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1 Introduction

Infinite populationsinference, the random effects analysis of variance
model has known particular relevance for a long time, especially within
the Bayesian context. In particular the contribution of Scott and Smith
(1969) on this subject is fundamental, together with the review of Ericson
(1988). A common characteristic of the developments contained in those
papersis the essentially normal context, with or without noninformative
priors. The model can conveniently correspond to a two-stage sampling,
with a simpler modelization, or to stratified sampling.

While further analysing this setting out (Cocchi, 1985; Cocchi and
Mouchart, 1990), we realised that some features deserve particular care.
First of all, since the model is very strongly linked to the normal context,
a solution able to keep departures from normality into account may have
some interest, but, instead of a normal solution, a least squares appro-
ximation with the same two moments may be an answer to the preceding
point. To this aim, the choice of the coordinates for the solution of the
problem is fundamental. In particular, the proposal of a projection made
directly on the observations maintains rigourously the solution within
the normal context. Also the extent to which a hierarchical formulation
of the model is specified is relevant, together with the way of assigning
prior evaluations.

So, with reference to the mentioned points, we are developing an
extension of the idea of Bayesian least squares approximations to the
finite population context. Particularly in such context, in fact, when an
exact distribution is considered, the computation of the posterior
moments suffers of the complexity of the likelihood function and the
difficulty of integrating the nuisance parameters, in particular the
variances, and an approximate solution reveals to be interesting. Since
a preminent characteristic of a Bayesian solution is the derivation of the
joint distribution of observations and parameters, or at least of its first
two moments when least squares approximations are evaluated, and
such result is obtained with successive integrations, it hasbeen possible
to see clearly when the various prior evaluations enter in the solution.

The solution is more or less complex according to the distributional
assumptions made, to the choice of the statistic on which to condition
and to the fact that the solution be exact or approximated. We shall see
that the specification of only first and second order moments is sufficient
to build the joint distribution of parameters and data. The differences
between alternative solutions appear in the number of prior evaluations
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to be elicitated and in the fact that, even if only expectations and
variances are to be computed, moments of order up to the fourth can be
involved.

The solution here proposed, which keeps departures from normality
into account, by means of the prior elicitation of 3rd and 4th order
moments, permits to consider the issue of robustness in a different way
from that usually considered for superpopulation models in finite
populations (see, for instance, Royalland Pfefferman, 1982 and Bolfarine
et al., 1987)

In Section 2 the hypotheses necessary to deal with the problem are
listed in a stepwise manner. In particular, it is stressed how they aim
at obtaining admissible reductions of the model and at looking for ope-
rational simplifications. In Section 3, the idea of finding a solution by
least squares approximations is developed. In Section 4 a Bayesian least
squares approximation which considers the conditioning to an appro-
priate statistic is developed. The solution, able to keep departures from
normality into account, is also compared with the purely normal one. In
Section 5, a comparison between different solutions to the model studied
in this paper, some of which have already been developed in the lite-
rature, is performed. First of all, heuristic and analytical differences are
explored, then the comparison is continued with an application which
uses simulated data.

2 Fundamental hypotheses on the model

As in Cocchi and Mouchart (1990) the basic model may be presented
in the framework of a hierarchical linear form:

H=Zu,+8 (1
n=Zju+e (2)

where p and § are p-vectors, n and € are N-vectors, |, is a g-vector,
Z=(Z,,Z,) is constituted by matrices of appropriate dimensions.

As far as notation is concerned, greek letters denote unobservables,
latin letters denote observables, matrices and functions are denoted by
bold capital letters, small bold letters are used for vectors and scalars
are denoted by italics. The framework being Bayesian, all letters
represent random variables (assumed defined on a probability space).
Thus the Bayesian modelling starts from the joint distribution of all the
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involved variables and introduces, in a stepwise manner, a sequence of
hypotheses aiming at obtaining admissible reductions of the underlying
model and at looking for operational simplifications.

The motivation for the detailed conditions that will be discussed in
what follows stands in the fact that structural hypotheses are typically
formulated in terms of conditional independence and are typically not
testable from an empirical point of view. Therefore it is important to
write them out explicitly and to understand their logical meaning, in
particular in properly understanding their implications.

The interest is focused on a finite population model, where N stands
for the size of the population. Since in this paper we concentrate on an
Anova Il typemodel, Z,isa N x p matrix with thefollowingblock diagonal

structure: Zz=[i~, e;]=diag liy,), where iy, =(1,1, ... 1) e ®™ and e
is the k-th column of L. The N, are such that Y,N,=N,1<k <p, while

Z, =i, is a p-vector of units and |, is assumed to be a scalar, i.e. g=1.

