
GRAPHS WITH PRESCRIBED THE TRACE OF THE LEVI FORM

VITTORIO MARTINO AND ANNAMARIA MONTANARI

Abstract. We prove existence and uniqueness of a viscosity solution of the

Dirichlet problem related to the prescribed Levi mean curvature equation, un-

der suitable assumptions on the boundary data and on the Levi curvature of the

domain. We also show that such a solution is Lipschitz continuous by proving

that it is the uniform limit of a sequence of classical solutions of elliptic problems

and by building Lipschitz continuous barriers.

1. Introduction

If M is a hypersurface in Rn+1, and if Π is its second fundamental form, then the

eigenvalues of Π are the principal curvatures of M and the trace of Π is called the

mean curvature of M. For a real hypersurface M ⊂ Cn+1, let J be the canonical

complex structure and let H denote the J-invariant n-dimensional complex subspace

of the complexified tangent space to M . The restriction of the second fundamental

form of M on H is a Hermitian form Λ, which is called the Levi form. More precisely,

if M is a real manifold of class C2 which is locally defined by ρ, then the Levi

form Λ(ρ) is the restriction to the complex tangent space H of the Hermitian form

associated with the complex Hessian matrix HessCρ =
(

∂2ρ
∂z`∂zp

)n+1

`,p=1
of ρ. The Levi

form Λ itself depends on the defining function for the domain, while the normalized

Levi form Λ̃(ρ) = Λ(ρ)
|∂ρ| is independent of the defining function ρ and depends only on

the domain (a proof of this assertion can be found in [8, Proposition A.1]). Bedford
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and Gaveau were the first to remark this fact and in [1] they used the normalized

Levi form to bound the domain over which M can be defined as the graph of a

function of class C2. The eigenvalues of Λ̃ correspond to mean curvatures in certain

complex directions and, more generally, symmetric functions in the eigenvalues of Λ̃

are complex curvatures of M . The sum of the eigenvalues of Λ̃, corresponding to the

complex version of the mean curvature of M , is the scalar function KM(·) defined

by

KM(z) = − 1

n|∂ρ(z)|3
∑

1≤i1<i2≤n+1

det




0 ∂i1
ρ(z) ∂i2

ρ(z)

∂i1ρ(z) ∂i1i1
ρ(z) ∂i1i2

ρ(z)

∂i2ρ(z) ∂i2i1
ρ(z) ∂i2i2

ρ(z)


 .

We will call KM(z) the mean Levi curvature of M at a point z ∈ M . Here ∂j, ∂j̄, ∂`j̄

denote respectively the derivatives ∂
∂zj

, ∂
∂z̄j

, ∂2

∂z`∂z̄j
and ∂ρ = (∂1ρ, . . . , ∂n+1ρ) .

Example 1.1 (Levi mean curvature of a ball). If M is the ball of radius r with

center at zero, then by choosing as defining function ρ = |z1|2 + · · · + |zn+1|2 − r2,

we have

KM(z) =
1

n
|r|−3

∑
1≤i1<i2≤n+1

(|zi1|2 + |zi2|2) ≡ r−1.

Example 1.2 (Levi mean curvature of a cylinder). Let B(0, r) ⊂ Cn × R be a ball

of radius r. We consider the following cylinder

B(0, r)× iR = {(z, w) ∈ Cn × C : |z|2 +

(
w + w̄

2

)2

− r2 < 0}.

It is easy to check that

2n− 1

2nr
≤ K∂B(0,r)×iR(z, w) =

2nr2 − |z|2
2nr3

≤ 1

r

for every (z, w) ∈ ∂B(0, r)× iR.

In [8, Proposition 2.1 and formula (17) p.316] it was proved that if ∂n+1ρ(z) 6= 0

then we can write the Levi mean curvature of M at z ∈ M as follows:

(1.1) KM(z) =
1

n
|∂ρ|−1trace

((
In − αT · ᾱ

1 + |α|2
)

A(ρ)

)
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where

(1.2) α = (α1, . . . , αn), αj(z) =
∂jρ(z)

∂n+1ρ(z)
,

and A(ρ) is the n× n Hermitian matrix with coefficients

(1.3) Aj,¯̀(ρ) = ∂j,¯̀ρ− ᾱ`∂j,n+1ρ− αj∂n+1,¯̀ρ + αjᾱ`∂n+1,n+1ρ.

