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Abstract   A new method for characterization of HEMT 
distortion parameters, which extracts the coefficents of 
Taylor series expansion of Ids(Vgs,Vds), including all cross-
terms, from low-frequency harmonic measurements, has 
been developed. The extracted parameters will be used 
either in a Volterra series model around a fixed bias point 
for third order characterization of small-signal Ids

nonlinearity, and in a large-signal model of Ids

characteristic, where its partial derivatives have been locally 
characterized up to the third order in the whole bias region, 
using a novel neural network representation. The two 
models have been verified by harmonic measurements on a 
AMS HEMT at 5 GHz.

I. INTRODUCTION

It is generally acknowledged that any nonlinear model 
should match simultaneously the I/V or Q/V 
characteristic and its first three derivatives to achieve 
accurately third order distortion prediction of weakly and 
mildly nonlinear electronic device [1][2]. In fact, it is 
possible to show that the levels of third order 
intermodulation components depend most strongly on the 
third and lower derivatives of the dominant I/V or Q/V 
nonlinearities. For sake of clarity, since the drain current 
Ids is by far the element of the FET model that mostly 
contributes to the device nonlinear behaviour, this work 
has been focused on this nonlinearity modeling. In the 
complete device model, however, also gate charges have 
been nonlinearly modeled, but their characterization is 
limited to first order derivatives. 

Several techniques to characterize the distortion 
parameters of nonlinear devices are already available. 
When distortion parameters are obtained via the 
calculation of the derivatives of static Ids(Vgs,Vds)
measured data, errors due to the measurement noise and 
low frequency dispersion are just exacerbated by 
derivatives, and hide the nonlinear properties. On the 
other hand, when pulsed measurements are employed to 
model Ids behavior, only first order nonlinearities are 
characterized as well, but measurement errors could 
perfectly hide higher order dependence in a mildly 
nonlinear device. In this paper we demonstrate that 
device nonlinearities can be accurately modeled through 
Ids distortion parameters extracted from small-signal 
harmonic measurements. Among the most interesting 
methods based on intermodulation measurements, in [3] 
two-sided noncommensurate excitations and the 
extraction of Volterra kernels are required, whereas in [4] 
extrinsic elements of the equivalent circuit are 
incorporated in the nonlinear model, and equations are 
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imated, decreasing the accuracy of the model in 
ion prediction near 1 dB compression point. 
his paper we propose a new extraction technique 
g the nonlinear current method of Volterra series 

to the nonlinear equivalent circuit, in which system 
ns are obtained changing as many drain loads as 

mber of distortion parameters of the same order to 
 from one-tone harmonic measurements. Starting 
alculations on a memoryless equivalent circuit with 
e loads at low frequency, the method has been 
lized including the effect of parasitics and using an 
 tuner loadpull, for RF characterization at 
ave frequencies. 
ally, these measurements are performed only in 
bias regions of major concern for weak 

earities, where they are the only causes of device 
earity, that is resistive region for mixer design, or 
ion region for power amplifier design. The 
ed approach characterizes the small-signal 
ear distortion in the whole bias region. 
 if we are aware that intermodulation distortion 

 is also an important parameter for most 
ave applications, only one-tone analysis will be 

ered in this work. However, IMD is directly related 
monic distortion (HD) by simple relations in the 
 weak nonlinearities. 

ecent years, the Harmonic Balance technique and 
ra-series expansion have been widely used in the 
ave nonlinear simulations with noncommensurate 

ions. From device modeling point of view, all that 
ssary for Volterra-series analysis in a small-signal 
 is a Taylor-series expansion of the device 
earities around a fixed bias point for amplifier 
tion or around a time-varying large-signal 
rm for mixers. On the other hand, to perform 
ignal analysis, Harmonic Balance techniques 
 associated current/Voltage and charge/Voltage 
atical model, described from a closed-form 

n of the intrinsic control voltages, to characterize 
onlinear circuit elements. In this paper both 
ng approach have been followed and validated by 
measurements. 
as already demonstrated that neural networks can 
e a large-signal description from the small signal 
elements dependence with the bias voltages [5] or 
pulsed measurements [6]. In this work neural 
ks are used to match, simultaneously, in each bias 
the nonlinear I/V characteristic, based on DC or 
 measurements, and its derivative parameters up to 
rd order [7]. 



An experiment based on a 0.25x10x100 µm medium 
power GaAs HEMT from Alenia-Marconi System (AMS) 
foundry is discussed. 

II. DISTORTION  CHARACTERIZATION

The extraction of Ids derivative parameters from power 
measurements can be accomplished more quickly 
applying the nonlinear current method to the equivalent 
circuit of Fig.1, where the transisor is almost unilateral, 
because of the low frequency used. It is an iterative 
technique that allows the calculation of the nonlinear Ids

component of order (n+1), given the control voltages of 
order (n), and assuming that the first order response is 
obtained by linear solution. 

Fig.1. Equivalent circuit for distortion parameters extraction.

