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Abstract — This paper presents a black-box model that
can be applied to characterize the nonlinear dynamic
behavior of power amplifiers. We show that time-delay
feed-forward Neural Networks can be used to make a large-
signal input-output time-domain characterization, and to
provide an analytical form to predict the amplifier response
to multitone excitations. Furthermore, a new technique to
immediately extract Volterra series models from the Neural
Network parameters has been described. An experiment
based on a power amplifier, characterized with a two-tone
power swept stimulus to extract the behavioral model,
validated with spectra measurements, is demonstrated.

1. INTRODUCTION

The nonlinear analysis of electronic systems often
requires an analytical model for each nonlinear element (i.e.
an equation representing the input-output relationship), that
allows to draw conclusions about the system performance.
This approach aims to extract a nonlinear relationship from
a relatively simple characterization set, in order to build an
input-output model able to generalize the nonlinear
dynamic behavior of electronic components for input
waveform not used in the characterization set.

Behavioral models try to accurately express the measured
behavior of an object, linear or nonlinear, formulating a
single closed form equation that represents a measured
parameter, which might be a function of multiple
independent variables. The process of converting measured
data into equations relies on curve-fitting techniques [1].
However, many of the most common techniques are useful
where data trace is well behaved over a defined
independent variable range and where behavior of an object
is known to follow a specific mathematical model, but
problems arise when the object’s complex internal
parameters cause the data trace to exhibit sharp inflections.
In that case, data ceases to be well behaved and common
curve-fitting techniques become useless. There is a clear
need for a new curve fitting technique that provides
smoothness and continuity through plotted trace having
sharp inflection.

A new technique that could overcome this problem could
be the use of Neural Networks. They can help building a
behavioral model of a nonlinear element or device. In fact,
the Neural Network approach for electronic device
modeling has received increasing attention, especially in
recent years [2], since model tailoring to the element under
study only needs a training procedure based on simulation
data or measurements of the physical circuit. Our proposal
is not only to use a Neural Network to build a behavioral
model for a nonlinear element, but also to obtain an
analytical expression for the model, either as neural

analytical model and Volterra series expansion, calculated
as function of the neural network model parameters (Fig.1).
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Fig. 1. Novel Behavioral Neural-Network-based approach

As well as the frequency performance of linear devices
has been successfully represented by a linear convolution,
Volterra series represents its natural extension to nonlinear
devices. In such way both a linear and nonlinear dynamic
behavior can be usefully represented in a system chain with
a black-box model. So far, however, behavioral models
based on the Volterra series hold their validity only for
weak nonlinearities and require heavy characterization
efforts to extract the kernels, especially when multitone
intermodulation is a matter of interest.

If the time domain approach is chosen in order to
characterize the memory effects adding enough time-
delayed inputs to the input-output relation, the question is
how to learn the nonlinear behavior response to different
input power levels. The answer is that time-delay Neural
Networks can learn a nonlinear behavior with medium-to-
strong memory effects, along with high-order nonlinearity,
if they are trained with input-output time-delayed data
samples at different power levels, simultaneously [3]-[4].
This fact turns out of outstanding importance to build
behavioral models of power amplifiers which are able to
simulate the nonlinear performance with different input
spectra and power levels.

A further advantage of this approach is that a new
algorithm to extract the Volterra kernels directly from the
neural network parameters has been found [5], and the
resulting model represents a very good approximation of
the nonlinear behavior, with only three-order kernels. This
fact can be a useful chance for medium-power analysis,
because the neural analytical models can be more complex
to implement into simulation CAD tools then compact
models based on Volterra series.

In other words, the objective of our work is to develop a
new kind of behavioral model for nonlinear RF elements,
independent of the physical circuit modeled, which fitting
only time-domain device measurements, could train a
Neural Network and generate a black-box model on the one
hand, and could provide an analytical model for the
nonlinear behavior, also in Volterra series form, on the
other hand.
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In this paper we show, as a case of study, the results
obtained from a power amplifier input/output time
domain characterization to build both neural and Volterra
series based black-box models. The organization of the
paper is the following: in the next Section, the Neural
Network model proposed is described; in Section III the
building of a Volterra model from the neural network
parameters is explained; in Section IV the power
amplifier characterization and the modeling results are
presented. Finally, the conclusions appear in Section V.

II. NEURAL NETWORK MODEL

The neural network frame used in this application is a
feed-forward time-delay Neural Network with three layers,
an input layer composed of the input time-domain voltage
samples and their delayed replies, an hidden layer with
nonlinear activation functions, and a linear output layer.
The architecture is shown in Fig.2, whereas (1) and (2) are
the corresponding input-output analytical expression, for
hyperbolic tangent and polynomial activation functions,
respectively
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where M is the input memory, N is the number of hidden
neurons, and P is the polynomial degree. The particular
form of polynomial development in (2) has been chosen
because it can be directly implemented in neural network
training tools.

The input and output waveform are expressed in terms of
their samples in the time domain. The input memory (M)
should be chosen in order to adequately represent the
memory effects of the behavioral model, in the same
manner as done with linear filters, where the number of
input taps represents the accuracy in bandwidth shaping.
The number of hidden neurons (N) is chosen to perform the
best fitting to input-output data without overfitting
problems. The Neural Network is trained with a
backpropagation algorithm, based on the Levemberg-
Marquardt algorithm for network parameters optimization.

