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variabili latenti: problemi di costruzione e trattamento di dati di panel e test di Factor analysis is closely related to unobservability problems, and
apecificazione negli schemi di formazione dei prezzi delle attivita finanziarie". especially to the problem of variables that "do not correspond directly
I'm grateful to Sandra Marciatori for computing assistance. to anything that is likely to be measured” (Griliches, 1977). Indeed the

factor analysis model specifies a set of linear relations in which p
observable variables are determined by % unobservable factors and p
error terms.

The determination of the "true" number of factors is the first pro-
blem to be solved in the selection of the "true" factor model

X=fA+U

where
Xy, is the matrix of the observable data;

Uy «, is the matrix of the errors;
Ay, is the matrix of the factor loadings;
Sy« 15 the matrix, with k < p, of the factors;

N is the number of observations of the series used.

The identification of a stable factor structure is traditionally done
by means of the likelihood ratio and, more recently, through other
methods, as information criteria and cross-validation.

The purpose of this paper is to study the contribute of likelihood
ratio, of some information criteria and of cross-validation to the deter-
mination of the "true" number of factors by a simulation.

One of the most relevant results obtained is that all the methods
considered show a tendency to underestimate the "true" k. Akaike’s
information criterion and cross-validation seem to identify the factor
structure more accurately than Hannan-Quinn and Schwarz’s crite-
ria.

2 - The likelihood ratio

1 The possibility to test the number of factors is one of the principle
i reasons for the success of the procedure of maximum likelihood (Law-
ley and Maxwell 1971; Kim and Mueller, 1983).
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With uncorrelated factors (Anderson, 1984) the data covariance

matrix T can be expressed as
S=NA+T

where ¥ is the diagonal variance matrix p x p of the errors terms U:
E(UU) =Y.
If the data are normally distributed, the log likelihood of the model
is
logL = ~3Nplog(2m)-3N log| A’A+¥ | -INp
The null hypothesis used to test the number of factors is

. Hy I =AA+Y,
and corresponds to
Hy  k factors are sufficient (or minus)

against
H,: p factors are needed.

where Z, indicates the covariance matrix of the p observable variables
X, A, and ¥, are, respectively, the factor loadings matrix and the errors

terms variance matrix of a k factor model.
The usual statistic used to test the number of factors is the log

likelihood ratio
LR =N'(log| A’A, +¥, | -log| %, |)

where the number of observations is corrected by Bartlett’s formula
N'=N-(2p +4k +11)6 .
The log likelihood ratio is distributed as * with ((p -k)*-p -k)/2

degrees of freedom.
Conway and Reinganum (1988) indicate cross-validation as an

alternative solution for the determination of the number of factors.
Cross-validation can be considered as a two stage procedure. In the first
stage maximum likelihood estimates of the parameters are calculated
in a sample of p variables X. In the second stage the estimates obtained

are not compared with the respective sample variance matrix ¥, but with
a I’ of another sample of p variables X, in order to isolate the stable

factor structure from the random components.
The log likelihood ratio

LR =N'(log| A’A +¥ | -log | Z |)
is therefore modified into
CV=N'(log| A +¥|-log|Z ) +N'(tr((A’A + ¥)z") -~ p)
From the way it is derived, cross-validation statistic can be inter-

preted as an out of sample-likelihood ratio.

3 - Information criteria

Akaike’s information criterion is probably the most relevant and
famous as for the comparison and selection between different models
and is constructed on log likelihood

AIC =-2logmaxL +2h
where h is the number of the model’s free parameters.

The factor loadings matrix A contains kp parameters to be estimated,

while the diagonal variance covariance matrix ¥ has p non zero elements:
therefore the sample variance covariance matrix £ contains p(k+1)
parameters to be estimated. Moreover, in order to guarantee the
identification of the model the following condition is required

[=AWIA I' diagonal

which gives k(k - 1)/2 additional constraints. The number of free para-
meters in an orthogonal factor model is thus

plk+1)—k(k-1)
and the form of AIC is



AIC (k) = {Nplog(2x) + N log | AA’ + ¥ | +Np} + {2(p(k + 1) - k(k - 1)/2)}

The first term can be interpreted as a goodness-of-fit measure, while
the second gives a growing penalty to increasing numbers of parameters,
according to the parsimony principle.

In the choice of the model a minimisation rule is used to select the
model with the minimum Akaike information criterion value.

