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Abstract— This paper reports on the design and fabrication
of a wafer-scale package for RF MEMS devices at W-band.
Coplanar waveguide (CPW) lines on a high resistivity silicon
wafer are covered with another silicon wafer using gold-to-gold
thermo-compression bonding. Oxide is used as a dielectric inter-
layer for CPW feedthroughs underneath the gold sealing ring. A
130 µm high cavity is etched in the cap wafer to remove an impact
of capping wafer on CPW lines or RF MEMS components. The
designed feedthrough has an insertion loss of 0.19−0.26 dB at
75−110 GHz with a return loss of < −20 dB (per transition). The
gold sealing ring is connected to the CPW ground to eliminate any
parasitic ring effect of the gold sealing ring. The whole package
has a measured insertion loss of 0.6−0.8 dB and return loss of
< −20 dB at 75−110 GHz.

I. INTRODUCTION

Numerous RF MEMS devices such as switches, varactors,
and resonators have been demonstrated with outstanding RF
performance [1] . Several low loss MEMS devices have been
demonstrated at W-band. However, these low loss devices can
only be as good as their packaging can allow. The RF MEMS
devices must be encapsulated in a stable environment to
protect their movable parts. There have been several attempts
on wafer-scale packages to provide a hermetic sealed cavity
using various wafer bonding techniques. Schöbel et al. used
a glass frit bonding with 0.25−0.5 dB insertion loss of a
CPW feedthrough at W-band [2]. Margomenos et al. used
gold thermo-compression bonding with 0.06 dB insertion loss
of a hermetic via-hole transition up to 60 GHz [3]. At lower
frequecy, Jourdain et al. reported 0.09−0.15 dB insertion loss
at 2 GHz with a solder (SnPb) bonding [4]. Radant MEMS
presented a DC−40 GHz packaged switch with a return loss
of less than −20 dB using glass frit bonding [5]. We also have
demonstrated a wafer-scale package at DC−50 GHz using
thermo-compression bonding with an insertion loss of less than
0.1 dB [6]. In this paper, we follow the previous CPW-based
approach with an oxide interlayer for W-band applications,
and show that grounding of the metal sealing ring removes
any parasitic resonance. If a surface-mount package is needed,
the via-holes can be placed outside of the hermetic package
using a standard low-cost process.

II. DESIGN

The package is realized using gold-to-gold thermo-
compression bonding of two silicon wafers as shown in Fig. 1.
On the bottom wafer, the 25/50/25 µm CPW line is designed
to achieve 50 Ω transmission line. 1000 Ω-cm high resistivity
silicon wafers are used for the bottom and cap wafers to
decrease the CPW line loss. A 130 µm cavity is etched in
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ith a packaged CPW transmission line.

wafer to remove the impact of placing a silicon cap in
ximity of the CPW lines or RF MEMS components.

re, the CPW lines or RF MEMS components do not
be redesigned for use inside the package. The gold ring
ide inter-layer provides a bonding area and sealing for

etic package. The gold ring is connected to the CPW
and this grounding removes any parasitic ring effects.
rneath the gold ring, the width of the CPW center
or is narrowed down to 10 µm to compensate for
acitive loading of the gold ring (see Fig. 1, gold-
nsition). The narrowed capacitive line (l = 40 µm)
matched by the inductive tapering in the CPW line.
hows the simulated insertion loss and return loss using
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Fig. 2. Simulated insertion loss and return loss of the gold-ring transition
using Sonnet

Sonnet1 simulator. The simulated return loss of the transition
is lower than −21 dB at W-band. The simulated loss of
the transition is 0.14−0.18 dB at W-band due to the thin
(t = 0.5 µm) and narrow (w = 10 µm) CPW center conductor
underneath the gold ring.

III. FABRICATION

The CPW line is fabricated on a 280 µm thick silicon
substrate. The first step is a lift-off process of Ti/Au/Ti
300/4400/300 Å which patterns the CPW line and the thin
feedthrough layer. This feedthrough must be thin to make a

1Sonnet, ver. 9.52, Sonnet Software Inc., Syracuse, NY, 1986-2003.
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ly planar bonding surface. The next step is a PECVD
on of 3 µm oxide (SiO2), which is patterned using an
cess. This oxide layer provides the dielectric interlayer

the CPW line and the gold sealing ring. Then, a
0/300 Å Ti/Au/Ti seed layer is evaporated and then
m thick CPW line and sealing ring are electroplated.
parate 280 µm thick cap wafer, a 2 µm of Au layer
ered first, and the sealing ring is patterned with wet

The next step is a lift-off process of align keys on
kside of the cap wafer for the future bonding process.