If M is the graph of a function u : Ω → R, Ω ⊂ Cn × R ' R2n+1, for every x ∈ Ω

we recognize that

(1.4) KM(x, u) = trace
(
σ(Du)σT (Du)D2u

)

where Du and D2u are respectively the Euclidean gradient and the Hessian of u in

R2n+1. Here σ is a 2n+1×2n real values matrix, whose coefficients are C1 functions

of Du. This is a crucial point in the study of viscosity solutions in view of the results

in [7] and we will prove (1.4) in the Section 2. In the sequel we will call the right

hand side of (1.4) Levi mean curvature operator, and we will denote it by L

Lu = trace
(
σ(Du)σT (Du)D2u

)
.

Even if the Levi mean curvature has some geometric properties similar to the

Euclidean mean curvature we must stress that the Levi mean curvature operator

is never strictly elliptic. In this paper we consider the Dirichlet problem of finding

a non parametric hypersurface with prescribed mean Levi curvature k on a domain

Ω ⊂ Cn×R ⊂ Cn×C where Ω× iR is strongly pseudoconvex. The problem can be

formulated as follows. Given ϕ ∈ C(∂Ω) and k ≥ 0 continuous, find u ∈ C(Ω) such

that

(1.5) u|∂Ω = ϕ and Lu = k(·, u) on Ω.

The Dirichlet problem for the Levi equation for n = 1 was first considered by A.

Debiard and Gaveau [5], who gave an estimate for the modulus of continuity of the

solution and by Z. Slodkowski and G. Tomassini in [9].

The existence of classical solution of (1.5) for n > 1 is an interesting open problem,

while for n = 1 it has been solved in [2]. The main aim of this paper is to show the
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existence and the uniqueness of a Lipschitz continuous viscosity solution of (1.5). To

this purpose we use the main tools of the theory of viscosity solutions. We recall that

the theory of viscosity solutions provides a convenient partial differential equations

framework for dealing with the lack of the existence of classical solutions. For a

complete survey of the results obtained within the theory of viscosity solutions for

the second-order case we refer to the “Users’guide” of Crandall, Ishii and Lions [3].

One of the main tools to prove the existence and the uniqueness of a continuous

solution to (1.5) is to provide a comparison principle between semicontinuous sub

and supersolutions to (1.5). Indeed the existence follows easily through the Perron’s

method by Ishii [3].

Hereafter we suppose that Ω ⊂ R2n+1 is a bounded domain with boundary of class

C2. We list below some basic assumptions we use throughout the paper.

We assume that k : Ω×R→ [0, +∞) is a continuous bounded function satisfying

(H1): for all R > 0, there exists `R > 0, such that, for every x ∈ Ω, and

−R ≤ v ≤ u ≤ R

(1.6) `R(u− v) ≤ k(·, u)− k(·, v) ,

(H2): for all R > 0, for all (x, y) ∈ Ω and |u| ≤ R, there exists a modulus of

continuity ωR such that ωR(s) → 0 as s → 0+ and

|k(x, u)− k(y, u)| ≤ ωR(|x− y|) .

Conditions (H1) and (H2) will be used in Section 3 to prove a comparison principle

between viscosity semicontinuous sub- and supersolution to the problem (1.5). In

Section 4 to solve the Dirichlet problem by using the Perron’s method we will use

the following additional assumptions on k and Ω:

(H3): ∂Ω is of class C2, Ω × iR is strongly pseudoconvex 1 and, for all

x0 ∈ ∂Ω , supΩ×R k < K∂Ω×iR(x0) .

1An open set D = {ρ < 0} ⊂ Cn+1 is strongly pseudoconvex if the Levi form is positive definite

at every point of its boundary
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Condition (H3) will allow to build local barriers to the problem (1.5).

We prove the following theorems.

Theorem 1.1. [The strictly monotone case] Assume (H1)–(H3). Then for

any ϕ ∈ C(∂Ω) there exists a unique continuous viscosity solution u of (1.5).

The proof of Theorems 1.1 follows classical arguments from the theory of viscosity

solutions (see e.g [3]). To get the Lipschitz continuity of the solution we use the

elliptic regularization technique. For every ε > 0 we define the (2n + 1)× (2n + 1)

matrix

σε(p) =


 σ(p)


 0

ε







where 0 is null vector in R2n, and we consider the quasilinear elliptic equation

Lεu = k(x, u), Lε := trace (σe(Du)σT
e (Du)D2u).