Considering incremental voltages and currents in the 
time domain (small letters): 
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The series coefficents are the corresponding derivatives 
of current calculated at the quiescent point 
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Separating voltage and current orders, yields 
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In the frequency domain (capital letters): 
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 method allows to find voltages and currents order 
er following the hierarchy:

→ Vg1 → Id2 → Vd 2→ Vg2 → Id3 → Vd3

ching from frequency to time domain, it is easy to 
 the Vd harmonic phasors:
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possible to extract Vd phasors from harmonic 
rements, that is the power gain 
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 harmonic distortion ratios
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measure the distortion ratios on a HP71000 
m analyzer, the gate must driven by a one-tone 
ion with input frequency less than 100-200 MHz 
input power level of -20 dBm well below the 1dB 
ession point where Volterra calculations are valid. 

easurement setup is shown in Fig.2. At these 
ncies there is almost no FET’s internal feedback. 
the three Vd order components can be obtained 
cally, if the third order contribution to first order 
 neglected, that is input power is low enough. 

atively Vd components can be extracted via an 
zation algorithm. Then, each order Vd component 
 a system of two, three and four quadratic 
ns, in the unknown distortion parameters (Gm, 

Gm2, Gmd, Gd2) and (Gm3, Gm2d, Gmd2, Gd3), 
tively, that can be solved via an optimization 
hm based on least-square fitting. From above 
ns it can be seen that the n-order Vd component 
s on derivative parameters of order ≤ n. It follows 

stems solution goes on from low to high order. 
mplexity reduction in the characterization method 

 obtained if the tuned load is real, and Cgs effect is 
ted. In this case the three systems become linear, 



and parameters can be yield from matrix inversion. Both 
methods generate well conditioned systems. 

Fig.2. Harmonic measurement setup. 

The measure of IM ratios, however, gives no 
information about phase. With complex loads, the 
optimization algorithm looks for the right system 
solution, imposing the constraint of real derivatives. In 
the case of real loads, equations give two possible values 
of Vd components, but only one can be correct, and it is 
easy to select the correct one. For example, if Gm2 
decreases as Vgs increases, Gm3 should be negative. 

The obtained results for Ids parameters are plotted in 
Fig.3, for the characterization method employing four 
resistive series loads (47,75,100,150 Ω), a fundamental 
frequency of 15 MHz to neglect the reactive behavior of 
the resistive loads, and an input power ranging around     
-20 dBm, with slight differences between each bias point. 
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Fig.3. Ids derivative parameters extracted from harmonic 
measurements for Vgs=(-1.5...0.0) V and Vds=4 V (continuous) 
and Vds=2 V (dashed). 

III.  NEURAL  NETWORK  MODELING

The extracted derivative parameters can be used to 
build a small-signal bias-dependent power-series Ids

model such as in (2), for low power level nonlinear 
analysis. On the other hand, the extracted parameters can 
be used to condition an Ids large-signal model derivatives 
at each bias point. Neural networks have been already 
used to fit any nonlinear model and its derivatives using 
sigmoidal activation function [7]. The analytical model 
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vatives of which can be analytically obtained and 
ted to correspondent neural networks. In order to 

imultaneously, the nonlinear model and its 
tives, a global derivative neural network (GDNN) 
 defined, with sub-networks corresponding to the 

 to learn and to its derivatives, respectively [7]. The 
k topology is presented in Fig.4, showing data 
s for each output parameter to fit. The first-order 
 derivatives correspond to the linear equivalent 
 elements (Gm,Gd) extracted from first-order 
nic measurements or S-parameter measurements, 
s second and third order derivatives to parameters 
d2,Gmd ecc.) extracted from harmonic 

rements. 
 worth noting that weights and bias in derivative 
tworks are dependent from those in the main 
k, which are the only optimizable parameters. In 
ractical approach to modify the network Jacobian 
vemberg and Marquardt optimization of a standard 

 network tool is explained. However, when the 
tive order of parameters to match increases that 
 becomes unwieldy, and a user-defined learning 

hm is better to handle. 

Fig.4.  Global neural network architecture.

ting from the nonlinear equivalent circuit of an 
 device shown in Fig.5, all nonlinear elements 
een extracted fitting the neural sigmoid functions 
rimental measurements. 
e-signal behaviour has been characterized only 
h the fast curvature of I/V characteristic evaluated 
h DC measurements, such as current cutoff below 
off voltage, forward current at the Gate Schottky, 
to saturated regions transition and avalanche 

own from drain to gate. 



Although the gate-source capacitance Cgs, Ids is by far 
the element of the FET's equivalent circuit model that 
mostly contribute to the nonlinear behavior of the device. 
For this reason nonlinear charge models have been 
obtained fitting only the first order derivatives (i.e. the 
capacitances) to circuit parameters extracted from linear 
measurements. 

Fig.5. HEMT nonlinear equivalent circuit.

IV. MODEL VALIDATION

Two device models based on the nonlinear circuit of 
Fig.5 have been built. The first model employes the 
Volterra series expansion for Ids current described in (2) 
around the bias point Vgs=-0.5 V and Vds=4V, using the 
corresponding extracted parameters, the second one is the 
large-signal model resulted from the GDNN training. 

After inserted into a commercial CAD simulator, both 
models have been simulated in Harmonic Balance 
analysis. Comparison with one-tone harmonic to carrier 
measurements at 5 GHz, 50 Ω termination, performed on-
wafer on a 0.25x10x100 µm medium power GaAs HEMT 
from Alenia-Marconi System (AMS) foundry, are 
reported in Figg. 6 and 7 for the fundamental and 
harmonic output powers, respectively. As expected, 
Volterra-series model provides the nonlinear behavior 
prediction well before the 1-dB compression point, 
whereas the large-signal neural model is very close to 
measurements also for high distortion levels. 

V. CONCLUSIONS

This approach has demonstrated to be a useful tool to 
perform accurate small-signal and large-signal models, 
which are well-suited to predict nonlinear device 
behavior up to third-order distortion. Despite of its 
intrinsic small-signal characterization, the large-signal 
model has demonstrated to be able to predict the 
nonlinear behavior also for high distortion levels, thanks 
to its local derivative characterization up to the third 
order.
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