The model is therefore suitable both for describing a situation of two
stage sampling, with a simple modelization, since hierarchy stands in
the way of selection, and for describing stratification, with a hierarchical
modelization, p being the number of groups to which each element of
the population can be allocated by means of matrix Z,. The consideration

of superpopulation models begins to be an appreciated tool also in small
domain estimation, starting from the contribution of Holt, Smith and
Tomberlin (1979). In particular, the solution we are developing is a
natural extension of the contribution of Lui and Cumberland (1989).

In this section we wish to stress the role and the relevance of the
hypotheses necessary for the solution: details more oriented to the
description of the superpopulation model can be found in Cocchi and
Mouchart (1990, 1989).

2.1 Structural modeling

The variables of the model are (n,},Z). In particular, nandp are
unobservable and indeed the purpose of sampling is to observe a part of
vector 1. The modeling we present in this section has a double aim: we
want to build an admissible reduction of the joint distribution of (n, wZ)
to the conditional model (n, | Z), in this way operating the first of two



Bayesian cuts. With a second Bayesian cut we essentially look for
obtaining easier analytical computations. The conditions concerning the
parameters of the model are stated hierarchically in what follows.

2.1.1 A first Bayesian cut

First, let the joint distribution of (0,1, Z) be characterized by a para-
meter T = (0, ), where yisa parameter sufficient for the marginal process
generating Z and 0 is a parameter sufficient for the conditional process
generating (n, | Z). More specifically, y and 0 are defined by the pro-
perties:

Ztly 3)
.u il tiZ,6 . (4)
The hypothesis of cut between (n, 1) and Z reads as:

Hl y 6. (5)

In what follows we consider that 8 contains the parameters ofinterest,

while y constitutes a nuisance parameter. In this way, Z is exogenous
for the inference on 6, and it is admissible to concentrate the attention
on p(n, 1| Z,6). (On this subject see also Florens and Mouchart, 1985 and
Florens, Mouchart and Rolin, 1990).

2,1.2 A second Bayesian cut

A second Bayesian cut between y and 1} conditional on Z is based on
a decomposition of 8 relying on the definitions:

S CIEA (6)
N1 01Z,0,1 )

which respectively mean that 8, is a parameter sufficient for describing
the process generating jt | Z and 6, is a parameter sufficient for describing
the process generating (] Z, ). The second hypothesis of cut assumes:

H2. 6, || 6,]Z. (8

The statistical meaning of (1) is now made explicit by the assum-
ption:

H3. u || Z,1Z,.6, €)
meaningthatp | Z,0 does not depend on Z,, and is therefore characterized

by ('1) under the usual implicit assumption that 3 has zero expectation
and is distributed independently of (Z,, 1), i.e.:

E(u|Z,9)=E(u|Z,,9,)=Z,LlO, (10)

Consequently, 8, =(®,,1), where &, is the (multivariate) distribution
function of the vector 8. Along with (6), H3 implies

bl (Z.8)1Z,.8, (11

In the same way the statistical meaning of (2) is explicated by the
hypothesis

H4. n | Z,1Z, 6,1 (12)
i.e. 1] Z, 1,0 does not depend on Z, and is therefore characterized by (2)

under the corresponding implicit assumptions that € has zero expecta-
tion and is distributed independently of (Z,, i), and therefore

E(MIZ,6,0)=EM[Z,0,1) =Z,. (13)

Consequently, 0, =(®d,), where &, is the multivariate distribution func-
tion of the vector €. Again, along with (7), H4 implies

n || (Z.6)1Z,6, L. (14)

Note that Z, needs to be not disjointed from Z,. When it happens, an
identification problem may possibly arise.

Remark 1. Property (3), with H1 and H2 imply (see Florens, Mouchart
and Rolin, 1990, Corollary 7.6.4):

o, Il 8, Il Z, (15)

in particular:



e,_u_e,andelz. (16)

Remark 2. Note also that (6) and H2 are equivalent to 6, || (6,,1)|Z and
therefore imply:

pll6lzZ. an

2.1.3 Conditions of mutual independence

Whereas conditions of cut allow for decomposing inferences and
eventually concentrating the inference about the parameters of interest
on the relevant part of the sampling process, conditions of mutual
independence allow for easier accumulation of statistical information.
These hypotheses concern the processes generating both (n|p,Z) and

w1Z).
For what concerns (|1, Z), the basic hypothesis is that Z, "sifts" n

conditionally on (6, 1t), meaning that (see Florens, Mouchart and Rolin,
1990, Definition 7.6.11)

H5. || mlZ,6,p (18)
0<AEN)

and, partitioning Z,=(z,, ... Ly ... T \)"

H6. n, | Z,12,,,6,1 (19)

i.e. conditionally on (Z,, 8,, i),the n,’s are mutually independent (H5) and
the individual z,,’s are "allocated" to the individual n, (H6).
Similarly, the model assumes that Z, sifts y, i.e.:

H1. .l_l_ e 10, Z, (20)
©<ESp)

and, partitioning Z,=(z,, ... 2, ... 2,,),

H8. p, 11 Z,1z,,.6, (21)

Note that H5 and H7 imply that both VniZ,,p,6,) and V(u1Z,,0,) are

diagonal matrices. Finally, we complete the structural model by assu-
ming homoscedasticity both for np and p, i.e., from H5:

HY. v(n|Z,0,1n) =V |Z,0, 1) =0, (22)

and, from H7:
H10. vu|Zz,8)=0ll,. (23)

2.2 Sampling model

A basic feature of finite population models is that the individual
characteristics n,’s are only partially observable. More precisely, a
sampling mechanism will select n labels (out of N elements of the
population): s={s, .. s}c{l .. N}. With such notation, we
retain only distinct labels, dropping repetitions out. It will be convenient
to represent the sampling results by a (nxN) selection matrix
S=(e, ... e,),wheree, isthe s-th column of I,. If we also define a
(N —n)xN selection matrix S to represent the unsampled labels, we see
that the sampling result s determines a (N xN) permutation matrix §’
as follows : §'=(S.S)’".

When sampling is introduced in the presence of an auxiliary variable,
also the so called hypothesis of partial design noninformativity, first
introduced by Scott (1977) and also discussed in Sugden and Smith
(1984), is very natural:

H1L S | (M1, I1Z. (24)

The former hypothesis, together with H5, implies:
Sn | Sn1Z,S,6,1 (25)

i.e. gives the possibility of reordering the distribution of n conditional

on (Z,S,0, 1) according to the fundamental partitioning of the population
in sampled (y = Sn) and unsampled (Sn) units.

Remark 3. Assumption H11 may be obtained through a somewhat more
involved argument. Let us denote by x the distribution p(s | Z,11,8,n).
Thus,  characterizes the sampling design. So, (partial) noninformativity
of labels means:

S MWOIZx

and (partial) non informativity of the design means:

x (M pu60)|Z.



The joint consideration of the two partial noninformativities are equi-
valent to:

SOl Moz
which clearly implies H11.

Remark 4. Together, H11 and H2 of a cut conditional on Z also imply a
cut conditional on (Z, S):

1l 81Z5S,8, (6bis)
n il 81Z,8,1.6, (7bis)
6, I 6,1Z.S. (8bis)

Remark 5. Similarly , (17) also holds conditionally on S:

6, Il H1Z,S. (17bis)

8 Least squares approximations

The hierarchical model just described involves two kinds of para-
meters: the vector (1, 1) of incidental parameters (or latent variables)
and the vector 0 of structural parameters. In this paper the inference
effort is concentrated on v, a vector built from the (N —n + p)-vector of the
unobserved individual characteristics Sn and the (partially) incidental
parameter : i.e. y=[Sn),w}. The data are (Z,S,y).

More specifically we want to approximate the posterior expectation
E(Y]Z,S,y), our motivations being the care for the well known possible
pathologies of the likelihood function (eventually leading to negative
unconstrained maximum likelihood estimates of variance), the aversion
for too model-dependent procedures and the possibilities of taking
non-normalities into account (such as those detected by third and fourth
moments) within a reasonable computational cost.

3.1 The choice of a set of approximating functions

Looking for approximations requires the specification of both an
approximation criterion and a set of approximating functions. Here, the
criterion is taken to be the least squares principle. As far as approxi-
mating functions are concerned, a naive procedure would evaluate:

Bey|Z.8,5) = arg inf EILE(Y1Z,5,5) -2, S.0) 1] (78)

=E@) +Cly%(Z, S, NIVEZ,S. N (Z.S,5) - EZ,S, )]

wherel runs over the set of all linear functions of (Z, S, y) - and an implicit
vectorization of (Z,S,y) is assumed. Note that £(y| Z,S,y) may be inter-
preted as the conditional expectation of ygiven (Z,S,y) computed through
a normal approximation with the same first two moments as the actual
distribution of (y,Z,S, y).