1000 Å of Al layer is sputtered and patterned to
a DRIE mask of the 130 µm high package cavity.

this cavity is etched, opening holes for the CPW probe
ment is etched first about 160 µm using photo resist
he final step is the gold-to-gold thermo-compression
of the two silicon wafers. The wafers are heated

C and a pressure of 1000 lbf/in2 is applied for an
is bonding technique has shown proven high reliability

c sealing [3], [7]. The hermeticity of these particular
s have not been tested.

IV. SIMULATION AND MEASUREMENT

I summarizes the simulated and measured RF char-
cs of the CPW line and the gold-ring transition. S-
ers of the CPW lines are measured on an HP 8510C
k Analyzer, using a TRL calibration method to de-
the probe-to-wafer transition and establish reference



Zo=51, α=310 dB/m,  εeff=6.3

Characteristics Sim/MeasFreq.

CPW 

w/ & w/o Si Cap
90 GHz

Sim.*

Meas. Zo=49,  α=210 dB/m,  εeff=5.6

Gold-Ring

Transition 

75 GHz

90 GHz

110 GHz

Sim.*

Meas.

Sim.*

Meas.

Sim.*

Meas.

I.L.= 0.14 dB,    R.L.= -25dB 

Added I.L. = 0.20 dB 

I.L.= 0.16 dB,    R.L.= -23dB 

I.L.= 0.18 dB,    R.L.= -21dB 

Added I.L. = 0.23 dB 

Added I.L. = 0.26 dB 

TABLE I

SUMMARY OF MEASURED AND SIMULATED CHARACTERISITCS

              OF CPW LINE AND GOLD-RING TRANSITION

∗εsi = 11.9,  σsi = 0.1 S/m, tanδsi = 0.003,  εoxide = 3.8, and  σgold = 3x10  S/m7

planes as shown in Fig. 1. The CPW characteristics are
measured using many 1,000 µm and 2,000 µm long CPW
lines with and without the silicon cap. The silicon cap, with
130 µm high cavity, has no apparent impact on the CPW
characteristics. The measured loss and impedance of CPW
line (25/50/25 µm) are lower than the Sonnet simulation
because the oxide layer between CPW center conductor and
ground is etched. The measured insertion loss of the packaged
CPW lines and CPW lines that are not packaged are shown
in Fig. 5. The loss due to the gold-ring transition can be
estimated by their difference. For clearance, the loss in both
cases are least-squares fitted to b + a

√
freq. functions since

the loss in CPW lines are mainly ohmic and have a known
frequency dependance [8]. The measured and simulated loss
per transition is summarized in Table I at 75, 90, and 110 GHz.
The measured packaged line loss is about 0.07 dB higher
than the Sonnet simulation. This is possibly due to the oxide
layer which is charged under the CPW line. This oxide layer
attracts minority carriers of the semiconductor and results
in a localized low resistivity inversion layer at the silicon
surface [9]. Therefore, the loss of the CPW line under gold-
ring transition increases.

Fig. 6 presents the HFSS2 simulated and measured insertion
loss and return loss of the CPW line. For the HFSS simulation,

2HFSS, ver. 9.2, Ansoft Corporation, Pittsburgh, PA, 1984-2004.
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Measured and simulated insertion loss and return loss of a package.

ductivity of gold feedthrough is lowered to compensate
erence between the simulated and measured transition
Table I. The return loss of the package is mainly

ned by the gold-ring transition and is better than
. Fig. 7 presents the input/output isolation of the
d CPW line with a 60 µm-long gap in the center
or. This represents the case of an RF MEMS switch in
state position. Due to the return loss of the gold-ring
ns, the isolation of the packaged CPW line is better

e isolation of the CPW line which is not packaged
is no severe leakage by the package. The measured

n agrees well with the simulation and does not show
ere leakage. The reason is that the grounded gold
es not allow leakage between the input and output
ns.

V. CONCLUSION

paper demonstrates a straight-forward design for W-
nsitions suitable for RF MEMS packages. The loss per
n is less than 0.26 dB up to 110 GHz. The transition

s checked with the difference between the not packaged
ne loss and the packaged CPW line loss. The package

Frequency (GHz)
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Measurement w/ package
Simulation w/ package
Simulation w/o package

Measured and simulated isolation of a 60 µm gap in the CPW line
ackaged CPW line.



has a measured return loss of < −20 dB at 75−110 GHz. This
package is also suitable for amplifiers, mixers, and any GaAs
or SiGe integrated circuit and is not limited to RF MEMS
devices.
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