Following the modification of FPE (Final Prediction Error) proposed
by Bhansali and Downham (1977), in 1980 Smith and Spiegelhalter
suggested to modify the AIC by transforming the second term into a
generic ah:

AIC =-2logmaxL +ah

Still in the context of likelihood based procedures, in 1978 Schwarz
proposed the alternative information criterion

SCH = -logmaxL +%h logN

that, unlike AIC, considers the length N of the time series and is therefore
less favourable to factors inclusion.

In 1979 Hannan and Quinn suggested another information criterion,
based, as the precedent, on the minimisation of —logmaxL +hC

HQ =-2logmaxL +2h c loglogN c>1

4 - A simulation
The purpose of this paper is to illustrate some results obtained on
simulated data, for which the factor structure is perfectly known. The
different methods, illustrated in the previous paragraphs, are applied
to the simulated data and the indications of the number of factors are
compared with the true value k, which is a priori known.
The following model is used to obtain the new simulated variables X"
X =fA+U
where
[ isthe N x k matrix of the new factors, obtained by random extraction
from a standardized normal distribution
U’ is the N x p matrix of error terms, randomly extracted from a stan-
dardized normal distribution too

A

A’ is the k x p matrix of factor loadings, obtained from a factor analysis

of a sample of p assets returns randomly extracted from a set of 100
assets returns daily quoted at Milan stock exchange from 1986 to
1989.

The various methods illustrated above are thus applied to samples of
p=20, p=30, p=40 simulated variables X' to analyze the influence of
variations in the number of original variables.

For each value of p different lengths N of the time series analyzed
were considered, in order to study how variations of N can influence the
number of factors detected. Specifically the cases N=100, N=200,
N=1000, N=5000 were considered. ‘

Finally, in the simulations three different factor structures were
analyzed in order to evaluate the chosen criteria for different values of
k, specifically the cases k=1, k=5, k=10.

Inorder to generate the k independent factors f” a matrix of dimension

5000x 10, corresponding to the maximum value of N and k, was randomly
extracted from a standardized normal distribution. For other values of
N and k appropriate submatrices were extracted from this matrix: for

example, for the case of k=1 and N=200 the relative submatrix fy),,
contains the first 200 rows of the first column of the fyy, 10

To obtain the factor loadings A’ three samples of 20 assets returns,
three samples of 30 and three of 40 were randomly and independently
extracted from a set of 100. For each sample a factor analysis was per-
formed, three times with k=1 to obtain A, ,,As.,,Aw., three times

with k=5 to obtain Ay, s, A0, 5, A5 and the last three times with k=10
to obtain Ay, 10, A%0.105 Aloxior

The factor loadings A" and the factors f” are assumed as fixed. Having
thus obtained the term f'A’, the p simulated variables X" are obtained
by p random extractions of the error terms vector U".

The factor structure is so a priori known as k are the columns of A.,
and the variability of the X' is entirely attributable to the different
determinations of the vector U': it’s also possible to compare the indi-
cations given by the different criteria with the true and known k.



Summarizing, for k=1 three matrix A’ were randomly and indepen-
dently calculated, one of dimension 1 x 20 from a sample of 20 assets for
the case p=20, one of dimension 1 x 30 from a sample of 30 assets for the
case p=30 and the last of dimension 1 x 40 from a sample of 40 assets

for the case p=40.
The ensuing three models are the following:

p=20 Xf;lmng:lA;lZO+UN.120
p=30 Xy x30= funs Axso+ Unaso
p=40 X;xlo=f;xlA;x40+Uh.'x40

For each model 100 extractions of U" are considered, thus obtaining
100 samples of simulated variables X", for each value of N.
Therefore for k=1, p=20 and N=200, 100 samples of 20 variables X"

are considered and so for each combinations of %k, p and N.
The same as for k=1 is repeated for k=5 and for £=10.

The root mean squared error (RMSE) was calculated to compare the
different methods

s=(%2 & -k)’)E

k" is the number of factors indicated by the generic method, % is the true

number of factors underlying the simulated variables X' and i indicates
the generic i-th sample. Obviously S is calculated for each method and
in general method A is better than method B if S, <S5, as S measures

the distance between the true k and the empirical ¥’ and so the smaller
S the better approximation of k one obtains through &".

The bias

indicates the direction of the RMSE and is negative when the method
underestimates the true number of factors and positive when % is
overestimated. The bias is calculated in order to complete the infor-
mations about the distribution of the & around k, indeed the RMSE
indicates only the distance between k" and k; information on the sign of
this distance are given by the bias.

