection against thermal weathering (or, at least, did not cause any worsening of 

the thermal behavior). The “EtOH” and “IPA” specimens exhibited a distinct but consistent behavior. 

Initially, all the samples underwent some concave bowing; then, during the prosecution of the test, 

they exhibited a slight, constant bowing increase in the convex direction, like the other specimens 

(Fig. 10a,b). This resulted in the final bowing of “EtOH” and “IPA” specimens being slightly negative 

or very close to zero after 12 cycles (Fig. 10c,d). The “1 M DAP” and, to a higher extent, the “3 M 

DAP” treatments caused bowing similar to the untreated reference (Fig. 10a-d), but still much higher 

residual Ed after 12 cycles (Fig. 10e,f). A possible explanation for the different behavior of the 

specimens treated by “EtOH” and “IPA”, on the one hand, and by “1 M DAP” and “3 M DAP”, on the 

other hand, might be the different stiffness of the new phases formed in the two cases (respectively, 

OCP (Sassoni et al., 2018a) and HAP+OCP (Naidu and Scherer, 2014; Sassoni et al., 2015)). The 

more compliant the new phases formed after treatment, the more deformation of calcite grains upon 

heating can be accommodated without causing stress at the grain boundaries. HAP has quite high 
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stiffness (~150 GPa, based on calculations by Zhang and Tamilselvan (2007)), while no values were 

found in the literature for OCP. In case OCP is sensibly less stiff than HAP, this may account for the 

different thermal behavior registered for specimens treated by the different treatments; the shape 

and orientation of the grains might also play an important role. To validate this hypothesis, specific 

tests are needed and will be carried out in future research.  

 Compared to “ES”, the HAP-treatments showed clear advantages in terms of residual strain and 

residual Ed after the dilatometric tests on cylinders (Fig. 9), even though the final bowing and the 

corresponding residual Ed in the slabs were similar (Fig. 10). Although not specifically measured in 

the present study, a further important advantage of the HAP-treatments, compared to “ES”, is their 

much better aesthetic compatibility when applied to marble: whereas all the tested formulations of 

the HAP-treatment have proven to cause color changes below the detection limit by the human eye 

(Sassoni et al., 2015; Sassoni et al., 2018a), the “ES” treatment has been reported to cause 

significant darkening in marble, exceeding the threshold of color change commonly considered as 

acceptable after conservation works (Sassoni et al., 2015). 

 

3.4. Prevention of bowing 

The results of dilatometric tests on unweathered specimens are reported in Fig. 11.  

In both directions, the HAP-treatments exhibited residual strain after the dilatometric tests lower 

than the untreated reference (Fig. 11a,b) and, consistently, the final Ed was always higher than the 

reference (Fig. 11c,d). Similarly to the case of pre-heated specimens, the “3 M DAP” treatment 

caused the lowest residual strain after 4 dry and 4 wet cycles (Fig. 11a,b) and accordingly the highest 

final Ed (Fig. 11c,d). This is in agreement also with previous results obtained on this formulation, 

which exhibited a very good ability to mitigate thermal damage (Sassoni et al., 2017). Again, similarly 

to the case of pre-weathered specimens, also in the case of the unweathered samples the “AmOx” 

treatment caused the highest residual strain at the end of the thermal cycles, also compared to the 

untreated references (Fig. 11a,b). Accordingly, any mechanical benefit achieved after consolidation 

was basically lost after the thermal cycles (Fig. 11c,d). In the case of the “ES” specimens, in spite of 

the initial benefit right after consolidation, the residual strain at the end of the dilatometric cycles was 

basically the same as the untreated reference (Fig. 11a,b) and any mechanical benefit was lost (Fig. 

11c,d).  