Such a naive procedure suffers from two basic defects. First, it does
not seem natural to consider only linear functions of binary variables
such as (Z, S), neither it is natural to approximate the actual distribution
of (Z,S) (marginally or conditionally on yor on y) by a normal distribution.
Secondly, considering only linear functions of y has been shown in this
context (see Cocchi and Mouchart, 1990) to imply that the prior infor-
mation on the moments of order higher than the first one will not be
revised in the process of inference on ¥. These two difficulties will be
overcome by replacing y by a suitable statistic t, the choice of which will
be discussed later, and by considering the set of all functions that are
linear in t with coefficients being arbitrary (but measurable) functions
of (Z,S). More specifically we shall approximate E(y|Z,S, y) by:

E™S(yIt)=arg inf EIE(Y| Z,S, ) -l (O 171Z,S] 27
8
=E(Y1Z,9)+CH,t' | Z,S) [V(t|Z,5)] " [t-E(t| Z,9)]

where/, sruns over all the functions which are linear in t with coefficients
being measurable functions of (S, Z).
Note that E>S(y| t) may now be interpreted as the conditional expac-

tation of y given t computed through a normal approximation of the
actual distribution of (Y,t]Z,S). For further comments on this kind of
approximations see e.g. Mouchart and Simar (1984a); in the particular



case where t is an unbiased estimator, see also Mouchart and Simar
(1980, 1983, 1984b) and, in the framework of credibility theory, De
Vylder (1982) and Norberg (1986).

We shall also be interested in evaluating an upper bound for the
expected posterior variance of y, obtained through a "semi-linear
variance of Y", defined as:

Vv 19 = Viy-B*(y| 0| Z,S] (28)
=V(YIZ,8)-COt' |1 Z,9) [VEI Z,S)'C(L Y’ 1Z,9).
Indeed, it is immediate to show that in general:

E[V(YIZ.S,7)1Z,81< ¥*5(vly) as. (29)
with equality if and only if the approximation is exact in the sense that:

Elyl|Z.S.y1=E*%(yly) as. (30)

We first remark that the semi-linear inference on y(i.e. the evaluation

of E=S(y|t) and U25(y| 1)) is entirely characterized by the semi-linear
inference on J, in view of the following Lemma.

Lemma 3.1. Under the assumptions of Section 2:

ESSn 1) =SZE>*(ut) (31)
V5G9 =SZ (V1101 28 + E©31 Z,8) i,y (32)
Furthermore,

C-SSn i =SZ V=5 | ¢). (33)

where the linear covariance CZ5(Sn,p |t) is defined as:

C=5Sn, 11 t) = C[Sn - E**Sn 1 ), u—E**( 1) | Z,S]. (34)

The proof follows the same route as Lemma 3.1 of Cocchi and Mouchart
(1990) and is heavily based upon H5.

3.2 The choice of the statistic on which conditioning

Let us now discuss the specification of the statistic t. Remember that
the relevance of this choice is to concentrate the sample information
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(Z,S,y) into (Z,S,t) and to consider a normal approximation of the
distribution of (j1,t|Z,S). The relevance and the impact of such a sum-
mary may be appreciated by noticing that alternative proposals for ¢
induce different sets of prior information to be used in evaluating
£25(1| ). More specifically, if t is a polynomial of order d, prior infor-
mation on sampling moments of order 2d will be used.

As a first proposal, the choice of t=y is actually equivalent to: \

t,=Z'S’y, (35)

the vector of group totals, in the sense that (see Cocchi and Mouchart,
1990):

E>uly) =E*w1t) (36)

and, which is more important, that makes use of prior information on
the first two moments only, making no use of any information reflecting
a suspicion of non-normality (such as prior informaticn on 3rd and 4th
order moments, for instance). Furthermore, as mentioned earlier, the
use of the mere t, leads to revise the prior information on i, but not on

higher moments, not even the second order ones. This experience lead
to enlarge the statistic t,. A natural suggestion is to augment it with

reasonable estimators of the structural parameters which would cha-
racterize ®, and @, if they were assumed to be normal, i.e.c; and 63. This

means to enrich t, with the usual "between" and "within" sums of squares:

L= 3 mG-I=yQy ©7
1sksp
L= pX pX (yg(.)_;l(.'))z::y,sz 38)

1sksp  1Si<n,

where k(i) is the group which the i-th observation belongs to and:
y=n'ty=n"V t=n"0"y.

Q,=SZAIL'S —n7li ¥, = ST — i ¥ TS’

Q,=1,-SZA]'Z'S

Q,+Q,=1, ~n7i i,

with:

11




A, =7'S'SZ=diag[n,] :pxp 42)
n=Aj, = {n] :px1 (43)

y=0d=At,  px1 (44)