The results obtained by transforming the AIC in:

AIC3 =-2logmaxL +3h
and
AIC4 =-2logmaxL +4h

are not particularly brilliant, because AIC3and AIC4 generally converge
to the true value % more slowly than AIC.
The following tables show S,,c,Suc35 Sarcss Daics Dasc; @nd Dy, for the

different cases considered.
In this and the next tables the values below 0,05 are set to 0.

k=1 AIC AIC3 AIC4
N p=20 |[p=30 |p=40 |p=20 |p= 1p=40 |p=20 |p= | p=40

100 | S 0,3 0,3 0,3 0 0 0 0 0 0
D 0,1 0,1 0,1 0 0 0 0 0 0

200 | S 0,4 0,3 0,2 0 0 0 0 0 0
D 0,1 0,1 0 0 0 0 0 0 0

1000 | S 0,5 0,5 0,5 0 0 0 0 0 0
D 0,2 0,2 0,2 0 0 0 0 0 0

5000 | S 0,4 0,5 0,5 0 0 0 0 0 0
D 0,1 0,2 0,2 0 0 0 0 0 [

Tab. 1 - Values of the RMSE and of the bias for AIC, AIC3 and AIC4 when k=1.

When k=1 AIC3 and AICA4 are slightly better than AIC, even if AIC
doesn’t strongly depart from the true k. Besides the number p of simu-
lated variables doesn’t seem to influence the results.



k=5 AlIC AIC3 AIC4

N p=20 p=30 p=40 p=20 p=30 |p=40 p=20 |p=30 |p=40
100 | S 1,0] 04 1,0 2,6] 1,6 29| 33| 28] 4,0
D| -0,7 o] -0,8] -2,5) -1,3| -2,8] -3,3] -2,8f 4,0
200 |S 0,5 0,8 0,4 1,1 0,1 0,2 1,9 0,8 0,5
D| -01 0,2 01| -0,8 0 o] -1,8] -05) -0,3
1000 | S 04 03] 03 0 0 0 0 0 0
D 02| 01 0,1 0 0 0 0 0 0
5000 | S 0,6 0,4 0,4 0 0 0 0 0 0
D 0,2 0,1 0,1 0 0 0 0 0 0

Tab. 2 - Values of the RMSE and of the bias for AIC, AIC3 and AIC4 when k=5.
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Pic. 1 - Number of samples in which AIC, AIC3 and AIC4 indicate k" =5 when
k=5,

When k=5 AIC3 and AIC4 are initially much worse than AIC but, by
increasing N, AIC shows a tendency to overestimate the number of
factors and, on the contrary, AIC3 and AIC4 converge to the true value
k=5. Furthermore, getting from 20 to 40 variables, the true value of k is
more easily detected.

k=10 AlC AIC3 AIC4

N p=20 |p=30 |p=40 |p=20 |p=30 |p=40 |p=20 |p=30 |p=40
100 | S 2,8 2,6 1,8 5,8 6,3 5,5 7,8 8,1 7,2
D 2,5 -2,3] -1,4| -57| -62| -54{ -7,8] -81| -7,2
200 |S 1,1 0,7 0,4 2,3 2,1 1,7 3,9 4,0 3,9
D -0.8] -0,2 o] -22| -19] -,5] -3,7| -3,9| -3,7
1000 | S 0,3 0,3 0,4 0,1 0 0 0,1 0 0
D 0,1 0,1 0,2 0 0 0 0 0 0
5000 | S 0,3 0,5 0,4 0 0,2 0 0 0 0
D 0,1 0,2 0,2 0 0 0 0 0 0

Tab. 3 - Values of the RMSE and of the bias for AIC, AIC3 and AIC4 when k=10.

When k=10 the situation of k=5 is repeated and AIC seems to be
generally better than AIC3 and AIC4 which strongly underestimate the
number of factors.