By [6, Theorem 15.10] if ∂Ω ∈ C2,γ and φ ∈ C2,γ(Ω̄) then for every ε > 0 there

exists a unique solution u ∈ C2,γ(Ω̄) of the Dirichlet problem

(1.7)





Lεu = k(x, u), in Ω

u = ϕ, on ∂Ω

The main strategy then is to prove a maximum principle for |Du|2 and boundary

estimate for the gradient of u independent of ε.

If k ∈ C1(Ω× R) then it satisfies

(1.8)
Dxk · p + Duk|p|2

(1 + |p|2)1/2
+

2n

2n + 1
k2 ≥ 0

for every (x, u) ∈ Ω×R and for all |p| ≥ L. Then by [6, Theorem 15.1] the maximum

principle for |Du|2 holds and we have

(1.9) sup
Ω̄

|Du| ≤ max{L, sup
∂Ω
|Du|}

By using local barriers, we then get a priori estimates of the Lipschitz constant and

of the L∞-norm of the solution of the approximating problem. The result is
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Theorem 1.2. [The Lipschitz continuous case] Assume (H1)– (H3) and

k ∈ C1(Ω × R). Then for every ϕ ∈ C1,1(∂Ω) there exists a unique Lipschitz

continuous viscosity solution u of (1.5).

We should stress that for n = 1 this argument was used by Slodkowsky and

Tomassini to get existence of Lipschitz continuous viscosity solutions in [9] and by

Slodkowsky and Tomassini and Da Lio and the second author to prove existence

and uniqueness of viscosity solutions of the Levi Monge Ampère equation in [10], [4]

respectively.

In order to include the case when the prescribed function k is constant, (H1)

may be relaxed to

(H4): k(x, u) = k(u) for all (x, u) ∈ Ω and for all R > 0, and −R ≤ v ≤ u ≤
R

(1.10) 0 ≤ k(u)− k(v).

Theorem 1.3. [The x-independent case] Assume (H2)– (H4). Then, for

every ϕ ∈ C(∂Ω), there exists a unique continuous viscosity solution u of (1.5).

Moreover, if ϕ ∈ C1,1(∂Ω), then the viscosity solution is Lipschitz continuous.

Our paper is organized as follows. In Section 2 we prove (1.4). In Section 3

we give a precise viscosity formulation of the Dirichlet problem (1.5) and we prove

comparison principles between viscosity semicontinuous sub- and supersolutions to

the problem (1.5) assuming either conditions (H1) and (H2), or (H2) and (H4). In

Section 4 under the hypothesis (H3) we get the existence of a continuous solution to

(1.5) for all continuous boundary data, via the comparison results and the Perron’s

method.

We then show the Lipschitz continuity of the viscosity solution to (1.5) for all

C1,1boundary data, by using an approximation argument and some a priori esti-

mates.
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2. The trace of the Levi form for graphs

In this section we prove (1.4). If D = {z ∈ Cn+1 : ρ(z) < 0} is an open set with

C2 boundary and ρn+1(z) 6= 0 for every z ∈ ∂D, by (1.1) we have

K∂D :=
1

n

1

|∂ρ|tr(H(ρ)A(ρ)), with H(ρ) = In − αT · ᾱ
1 + |α|2 .

Lemma 2.1. The Hermitian matrix H(ρ) is positive definite.

Proof. For every ζ ∈ Cn, ζ 6= 0 we have

〈H(ρ)ζ, ζ〉 = |ζ|2 − 〈ᾱζ, ᾱζ〉
1 + |α|2 ≥ |ζ|2 − |α|2|ζ|2

1 + |α|2 =
|ζ|2

1 + |α|2 > 0.

¤

Let us remark that the Hermitian matrix H(ρ) is the square of a Hermitian matrix.

Indeed we have the following

Lemma 2.2. Let us set

Hγ(ρ) = In − γ
αT · ᾱ

1 + |α|2 , γ ∈ R.

For

(2.1) γ =





√
1+|α|2

�√
1+|α|2−1

�

|α|2 , if α 6= 0

1
2
, if α = 0

we have Hγ(ρ) ·Hγ(ρ) = H(ρ). Moreover, γ is a C1 function of |α|.