Consequently we shall base our L.S. approximation on the
(p +2)-dimensional statistic ¢’ =(t,,1,,) which incorporates (up to mul-
tiplicative constants) unbiased estimators of y, and o} along with a
reasonable estimator of o, for which no positive unbiased estimator is

known to exist (see Rao and Kleffe, 1980, pp. 11-12).
Since the statistic t, used in the L.S. approximation £%%(y,t), involves

sample moments up to order d (here d=2), hypotheses and prior
information on population moments up to order 2d (here 2d =4) are
required. Thus 6, not only involves i, and o}, but also:

o; =El(py — M) | Z,0) = B[ — 1Y 1 Z,,6,] = E(5 1 Z,,6,) j=3,4 (45)

which are characteristics of ®,. Similarly, 6, not only involves o3, but

also:
ﬂi'-’E[(ﬂJ."‘x'ZP)i|Z»Ps9]=E[(ﬂx‘ex741)i|zb|~‘-ez]=E(ijlzzd»‘«ez) ji=3,4 (46)

which are characteristics of @, where ¢,” is the A-th row of I, and
therefore e,’Z1 is the expectation of the A-th individual value of the n’s
in the population conditionally on ,Z,,0,). Thus

(Mo 07, 03, &) < (Mo, ;) = 6, and (Og;ﬁsvﬁt) c®,=0,
4 The main result

4.1 Statement of the main result

From Lemma 3.1, the L.S. approximation of E(A’Y|Z,S,y) for any

matrix A on the basis of the (p +2)-dimensional statistic t boils down to

evaluate:

E™*(uit)=EQ|Z,8)+CLt | Z,S) [V| Z,S)] " [t-E(t| Z,5)] (47)
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V2519 = VI Z,8)~-C, ¢ 1 Z,S) [V(t| Z,9)'C(t, W’ | Z,5). (48)

In this section, we present and comment the components of these
formulae, the derivation of which appears with some details in Cocchi
and Mouchart (1989, Appendix D, along with some useful identities in
Appendix C).

This solution requires, as an input, the prior evaluation of the follo-
wing quantities:

my=E(, | Z,S) M,=V(,|Z,8)
v,=E(0] | Z,S) v,=E(0;1Z,S)
V,=V(0}1Z,9) V,= V(021 Z,S)
a,=E(4|Z,8S) a,=E(a,|Z,S)
b,=E(B;1Z,95) b,=E@B,1Z,8)
Co1=Clily 67 1 Z,S)
b, a,
‘g"=V2+v,’“3 g"=V,+v,’—

In the last column of Table 1 (see the appendix) we present the ele-
ments of the vectors and matrices appearing in (47) and (48) and in the
third column we give some intermediary evaluations in order to offer
some hint on the underlying manipulations. In the appendix, we list
some intermediary results which show, in particular, the role of the
hypotheses stated in Section 2.

In Table 1, the symbol * denotes the Hadamard componentwise product
of matrices. It is useful to notice the following two identities:

n*n=An=(n) :pxl,

n'= i',.A;'i,, =%n.
An elegant analytical version of the result, analogous to that obtained

in Cocchi and Mouchart (1990) is not easy to derive, essentially because
of the presence of V[(t, 1, | Z,S]. For this reason a solution employing

numerical methods is required. In order to sketch anyway some pecu-
liarity of the solution, let us partition the inverse of V(t|Z,S) and

C(u,t'|Z,S) as:

13



VO v " (49)
VIZ, S = v v v?

'}) v2| vn
COLt1Z,S)=[C, ¢ Ol (50)

Note that vZ does not actually enter (47) nor (48), and therefore (47)
can be rewritten as follows:

BRSO =ER|Z,S)+([CV* +¢,(v")][t,— E(ty | Z,S)] (51

HCV" +¢,v "1, — B, 1 Z,9)] + [Cov™ +¢,v 1 {1, - E(1, | Z, S)).

After some rearrangements, taking the elements of Table 1 into
account, and defining:

C.=[CV¥ +¢,(v")A,

C..=[Cov" +cv" CovP+ep™] :px2 (52)

we obtain:

B2 0= @, ~ Cim+ € + C.| 17 UAP ~ D vl = o'o) ©
g ’ ,—vn-p)

4.2 On the interpretation of the main result

Let us now interpret the main result by means of some comments.
(a) On the double averaging

The least squares approximation E*(u|t) appears as a (matrix)-

weighted average between the prior expectation E(4|Z,S)=i,m, and y,

t}}e unbiased estimator of i, plus a correction term proportional to the
difference between the sums of squares (f,,1,) and their prior expectations

E(#;1Z,8),i = 1,2. Note that the prior expectation can be a function of (Z, S)
without complicating the result.

(b) On the validity of an approximated result rather than an exact one

14

The present result provides an example of the situation where a
statistician has to face the choice between an exact solution - viz.
E(|Z,S,y) - with respect to a completely specified model that will
typically be rather crude (i.e. often a model with a normality assumption
and a specific prior distribution) and an approximate solution E-S(u 1)
for a class of models embodying, according to the different situations,
more flexibility with respect to the specification of non-normal features
such as expected asymmetry and/or kurtosis.