Asfor variations of a.in AIC, variations of ¢ in Hannan-Quinn eriterion

bring to different methods

HQ1 =-2logmaxL +2hloglogN

HQ2 =-2logmaxL +2h 2loglogN
HQ3 =-2logmaxL +2h 3loglogN
HQ4 =-2logmaxL +2h 4loglogN

and the relative results are illustrated in the following tables.

k=1 HQ1 HQ2 HQ3 HQ4
N p=20 |p=30 |p=40 |p=20 |p= p=40 |p=20 |p=30 |p=40 |p=20 |p=30 |p=40
100 |S 1,8 2,2 2,7 0 0 0 0 0 0 0 0 0
D 1,3 16| 21 0 0 0 0 0 0 0 0 0
200 |S 1,2 09| 1,1 0 0 0 0 0 0 0 0 0
D 08| 06| 07 0 0 0 0 0 0 0 0 0
1000 | S 05| 06| 086 0 0 0 0 0 0 0 0 0
D 02| 03] 03 0 0 0 0 0 0 0 0 0
5000 | S 03] 03] 02 0 0 0 0 0 0 0 0 0
D 01| 01| o1 0 0 0 0 0 0 0 0 0

Tab. 4 - Values of the RMSE and of the bias for HQ1, HQ2, HQ3 and HQ4 when
k=1. .



When k=1 only HQ1 shows difficulties in detecting the only factor and
HQ2, HQ3 and HQ4, even with only 100 observations, are optimal
indicators.

k=5 HQ1 HQ2 HQ3 HQ4
N p=20 _p=30 =40 p=20 p=30 p=40 p=20 | p= p=40 p=20 p= =40

100 | S 1,3 2,8 5,7 2,6 1,7 2,3 36| 3,0 4,0 3,9 3,3 4,0
D 0,7 1,8 57| -2,5} -14| -22| -s88] -80] 40| -39 -33] 40

200 |S 0,7 14 1,3 1,3 0,3 0,3 26| 23 1,1 3,3 3,0 1,9
D 0,3 0,9 1,0] -1,2| -o01f -01| -2,5{ -21| -1,0] -3,3] -so] -19

1000 | S 0,6 04 0,5 0 0 0 0 0 0] o2 0 0
D 02| 0.2 0,2 0 0 0 0 0 0 0 0 0

6000 | S 0,4 0,2 0,2 0 0 0 0 0 0 [ 0 0
D 0,1 0,1 0 0 0 0 0 0 0 0 0 0

Tab. 5 - Values of the RMSE and of the bias for HQ1, HQ2, HQ3 and HQ4 when
k=5.
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Pic. 2 - Number of samples in which HQ1, HQ2, HQ3 and HQ4 indicate k" =5
when k=5,
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When k=5 the indications of HQ2, HQ3 and HQ4 are more differ-
entiate and HQ2 seems to converge to the true value & more quickly than
the other types of Hannan-Quinn criterion. When a larger number of
factor is present in the model, HQ1’s goodness improves sensibly.

k=10 HQ1 HQ2 HQ3 HQ4

N p=20 |p=30 |p=40 |p=20 |p=30 |p=40 |p=20 |p=30 |p=40 |p=20 |p= |p=40
100 |S 16| 09 09] 6,1 6,4 56] 84 8,7 7.9 9,0 9,01 88
D| -1,1 0,2 0,7y -59| -64| -56| -84| -87| -7,9] -9,0] -90| -87
200 |S 098] 07 0,71 2,7 2,5) 24 8,1 5,9 5,7 7,9 86 7,3
D{ -04 0,4 05| -2,6] -24) -23| -60| -59{ -57 -7,9] -85| -7,2
1000 | S 0,3 0,4 0,4 0 0 o] 03 0 0 0,9 0,3 0
D 0,1 0,1 0,2 0 0 of -01 0 ol -07) -0,1 0
5000 | S 0,2 0,4 0,2 0 0 0 0 0 0 0 0 0
D 0,1 0,2 0,1 0 0 0 0 0 0 0 0 0

Tab. 6 - Values of the RMSE and of the bias for HQ1, HQ2, HQ3 and HQ4 when
k=10.

When k=10 the situation of k=5 is confirmed for HQ2, HQ3 and HQ4;
yet HQ1 seems to be better than HQ2.