Proof. The proof is computational and we leave it to the reader. ¤

We now identify Cn+1 with RN × R, where N = 2n + 1, as z ≈ (x, y, t, s),

(z1, . . . , zn+1) ≈ (x1, . . . , xn, y1, . . . , yn, t, s). Let ρ(z) = u(x, y, t)−s, with u ∈ C2(Ω),

Ω ⊆ RN an open set and take D = Epi(u) = {(x, y, t, s) ∈ RN × R : u(x, y, t) < s},
∂D = Graph(u) = {(x, y, t, s) ∈ RN × R : u(x, y, t) = s}. We have ∂ρ = 1

2
(ux1 −

iuy1 , . . . , uxn − iuyn , ut + i), and |∂ρ| = 1
2
(|Du|2 + 1)

1
2 where Du = grad(u).
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In order to explicitly write the equation (1.1) for graphs we set J =




In

iIn

−α


 and

write the matrix A in (1.3) for graphs as: A(ρ) = 1
4
J

T
D2u J. The coefficients α in

(1.2) for graphs are α = −a + ib where

a = (a1, . . . , an), aj =
−uxj

ut + uyj

(u2
t + 1)

b = (b1, . . . , bn), bj =
−uyj

ut − uxj

(u2
t + 1)

.

(2.2)

Moreover, 1 + |α|2 = 1 + |a|2 + |b|2 = |Du|2+1

u2
t +1

.We introduce two real n× n matrices

as P = Re(αT α), Q = Im(αT α). Since αT α = (−a + ib)T (−a− ib) = aT a + bT b +

i(aT b− bT a) = P + iQ we can recognize that

(2.3) P = aT a + bT b = P T , Q = aT b− bT a = −QT .

We can now write the prescribed curvature equation for graphs.

Proposition 2.1. For every (x, y, t) ∈ Ω we have

KM((x, y, t), u) = trace
(
σ(Du)σT (Du)D2u

)

where

(2.4) σ =
1

(2n)1/2(1 + |Du|2)1/4




In − γP
1+|a|2+|b|2

−γQ
1+|a|2+|b|2

γQ
1+|a|2+|b|2 In − γP

1+|a|2+|b|2

a√
1+|a|2+|b|2

b√
1+|a|2+|b|2




with γ, and a, b and P, Q defined as in (2.1),(2.2), (2.3) respectively. Moreover, the

coefficients of σ are Lipschitz continuous functions of Du.
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Corollary 2.1. The matrix σσT is nonnegative definite with minimum eigenvalue

identically zero. The rank(σσT ) = 2n at every point and

(2.5) traceσσT =
1 + u2

t + 2n(1 + |Du|2)
2n(1 + |Du|2)3/2

≥ 1

(1 + |Du|2)1/2
.

3. Comparison principles

In the sequel we shall denote by x a point in RN , with N = 2n + 1. We first give

a precise formulation of the Dirichlet problem (1.5) in a viscosity sense. To this

purpose we consider the operator F : Ω × R × RN × SN → R with N = 2n + 1,

defined by

(3.1) F (x, u, p,X) := k(x, u)− trace (σ(p)σT (p)X)

Definition 3.1. We say that u ∈ USC(Ω) (resp. v ∈ LSC(Ω)) is a viscosity

subsolution (resp. supersolution) of (3.1) if for all φ ∈ C2(Ω) the following holds:

at each local maximum x0 (resp. local minimum) point of u− φ (v − φ)

F (x0, u(x0), Dφ(x0), D
2φ(x0)) ≥ 0

(resp. F (x0, v(x0), Dφ(x0), D
2φ(x0)) ≤ 0)

Definition 3.2. A function u ∈ USC(Ω) (resp. v ∈ LSC(Ω)) is said to be a

viscosity subsolution (resp. supersolution) of Dirichlet problem




F (x, u, Du, D2u) = 0 in Ω,

u(x) = ϕ(x), on ∂Ω,
(DP )

where ϕ ∈ C(∂Ω) iff u is a viscosity subsolution (resp. v is a supersolution) of (3.1)

such that u = ϕ (resp. v = ϕ) on ∂Ω.

In the sequel when we talk about sub- and supersolutions of (DP ), we will always

mean in a viscosity sense.