Another aspect of the same argument consists in remarking ths! the
validity of approximating the actnal distribution of 41, ¢ Z,S) by a normal
one may crucially depend on the choice of t, and a central limit argument
may suggest that taking the space of individual observations (as done
with y) as coordinates of the sample might be less appropriate than
taking sample moments.

(c) On the presence of 3rd and 4th order moments
In fact, a main characteristics of the result emerges, i.e. both the
weighting of the elements of y through C. and the weighting of the dif-

ferences (4, —E(t1Z,5)),i=1,2, via C.. depend on the expected non-

normality of both the (n|Z, |1, 6)-process and the (| Z,6)-process by the
presence of g, and g,. This kind of result is analogous to the multiple

regression case in infinite populations as analysed in Mouchart and
Simar (1984a). It may be stressed that basing the L.S. approximation
on t rather than on y provides the possibility of taking into account
expected non-normalities through (a,, b,) (i.e. expected lack of symmetry)

or through (g,,8,) (i.e. expected plati- or lepto-kurtosis) with a small

effort. Indeed this only requires the specification of the functions of
expected moments listed above, while the difference of computational
cost between (47)-(48) and some similar results conditional on normality
is almost negligible: Section 5 will discuss some of such results.

(d) On the consequences of sampling under exchangeability conditions
Note that (47) and (48) do not involve the full matrix Z but only the
submatrix selected by S, viz. SZ, and this is due to the fact that tis a
function of y=Sn=5Zu+Se. In other words E25u ) = E=5(u i t). Fur-
thermore, the information contained in 8Z and in S is used only for

15



defining the sample size within each subpopulation, i.e. n, (see (42) and

(43)), and for allocating each sampled element to one of the subpopu-
lations (see (40)-(43) and Table 1).
Remember indeed that the identity SZ = diag]i,,] allows one to allocate

each sampled element to a subpopulation and therefore to reorder the
sampled labels in SZ, and permits to compute the partial averages in y
or the partial totals in t, This symmetric treatment of the individual

values within the same subpopulation is due to the partial exchangea-
bility of the distribution of (S',11Z,S,0) (see Cocchi and Mouchart
(1990), formulae (2.25) and (2.26)).

Note however that the descriptive inference on the unobserved §,” -

viz. E>5Sn 1 t) and V25Sn | t) obtained through Lemma 3.1 - actually uses
the complete knowledge of Z because the knowledge of SZ,SZ,S and S is
evidently equivalent to know S and Z.

(e) On the inference on the population mean
A trivial by-product of the former results is the descriptive inference

on linear combinations of 1 such as the population total Y, n, or the
1S AN

population average N % N, Further details are in Cocchi and Mou-
1SASN .
chart (1990).

4.3 The normal case and the departure from normality

When a,=by=¢,, =0, i.e. a priori expected symmetry in the distribu-
tions of u and of (n | p) and prior uncorrelation between 1, and o7 occur,

the (p +2)x(p +2) variance matrix V(t| Z,S) becomes block diagonal and
¢, =C(1, | Z,S) also vanishes. This implies that C..=0 and eventually t,

become L.S. sufficient, in the sense that E*S(u| ) =E>S(u{t); in other
words, t, and , improve the L.S. approximation E*S(¢ | t) in comparison
to E>S(u| t) only if the third moments of the distribution of n and u do
not behave as if they were symmetric with probability 1 and/or ¢,, #0.

This feature will be commented in Section 5, when comparing this result
with similar ones obtained earlier in the literature.
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The prior information on ®, and &,, involved by their normality with‘
probability one, implies that a,=g,=0 and b,=g,=0, but this feature

alone does not simplify substantially (47) and (48).
Moreover, in the normal case, the structural parameter reduces to

0, = (11, 0}, 6,=03 and the parameter under normality is 8" = (i1, 6%, 6d).

In general, the roles respectively played by the prior inforination
concerning symmetry and kurtosis are different: in fact, b, appears only

in C(t,.1;1Z,5), and a; in C(u,1, | Z,S) and in C(t,. 1, | Z,S), while 4th order
moments concern only C(t,1;1Z,S).

As a general comment, properties on symmetry are more important
than properties of kurtosis, and this agrees with known results on the
forms on distributions, as shown also in Ferreri (1968).

5 A comparison between different solutions of the model

5.1 An analytical comparison

Several papers, in particular Scott and Smith (1969), Cocchi (1985)
and Cocchi and Mouchart (1990), have already considered models
involving assumptions essentially similar to those made explicit in
Section 2. These models differ in their distributional assumptions (re-
quired normality or not, proper or not prior distribution, complete spe-
cification of such distribution or not) and in their solutions, which can
be exact or approximate. Eventually these solutions also differ in the
amount of prior and sampling information they use.