Fig. 2. Time-delay feed-forward Neural Network model

The analytical forms in (1) and (2) can be used as
input-output time-domain characterizations for the
nonlinear element to model. Furthemore, a Volterra series
expansion, calculated in function of the neural network
parameters can be extracted from the polynomial output
network in (2) as well. This is explained in the next
section.

III. VOLTERRA MODEL

A nonlinear dynamic system can be represented exactly
by a converging infinite series, that reports the dynamic
expansion of a single-input single-output system. This
equation is known as the Volterra series expansion,
which for third degree expansion can be expressed in the
time domain as follows
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The functions hy h; h, h; are known as the Volterra
kernels of the system.

The Volterra series analysis is well suited to the
simulation of nonlinear microwave devices and circuits,
in particular in the weakly and mildly nonlinear regime
where a few number of kernels are able to capture the
device behavior (e.g. for PA distortion analysis) [6]. The
Volterra kernels allow the inference of device
characteristics of great concern for the microwave
designer. However, the number of terms in the kernels of
the series increases exponentially with the order of the
kernel and this is the most difficult problem with this
approach.

In the Biology field, Wray & Green [8] have outlined a
method for extracting the Volterra kernels from the weights
and bias values of a Time-delay Multi-Layer Perceptron
Neural Network. Based on this idea, there have been
several proposals for kernels calculation with different,
often non standard, neural networks topologies [8][9]. Our
proposed model, instead, it is more general because it could
potentially represent not only a dependence on one input
variable, but also a function depending on two or more
input variables.

Concerning the use of laboratory measurements for
feeding a neural model, different models and networks
topologies are used and compared, which need complex
measurements to train the networks and are based, actually,
on numerical estimations. Our proposed approach (applied
here to the particular case of power amplifiers), instead,
needs only a time domain characterization for the training
of the proposed neural network model.

Developing the network output expressed in (2), yields
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Comparing terms in (3) and (4), the Volterra kernels of a
Volterra series expansion can be easily calculated according
to (5)
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The Volterra model extracted in this way is perfectly
equivalent and performs the same degree of accuracy as the
Neural Network itself. This is of great importance because
is very easy and fast to train a polynomial Neural Network
and to extract the correspondent Volterra model.

IV. MODEL TRAINING AND VALIDATION

For training purpose, a Cernex 2266 power amplifier,
with a 1-2 GHz bandwidth, a 29 dB gain, and 1 dB
compression at 30 dBm, has been stimulated with two tones
with central frequency at 2 GHz and frequency spacing 100
MHz, from two synthesized sweepers, each one ranging the
power from —20 to +1 dB, that is 2 dB over the 1 dB
compression point of the amplifier. The amplifier output
has been connected to a Tekl1801B Digital Sampling
Oscilloscope, and 5120 samples has been collected on a 20
ns window. The oscilloscope has been triggered with the
common RF reference at 10 MHz from the generators; two
commensurate frequencies multiple of the trigger frequency
have been used for this purpose. The data samples have
been read with a Labview program from a PC, connected to
the oscilloscope via an GPIB interface. The characterization
setup is shown in Fig.3.

Input data vectors from different input levels have been first
joined together, to train the Neural Network with all power
levels, simultaneously; the resulting vector has been copied
and delayed as many times, to represent the network input,
as necessary to take into account memory effects. The tap
delay must be a multiple or equal to the data sampling time
Ts, and is calculated from

TznTSZn(FS)_IZ(Z*BW)_I to avoid spectral

aliasing, where Fj is the data sampling frequency and BW
the desired characterization bandwidth.

Two type of networks have been trained: the former, with
sigmoidal activation function, in the entire power range,
with 3 dB power step, to perform a very large signal
nonlinear model, the second, with third degree polynomial
activation function, in a smaller power range, below 1 dB
compression point. Both have been trained with 8 input
delays and 9 hidden neurons. Training results are shown in
Figg.4 and 5.

On the other hand, for validation purpose, frequency
domain amplifier response, obtained from FFT transform of
time-domain simulation waveform of the two behavioral
models and the amplifier time-domain measurements, has
been compared, to demonstrate the validity of the modeling
approach also in the frequency domain. Results are shown
in Figg. 6 and 7. As it can be seen spectra are very close in
the amplifier bandwidth, both for low and high distortion.
The third order Volterra model is well behaved near 1 dB
compression (Pin = -5 dB), whereas the sigmoidal model
hold its validity up to Pin = +1 dB, 2 dB over the 1 dB
compression.

V. CONCLUSIONS

A new large-signal behavioral model, based on Time-
Delay Neural Networks, for the nonlinear dynamic
modeling of power amplifiers, has been developed.
Moreover, an easy procedure to extract Volterra kernels
from the polynomial network parameters provide a very
compact and accurate model to be used below 1dB
compression point. Future developments, which rely on a
more accurate time-domain characterization with a Large
Signal VNA, could enhance the accuracy of the modeling
approach.
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