We explicitly remark that u ∈ C2(Ω) ∩ C(Ω̄) is a viscosity solution of (DP ) iff u

is a classical solution of (DP ).

In this section we provide two comparison principles between viscosity semicon-

tinuous subsolutions and supersolutions of (DP ).
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As a by-product of the these comparison results and the Perron ’s method we get

the existence of a unique viscosity solution of (DP ).

The first comparison result of this section is the following theorem, which holds

under the assumption that the function k is strictly increasing with respect to u.

The proof of this result is standard and we refer the reader to [3].

Theorem 3.1. Assume (H1)–(H3). Let u ∈ USC(Ω), v ∈ LSC(Ω) be respectively

a bounded viscosity subsolution and supersolution of (DP ). Then u ≤ v in Ω.

Next we shall prove a comparison result by assuming the weaker condition (H4).

When there is not a strict monotonicity with respect to u, one of the classical

approaches from the theory of viscosity solutions, is to try to find a strict subsolution

or supersolution either of the original equation or of a suitable approximation of it.

To this purpose we need the following two Lemmas.

Lemma 3.1. There is a function ψ ∈ C2(Ω) such that

inf
p∈R2n+1

(1 + |p|2)1/2trace
(
σ(p)σT (p)D2ψ

)
= ν > 0.

Proof. Let us take ψ(x) = g
(
‖x‖2

2

)
, with g ∈ C2(R) and g′, g′′ > 0. We have

Dψ(x) = g′x, D2ψ(x) = g′′xT · x + g′Id and by (2.5)

(1 + |p|2)1/2trace
(
σ(p)σT (p)D2ψ

) ≥ g′

¤

Lemma 3.2. If u ∈ USC(Ω) is a bounded viscosity subsolution of F = 0, then

um = u + 1
m

ψ, with ψ as in the previous lemma, is a strictly viscosity subsolution of

f(Dum −Dψ/m)
(−Tr

(
(σσT )(Dum −Dψ/m)D2um

))

f(Dum −Dψ/m)k(x, um − ψ/m) = − ν

m
,

where f(p) = (1 + |p|2)1/2.

Now we shall prove a comparison principle, by assuming that (H4) holds, i.e.

k : R→ [0, +∞) is a continuous function which does not depend on x.
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Theorem 3.2. Assume (H2)–(H4). Let u ∈ USC(Ω), v ∈ LSC(Ω) be respectively

a bounded viscosity sub- and supersolution of (DP ) and assume that u (or v) is

Lipschitz continuous. Then u ≤ v in Ω.

Proof. We consider um = u+ 1
m

ψ with ψ as in Lemma 3.1. We may suppose without

restriction that x 6= 0 in Ω, otherwise in the definition of ψ we replace x with x−x0

with a suitable x0. Moreover we choose g in such a way that ‖ψ‖∞ < +∞. Our

aim is to show that supΩ(um − v) ≤ 1
m
‖ψ‖∞. Suppose by contradiction that for all

m large enough we have Mm = maxΩ(um − v) > 1
m
‖ψ‖∞. Since by (H3) we have

u(x) ≤ ϕ(x) ≤ v(x) for all x ∈ ∂Ω, such a maximum is achieved at an interior point

x̃ (depending on m). For all ε > 0 let us consider the auxiliary function

Φε(x, z) = um(x)− v(z)− |x− z|2
ε2

.

Let (xε, zε) be a maximum of Φε in Ω × Ω. By standard arguments we get, up to

subsequences, xε, zε → x̃ ∈ Ω, and

|xε − zε|2
ε2

= oε(1) as ε → 0,

um(xε)− v(zε) → um(x̃)− v(x̃) = Mm

um(xε) → um(x̃), v(zε) → v(x̃).

Since x̃ is necessarily in Ω, for ε small enough we have xε, zε ∈ Ω as well. Hence

the equation holds for both um and v respectively in xε and zε.

There exist X, Y ∈ SN such that, if pε := 2
(xε − zε)

ε2
, we have 2

(pε, X) ∈ J 2,+um(xε), (pε, Y ) ∈ J 2,−v(zε),

(3.2) − 8

ε2
Id ≤


 X 0

0 −Y


 ≤ 3

ε2


 I −I

−I I




2We recall that J 2,+u(x0) is the set of (p, X) ∈ Rn × S(N) such that u(x) ≤ u(x0) + 〈p, (x −
x0)〉+ 1

2 〈X(x− x0), (x− x0)〉+ o(|x− x0|2) as x → x0.