In Table 2 (see the appendix) the main characteristics of the different
contributions are presented with a homogeneous notation. The proposed
solutions are different because of various features. First of all, the
distributional assumptions vary from the normality of the joint distri-
bution of p and 1 to the mere knowledge of the first two moments of such
distribution. As a second point, the obtained result varies from the exact
evaluation of the first two moments of the posterior distribution of jt to
its Bayesian least squares approximation. Also the choice of the stati stic
on which conditioning the calculations is relevant, and a consequence of
the differences in the former aspects is the need of different elicitation
efforts for prior evaluations,
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The progressive relaxation of the strength of the distributional
assumptions that can be noticed along the second column of the table is
compensated, in the third column, by the increase of the prior evalua-
tions necessary to solve the problem. Furthermore, an exact solution is
allowed in the first two cases thanks to the normal hypothesis and the
conditioning on the population values of variances between and within
groups. When the two conditions are abandoned, the search for an exact
solution is difficult; nevertheless, an appropriate choice of the coordi-
nates of the problem permits to derive Bayesian least squares appro-
ximations, as happens for the last two solutions. It so happens that
analytical exact solutions can be computed only conditionally on the
variances o7,02, while the computation of an analytical approximate

solution, on the basis of the knowledge of the first two moments of the
jointdistribution of (n, it | Z,S, 6), permits, on the contrary, theintegration
of the structural parameter. A further possibility, which is not practiced
here, would consist in an exact numerical solution.

The remarkable difference between the last two solutions of Table 2
comes from the choice of the statistic en which conditioning. All solutions,
in fact, are conditional on the vector of group totals t, The further con-

ditioning on 1, and ¢, increases the set of the prior elicitations necessary

for the solution from those of group (a) to those of group (b), and also, by
means of the elements of the group (c), takes departures from normality
into account.

Cocchi (1985) gives an exact solution under very strong assumptions
(viz. normality of (n,it1Z,S,0) and known 6") which is linear in ¢, i.e.

E(uIZ,S,to.O")=ﬁz's"’v(u|tﬂ). Moreover, when comparing the different

solutions, the interpretation is important. For instance, Cocchi (1985)
and Scott and Smith (1969) are not Bayesian in a strict sense, since they
are conditional on 6. But they can be interpreted in the framework of
the present result as the particular case where My=V,=V,=¢,;=0.
Furthermore, the solution based on (47) and (48) uses more intensively
the prior expected values of the within and between variances. In fact,
in the former solutions they intervene only as weights to be attributed
respectively to the sample group averages and to their prior evaluations.
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The results are summarized in the last three columns of Table 2,
where with the symbol A, we denote the diagonal matrix canonically

associated to the vector x. All solutions can be seen as least squares ones,
but the first three are also exact solutions in the normal case. So, when
normality is assumed, it is possible to compare all the solutions. On the
contrary, when the normal assumption is abandoned, the only solution
to practice is that introduced by (47) and (48), since also the approximate
solution of Cocchi and Mouchart (1990) does not vary according to ®,

and ®,. For such solution, it is possible to evaluate the differences in the

result according to the distributional assumption chosen for the cha-
racteristics of interest and for the vector of group averages.

In the four cases, the result consists in an averaging between the
vector y, the unbiased estimator of 1, and a vector, the components of
which are proportional to some estimate of ;. In Cocchi (1985) this last

quantityis exactly |1, and the weights are, as usual in Bayesian methods,
proportional to precisions. In Scott and Smith (1969) the estimator of Ji;

is a weighted average of the components of 3. In Cocchi and Mouchart
(1990) the least squares approximation of the posterior expectation of i
is obtained through a double averaging, i.e. a weighted average between
the vector of sample means y and an overall mean, which is itself a
weighted average between m, the prior expectation of y, and m, a
weighted average of the sample data whereas in this last solution we
turn back to a single averaging between y and a vector proportional to
mg, the prior expectation of |, while f, and ¢, introduce a new correction

term.
5.1.1 The perfect information condition

For what concerns the expected values of the quantities to be intro-
duced in the simulations, there is to choose whether we suppose to be
in a condition of perfect information, and in this last case the expected
values coincide with the real ones, or the condition is not fulfilled.

The perfect information condition concerns the conjectures on some
characteristics of the parameter 0. It can be splitted into the conjectures
on the expected values of 6", which are essential also in the first three
solutions, and into those on the remaining parts of @, and ®,, which are

specific to the fourth solution. For instance, under perfect information

19



on the distributions, for the normal distribution and for any symmetric
one, the expectations of the third moment are null, and those of the
fourth moment are, for the normal,

a,=3E(}1Z,5)

b,=3E(031Z,5)

and, taking the ¢ distribution as an example of nonnormality

6
a‘=(v—:z+3)HG:IZ,S)

6
b‘= (—\;;—_—34- 3)E(0'; I Z,S)

where

E(c}1Z,5) = V(0! | Z,5)+[E(C? | Z,9)] j=1,2.