To evaluate the possibility of preventing bowing, only 1 treatment had to be selected because of 

limitations in the number of specimens that could be tested at a time. As mentioned in § 2.4, the “1 

M DAP” treatment was selected as it provided the highest Ed increase right after consolidation (green 

bars in Fig. 11c,d) - even though the “3 M DAP” treatment later provided the highest Ed retained after 

the thermal cycles (blue bars in Fig. 11c,d). Comparing results of dilatometric tests on untreated and 

“1 M DAP”-treated specimens, it is possible to observe that, at the end of the cycles, the HAP-treated 
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specimens exhibited lower residual strain and slightly higher Ed than the untreated reference (Fig. 

12a,b). Correspondingly, after 18 bowing cycles, the treated slabs exhibited lower bowing than the 

untreated ones, in both directions (Fig. 12a-d). Correspondingly, compared to the untreated 

specimens, the treated ones exhibited higher residual Ed after 18 cycles (Fig. 12e,f). It is noteworthy 

that all the decrease in Ed caused by the thermal cycles had already been experienced after the first 

12 cycles. 

 

4. CONCLUSIONS 

Based on the obtained results, the following conclusions can be derived: 

1) With the aim of arresting bowing, all the HAP-treatments exhibited promising results. The residual 

strain and the bowing were lower or equal to those of untreated marble, while the residual 

dynamic elastic modulus (Ed) after the thermal cycles was always higher in the consolidated 

specimens than in the untreated references. The magnitude of the benefit actually depended on 

the specific formulation of the HAP-treatment: the formulations involving EtOH and IPA caused 

lower bowing but also lower Ed at the end of the thermal cycles; the formulations involving higher 

DAP concentrations (“1 M DAP” and “3 M DAP”) exhibited final bowing slightly lower or similar 

to the untreated references, but still sensibly higher residual Ed. The “AmOx” treatment exhibited 

the worst behavior among all the investigated consolidants, the residual strain and the bowing 

always resulting the highest and exceeding by far the unconsolidated references. The “ES” 

treatment gave good results in terms of bowing and residual Ed after the bowing cycles, but still 

all the benefit deriving from consolidation was lost after the dilatometric tests (showing higher 

residual strain and similar residual Ed for “ES” and untreated specimens). 

2) With the aim of preventing bowing, unweathered specimens subjected to dilatometric tests gave 

results in agreement with those of pre-weathered specimens. “AmOx” caused higher residual 

strain and basically no advantage in terms of Ed, compared to the untreated reference. “ES” 

specimens lost all the benefit deriving from consolidation, once subjected to the thermal cycles. 

The HAP-treatments gave the most encouraging results, the lowest residual strain and the 

highest residual Ed being obtained for the “1 M DAP” and “3 M DAP” specimens. The former 

formulation, exhibiting the highest efficacy after consolidation and a good residual Ed after the 

thermal cycles, was selected for application on unweathered slabs, to evaluate the treatment 

ability to prevent bowing. After 18 cycles, the treated slabs experienced lower bowing and higher 

residual Ed, thus indicating that some mitigation of thermal weathering can be achieved by 

preliminary treatment of marble slabs with the investigated treatment.  

All things considered, the findings of the present study suggest that conservation treatments able 

to strengthen marble without causing excessive pore occlusion and stiffening are likely to be 

preferable, in the view of achieving improved durability to thermal cycles. In any case, the evaluation 
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of marble thermal behavior after treatment is confirmed as a parameter of fundamental importance 

to assess the suitability of any conservation treatment. Indeed, depending on the treatment 

properties, all the mechanical benefit derived from consolidation might be lost after a few thermal 

cycles, which makes the conservation treatment useless or in some cases even counterproductive.  
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Fig. 1 Examples of bowed marble slabs: (a) Père Lachaise cemetery in Paris, France (XIX cent.); 

(b,c) Monumental Cemetery in Bologna, Italy (XIX cent.); (d,e) “Theologicum” building in the 