The set J 2,−u(x0) is analogously defined.
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and by Lemma 3.2

f(pε −Dψ/m)F (xε, um, pε −Dψ/m,X)

+f(pε −Dψ/m) (k(um − ψ/m)− k(um)) < − ν

m

F (zε, v, pε, Y ) ≥ 0.

(3.3)

Set Σ1 = σ(pε − 1
m

Dψ) and Σ2 = σ(pε), where σ is the N × 2n matrix defined in

(2.4). Multiply both sides of the inequality (3.2) by the matrix
(
Σ1 Σ2

)
on the

left, and by the transpose of its conjugate on the right, to get

(3.4) Σ1XΣ
T

1 − Σ2Y Σ
T

2 ≤
3

ε2
(Σ1 − Σ2)(Σ1 − Σ2)

T =
3

ε2
η ⊗ η̄T

with |η| ≤ C
m
|Dψ|. By subtracting the two inequalities in (3.3) and by using (H2),

(H4) and (3.4), we finally obtain

ν

m
=

g′

m
≤ C|Dψ|2

ε2m2
≤ C

(g′‖x‖)2

ε2m2
,(3.5)

where C is a positive constant independent of m and ε. Now we take g(s) = exp(βs−
λ) with β > 0 and λ to be determined as follows. We have g′ = βg, and g′′ = β2g.

Since x 6= 0, if we choose m = ε−4 then for β = ε−1 and λ such that g ≤ 1, we get

a contradiction in (3.5). ¤

Corollary 3.1. Assume (H1)–(H3) or (H2)–(H4). Let u ∈ USC(Ω) and v ∈
LSC(Ω) be respectively a bounded viscosity sub- and supersolution of (1.7) and as-

sume that u (or v) is Lipschitz continuous. Then u ≤ v in Ω.

Remark 3.1. One can prove a variant of Theorems 3.1 and 3.2 and Corollary 3.1

in which the condition u ≤ v on ∂Ω is dropped and the conclusion is changed to

u− v ≤ sup∂Ω(u− v)+, (see e.g. User’s guide [3]).

4. Lipschitz estimates and proofs of Theorems 1.1, 1.2, 1.3.

We show the existence of a Lipschitz continuous viscosity solution of (DP ) under

suitable assumptions on k and geometric conditions on the domain. To this purpose

we follow two different approaches. More precisely in the case when k depends on
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x and u, we use an approximation argument and the Bernstein method, while in

the particular case that k is independent of the variable x we adapt the method of

translation (see e.g. [7]).

We introduce the following notation : for γ > 0 we set Ωγ := {x ∈ Ω : d(x) < γ}.
We recall that if ∂Ω is of class C2 then for γ > 0 small the distance function

d ∈ C2(Ωγ). We have the following lemma.

Lemma 4.1. Assume (H3), ϕ ∈ C2(∂Ω). Then there are λ′ > 0, and 0 < γ′ ≤ γ

such that for all λ ≥ λ′ the functions u(x) = ϕ(x)−λd(x), and u(x) = ϕ(x)+λd(x)

are respectively classical subsolution and supersolution of (DP ) in Ωγ′ and u(x) =

u(x) = ϕ(x) in ∂Ω. Moreover, if ϕ ∈ C1,1(∂Ω) the functions

v =





u(x), x ∈ Ωγ′

c|x|2 −M1, x ∈ Ω \ Ωγ′
, v =





u(x), x ∈ Ωγ′

M2, x ∈ Ω \ Ωγ′
(4.1)

are respectively viscosity sub- and supersolution of (DP ) in Ω for c >
supΩ×R k

4n
,

M1 ≥ supΩγ′
(c|x|2−u), M2 ≥ supΩγ′

u. In particular v and v are Lipschitz continuous

in Ωγ′ .

Proof. Let ϕ be the smooth extension of ϕ to Ω.