The results related to Akaike’s, Hannan-Quinn’s (c=2), Schwarz’s,
information criteria, cross-validation and log likelihood ratio are
reported in the following tables.

k=1 | AIC | HQ2 ] SCH | cross | Lr
N 1p=20|p=30]p=40|p=20|p=30 |p=40|p=20|p=30|p=40 |p=20{p=30 |p=40|p=20 | p=30|p=40
100 {S| 0,3] 0,3} 0,3 0 0 0 0 0 0 0 0 o] 04| 03] 0,8
D| 0,1} 0,1] 0,1 0 0 0 0 0 0 0 0 o] o1] o1} 0,3
200 |S| 0,4{ 03] 0,2 0 0 0 0 0 0] o1 0 O} 0,4} 03] 04
D| 0,1] 0,1 0 0 0 0 0 0 0 0 0 o{ 0,11 0,1] 0,1
1000fS| 0,5 0,5 0,5 0 0 0 0 0 0 0 0 ol o04] 03] 03
D| 02] 02{ 0,2 0 0 0 0 0 0 0 0 ol o01] o01] 01
s50001S| 04| 0,5] 0,5 0 0 0 0 0 0 0 0 oy 03] 0,2] 0,1
D} 0,1} 02| 0,2 0 0 0 0 0 0 0 0 0] 0,1 0 0

Tab. 7 - Values of the RMSE and of the bias for AIC, HQ2, SCH, CROSS and
LR when k=1.

It’s interesting to note how with k=1 Schwarz’s information cri-

terion, cross-validation and log likelihood ratio, as AIC and HQ2, can
detect the presence of the only factor with an optimal approximation.
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k=5 AIC Hq2 SCH CRGSS LR
N p=20 |p=301p=40 |p=20|p=30 |p=401p=201p=30|p=40|p=20|p=30|p=40|p=20 |p=30 |p=40
100 |S} 1,0 04) 1,00 2,6 1,7y 23] 8,61 3,00 40| 1,8 065 1,2 1,6] 1,1] 23
DI -0,7 0F -0.67 -2.61 -1,4] -2,2| -3,6] -3,0] 4,0] -1,4| -0,2; -0,8} -1,4] -0.8] 0,7
200 |SY 05! 06| 041 131 031 03] 2.8 2,6 1,3 0,7 0] o1} 1,00 07| 0,5
DI -0y 021 01 -1,2) -0,1] -0,1] -2,8] -2,6] -1,2| -0,4 0 0] -0,6 0 0
1000|S) 041 03! 03 0 0 o} 0,1 0 o] o1 [ o| o4] 0,3} 0,3
DI 02! 01} o1 0 0 0 0 0 0 0 0 o} 0,11 0,1 0.1
5000|S| 0,6} 04! 04 0 0 0 0o} o1 0 of 01 0] 1,2 0,2 0,3
D| 02! 9,11 0,1 0 0 0 0 0 0 0 0 0] 04 0] o1

Tab. 8 - Values of the RMSE and of the bias for AIC, HQ2, SCH, CROSS and
LR when k=5.

When £=5 AIC and cross-validation seem to be the best methods
and they converge to the true value more quickly than the other ones.

Schwarz’s criterion shows a strong tendency to underestimate the
true number of factors.

k=10 AlC HQ2 SCH CROSS LR
N 1p=20|p=30|p=4C|p=201p=30|p=40|p=20|p=30|p=40|p=20|p=30 |p=40|p=20 |p=30|p=40
100 |S| 2,8 2,6] 1,8] 61| 64| 56 85| 871 79| 3,6 4,1 3,5 32| 31| 26
D| -2,6| -2,3| -1,4] -5,9) -6,4| -5,6] -8,4] -8,7| -7,9| -3,0} -3,7| -3,1] -3,0] -2,9] -2,4
200 |S| 1,1 0,7 04| 2,71 2,5] 24| 67| 65| 59| 1,1 1,1] 06| 1,4} 1,21 1,1
D| -0,8] -0,2 o| -2,6] -2,4{ -2,3| -6,6) -84} -59| -0,7| -0,6f -0,2] -1,1] -0,9] -0,9
1000|8] 03] 03] 04 0 0 0] 0,7 0 o} 03] 0,1 0] 0,5 0,2} 0,2
Df o1 o1 o2 0 0 o} -0,4 0 of 0,1 0 o} 0,2 o] o1
500015 03] 0,5) 0,4 0 0 0 0 0 o] 02 04 o] 1,0 02| 02
D| o011 02 0,2 0 0 0 0 0 0] 01| 01 0] 1,0 0 0

Tab. 9 - Values of the RMSE and of the bias for AIC, HQ2, SCH, CROSS and
LR when £=10.

When k=10 the situation for k=5 is repeated again and AIC and
cross-validation are the best methods.

5 - The number of factors in ihe financial market

The choice of the number of factors represents a cruciai point in the
theory of financial merkets and expecially in two of the most important
assets returns models.