Göttingen University campus, Germany (XX cent.). In (b), metal braces (pointed by white arrows) 

were introduced to contrast bowing and mortar was used to fill the void between the slab and the 

supporting wall; however, because bowing proceeded after brace insertion, the slab fractured right 

where the braces had been placed. In (c), an external support was introduced to arrest bowing, with 

the risk of slab fracturing. In (e), the slab on the extreme left was substituted, which reveals the level 

of bowing of the adjacent, central slab; in the inset, a detail of the fractured edge (serving as support) 

is shown. 
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Fig. 2 Outline of the study (Ed = dynamic elastic modulus, assessed by ultrasonic measurement). 
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Fig. 3 Experimental set-up used for the bowing tests and measured temperature vs time diagrams: 

(a) scheme and (b) photo illustrating the set-up (lamps provide heat to the upper side of the samples, 

while the lower side is sitting on a sand bath saturated with water); (c) temperature vs time diagram 

during the thermal cycles for inducing preliminary bowing (heating up to 120 °C for 70 min, unrealistic 

accelerated conditions); (d) temperature vs time diagram during the thermal cycles for evaluating 

the actual ability to resist bowing (heating up to 90 °C for 240 min, more realistic conditions). The 

temperature of the samples was measured in the upper side facing the lamps (“Top”) and in the 

lower side in contact with water (“Bottom”) using an infrared gun. 
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Fig. 4 Results of dilatometric and bowing tests on untreated specimens, not pre-heated (black 

curves) and pre-heated (red curves): (a) residual strain and (b) Ed variation after dilatometric cycles; 

(c,d) bowing in the “verso” (circles) and “contro” (triangles) directions. 

 

 

Fig. 5 Ed increase after consolidation in cylinders (a) and slabs (b) preliminarily artificially weathered. 
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Fig. 6 SEM images of pre-weathered untreated and treated samples. 
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Fig. 7 Results of MIP tests on unweathered (left) and pre-weathered (right, “-200” suffix) specimens, 

before and after (“-post” suffix) 4 dry and 4 wet cycles in the dilatometer (“DIL.”). 
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Fig. 8 FT-IR spectra of untreated and treated samples. 
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Fig. 9 Results of dilatometric tests on pre-weathered cylinders: (a,b) residual strain and (c,d) Ed 

variation in the “verso” (a,c) and “contro” (b,d) directions.  
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Fig. 10 Results of bowing tests on pre-bowed slabs (values are averages for 2 replicates, bars 

indicate the difference between the average and the maximum/minimum values)): (a,b) bowing as a 

function of the number of cycles, (c,d) bowing after 6 and 12 cycles and (e,f) Ed variation in the 

“verso” (a,c,e) and “contro” (b,d,f) directions. 
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Fig. 11 Results of dilatometric tests on unweathered cylinders: (a,b) residual strain and (c,d) Ed 

variation in the “verso” (a,c) and “contro” (b,d) directions.. 
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Fig. 12 Results of dilatometric and bowing tests on unweathered specimens, untreated and treated 

by “1 M DAP”: (a) residual strain after dilatometric tests and (b) Ed variation; (c,d) bowing in the 

“verso” and “contro” directions; (e,f) bowing after 6, 12 and 18 cycles and corresponding Ed 

variations. 
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Label Description Pre-weathered Unweathered 

  Slabs Cylinders Slabs Cylinders 

UT Untreated reference - - - - 

EtOH 0.1 M DAP + 0.1 mM CaCl2 in 10 vol% EtOH 8 5 - 5 

IPA 0.1 M DAP + 0.1 mM CaCl2 in 10 vol% IPA 8 5 - 5 

1 M DAP 1 M DAP + 1 mM CaCl2 7 5 6 5 

3 M DAP 3 M DAP then limewater 4 5 - 5 

AmOx 5 wt% ammonium oxalate 6 5 - 5 

ES Ethyl silicate 4 4 - 4 

Table 1. Label and description of the treatments and number of brush strokes to reach apparent refusal. 