Subsolution case : For x ∈ Ωγ we have Du(x) = Dϕ(x) − λDd(x), D2u(x) =

D2ϕ(x)− λD2d(x) and by (H3)

lim
λ→∞

F (x, ϕ(x)− λd(x), Dϕ(x)− λDd(x), D2ϕ(x)− λD2d(x))

≤ −K∂Ω×iR(x) + sup
Ω×R

k < 0

Then, there are γ′ ≤ γ and λ′ > 0 depending on ‖D2φ‖∞ such that for all

λ ≥ λ′, u(x) is a classical subsolution of (DP ) in Ωγ′ .

Supersolution case : We have

lim
λ→∞

F (x, ϕ(x) + λd(x), Dϕ(x) + λDd(x), D2ϕ(x) + λD2d(x))

≥ K∂Ω×iR(x) > 0.
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¤

Proof of Theorem 1.1. The Dirichlet problem (1.5) is equivalent to (DP ). By

Theorem 3.1, the Perron method (see [3]) and Lemma 4.1 for every ϕ ∈ C1,1(∂Ω)

there exists a unique continuous viscosity solution u of (DP ). If ϕ ∈ C(∂Ω) we

consider a sequence of C2 functions {ϕε}ε>0 converging uniformly to ϕ on ∂Ω. Let uε

be the solution to (DP ) with boundary data ϕε. By Remark 3.1 we have supΩ |uε−
uε′| = sup∂Ω |uε−uε′| = sup∂Ω |ϕε−ϕε′|. Hence uε converges uniformly to the unique

solution of (DP ).

Proof of Theorem 1.2. Let u be a solution of (1.7) and let c >
supΩ×R k

4n
and v(x) =

c|x|2. We have−Lε(v)+k(x, v) ≤ −2c(2n)+k(x, v) ≤ 0 and−Lε(−v)+k(x,−v) ≥ 0.

By the comparison principle (see Remark 3.1) we have supΩ(v−u) ≤ sup∂Ω(v−u)+,

infΩ(u − v) ≥ inf∂Ω(u − v)− and supΩ(u + v) ≤ sup∂Ω(u + v)+. Hence, there is a

positive constant C independent of ε such that

(4.2) sup
Ω
|u| ≤ sup

∂Ω
|u|+ C.

Next, we fix γ′ such that u ≤ u ≤ u in Ωγ′ , with u, u as in Lemma 4.1. On ∂Ω we

have

(4.3)
∂u

∂ν
≤ ∂u

∂ν
≤ ∂u

∂ν

with ν the interior normal to ∂Ω. Since k ∈ C1(Ω × R) is strictly monotone with

respect to u then inequality (1.8) is satisfied and by (1.9) and (4.3) and the stability

of viscosity solutions with respect to uniform convergence we can conclude.

Next we prove the existence of a unique Lipschitz continuous viscosity solution to

(DP ) under the assumption that k does not depend on x.

Proof of Theorem 1.3. By Theorem 3.2, the Perron method (in the form of [7, p.32])

and Lemma 4.1 for ϕ ∈ C(∂Ω) there exists a unique continuous viscosity solution

u of (DP ). If ϕ ∈ C1,1(∂Ω), let u be a solution of (1.7). By (4.2) we can fix γ′

such that u ≤ u ≤ u in Ωγ′ , with u, u as in Lemma 4.1. To show that the Lipschitz

constant of u is independent of ε we adapt the method of translations (see [7]).
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Given h ∈ RN , the function u(·+ h) is a viscosity solution of the same equation as

that for u but set in Ω− h, since the equation does not depend on x. Corollary 3.1

and Remark 3.1 yield

sup
Ωγ′∩(Ωγ′−h)

|u− u(·+ h)| ≤ sup
∂(Ωγ′∩(Ωγ′−h))

|u− u(·+ h)|

≤ sup
∂(Ωγ′∩(Ωγ′−h))

max{|u− u(·+ h)|, |u− u(·+ h)|} ≤ C|h|.

Thus the Lipschitz constant of u in Ωγ′ is independent of ε. Next we show that this

implies that the Lipschitz constant of u in Ω is independent of ε. Indeed by Corollary

3.1 and Remark 3.1 we have

sup
Ω∩(Ω−h)

|u− u(·+ h)| ≤ sup
∂(Ω∩(Ω−h))

|u− u(·+ h)| .(4.4)

For |h| ≤ γ′, sup∂(Ω∩(Ω−h)) |u − u(· + h)| ≤ C|h| by the above estimates and by the

stability of viscosity solutions with respect to uniform convergence we can conclude.
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