On one side the Capital Asset Pricing Model (CAPM) of Sharpe
(1964) and Lintner (1965) assumes that only one factor can explain the
assets returns; on the other the Arbitrage Pricing Theory (APT) of Ross
(1976) states that k factors underlie the market.

Following the CAPM the return of the i-th asset is characterized by

E(r)=ro+(E(r,)-ro)B;
where
ro is the risk free rate;

r,, is the return of the market portfolio;
B; = cov(r,r,)var(r,) .
The resulting market model is

ry=o;+Br. +e,
where
a; =(1-B)rg
¢, is an error term.
The APT assumes that the generating model of the i-th asset is

E(r) "'o*‘él)‘ii)'j

where y; is the premium for risk associated with the factor j and the

coefficients A; are estimated from the model
k
ri=E@)+ 3 NS, +u,
j=1

where
fu is the value at time ¢ of the latent factor j;

u, is an error term.

In order to discriminate between CAPM and APT it is necessary to
deterrqinate the number of factors; and this is the aim of this paper.

13



6 - Conclusions

In this paper a simulation study is performed to compare different
methods for choosing the number k of factors in a factor model. The
definitions of considered methods are given in the next table, in which
the last column contains the average RMSE

5-%3 (3@ -#7)
36,4, \ 10,4
with £ = 1, 5, 10; N = 100, 200, 1000, 5000; p = 20, 30, 40.
Method K

CVaNT(log| AA+W|-log| " )+ N'(r((A°A+¥)'T)-p)| 0,55
AIC »w-2logmaxL +2h 0,63
LR =N'(log | A’A+W¥ | -log|Z|) 0,81
AIC3 =-2logmaxL +3h 0,90
HQ2 =-2logmaxL +2h 2loglogN 0,95
HQ1 =-2logmaxL +2k loglogN 0,98
AIC4 =-2logmaxL +4h 1,34
HQ3 =-2logmaxL +2k 3loglogh 1,64
SCH = -logmaxL +0,5h logN 1,73
HQ4 =-2logmaxL +2h 4loglogN 1,98

Tab. 10 - Methods for the determination of k and values of the medium RMSE.

Cross-validation and AIC have minimum S value and also seem to
be, in complex, the more accurate methods. On the contrary, modifica-
tions of AIC dont improve the results (S, <S,c5 Saic <Sacs) 8S

modifications of HQ don’t seem to obtain better indications (Sy,, <Sy,,,
Stz <Sugs» Stgz <Shgs)- Values of 3 or 4 for a in AIC and for ¢ in HQ bring

to a strong underestimation of the true value of k. Schwarz’s information

14

criterion too, underestimates sensibly the number of factors, particularly
when the length N of the time series is very large. The usual test for the
number of factors, the log likelihood ratio, is, after cross-validation and
AIC, the best method.

A further consideration is that the goodness of the different methods
is a function of the number k of "true" factors underlying the simulated
variables.

Indeed in the case of k=1 all methods analyzed indicate the right
value k=1 with the exceptions of AIC, HQ1 and LR. However for AIC
and LR the distances from the exact value are quite small. In the fol-
lowing picture the results related to AIC are illustrated: as N increases
AIC gets worse.
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Pic. 3 - Number of samples in which AIC indicates k" =1 when k=1.

With only 100 observations there are already generally good indi-
cations and the dimension p seems to be not particularly relevant. This
result shows how, when the true model contains only one factor,
information criteria and cross validation can detect it with a good
precision. '
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In the case k=5 the situation is more complex and the length N of
the time series is particularly relevant: asymptotically, indeed, all
methods converge to the true value k=5. However, it is important to
emphasize that AIC and cross-validation converge more quickly.

The situation for k=10 is similar to the one for k=5: AIC and
cross-validation show the best performance.

From the sign of the bias, reported in the next table, one can observe
how the minus prevails thus meaning a stronger tendency to under-
estimate rather than to overestimate the true number of factors.

- 0 +

AIC 22 8 70
AIC3 28 72 -
AlC4 33 67 -
HQI 6| - 94
HQ2 33 67 -
HQ3 36 64 -
HQ4 39 61 -
SCH 36 64 -
cv 28 64 8
LR 25 22 53

Tab. 11 - Percentual cases in which bias is negative, null or positive.

Concluding one can affirm that when only one factor constitutes the
factor model a small number of observations is sufficient to detect it.
When, on the contrary, more factors underlie the observed variables,
cross-validation and AIC seem to be the more appropriate indicators.
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