For such distributions, as we have already said, the error of speci-
fication consists in the erroneous evaluation of the third and fourth order
moments, while for other distributions the problem of the specification
error occurs also for the expectation of the first two moments.

The object of the comparison is to evaluate the numerical sensitivity
of the different procedures with a same set of data and to evaluate
statistical robustness with respect to alternative models. The main
difficulty stands in making comparable procedures which involve dif-
ferent amount of prior information.

Only when both y1 and 1} are normal, it is possible to compare all the
solutions, the exact and the approximate ones. On the contrary, even
when only one of the two distributions is not normal, the computation
of the exact solutions, which are possible only in the normal case, is
meaningless. In such case the only element to check is the specification
error for the present solution, since also the approximate solution of
Cocchi and Mouchart (1990) does not vary as the scenarios vary.
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5.2 A numerical comparison

In this paragraph we check, by means of simulated data, the behaviour
of the four different solutions for different data generation processes and
elicitation of priors.

The attention is focused on the normal data generation process. In
such a context, the part 6" of the structural parameter can be chosen
arbitrarily. In Cocchi and Mouchart (1990) the influence of variations

in the ratio o¥c? has been tested. The developments of the present

solution increase the possibilities of comparison between the different
choices.

We consider a population of 400 elements which can be attributed to
5 different groups, with size N, =30, N,=100, N,=40, N, =80, N;=150.
From each group a sample is drawn, the total sample size being 80, under
the following alternative hypotheses: constant sampling fraction equal
to 1/5 and equal sample size of 16 within groups.

Different values of 8 have been tried, i.e. |1,= 100 and the following

values of o and o3

o} =400 o = {25, 100, 400, 1600, 6400}
o} = 1600 o2 = {100, 400, 1600, 6400, 25600}
o} = 25600 o2 = {100, 400, 1600, 6400, 25600}

The first line corresponds to theidea of low variability between groups,
and the third line to that of high variability between groups. The values

experimented for o2 correspond to different conjectures on the ratio 6}/03,

which varies from 4 to 1/16. On the basis of the possible associations of
variances within and between groups 15 different scenarios, normal in
p and n, have been generated.

(a) Simulations in the normal case with complete perfect information
The first set of simulations concern 2 situation of perfect information
on the whole parameter 8: indeed, the solutions found under such con-
dition constitute a landmark for any comparison. Under that con dition,
the expected values coincide with the population ones, i.e. the elements
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of ¢" are fixed as my =, v, = 6? and y, = ¢2. The values of g; and b;, j = 3,4,

are those following from the normal assumption which appear in the
former subsection.
On the contrary, the conjectures on the values of the variances of m,,

v, and v,, necessary in the solution here proposed, have to be arbitrarily

fixed. After some trials, which did not alterate the general comments on
the result, we decided to explore further the case where the coefficients

of variation V}?v, and V}%v, are equal to 2 andM;Ym, is 1/2.

Also the values of ¢, are not kept constant. In particular the cova-
riances between o} and i, giving values of the linear correlation coeffi-
cient equal to {0, .2,% .5, +9} have been checked.

(b) A general comment on the result

We do not report the details of the simulations performed on the 15
scenarios but we want to stress that the first one, where the sources of
variability between and within groups areat the minimum level checked,
shows the coincidence between all the solutions. The low structural
variability within and between groups and the exactness of the conjec-
tures on 6" induces the numerical posterior independence of the 1,’s for

all solutions, while these averages are analytically independent only in
Cocchi (1985). When the structural variability of the n,’s increases, the

variance-covariance matrix of the Scott and Smith’s (1969) solution
begins to be different from the first matrix, while the same matrices in
Cocchi and Mouchart (1990) and in the present solution begin to assume
intermediate values between the two. In general, the same considera-
tions hold for all the scenarios checked.

In the whole, the analysis of the results shows that the solution where
the influence of the population values on the general mean is more
influent on the final result is Cocchi (1985), while in the other solutions
the weight of the sampling result is more relevant. Since, in the normal
case, it is possible to compare the four solutions, we can remark that,
for the same 6", the posterior variance of the general mean has a
minimum value, that of the solution of Cocchi (1985), which is exact and
computed conditionally on 8", Such variance increases in the solution of
Cocchi and Mouchart (1990) and in the present solution, reaching its
maximum with the solution of Scott and Smith (1969), which is alse
exact, conditional on 6%, but computed through a diffuse prior on | The
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Scott and Smith’s solution constitutes an upper limit, as we shall see,
only in the case of perfect information on all the conjectures to elicitate.
When the posterior group averages and their variance-covariance
matrices are compared, the different modes of interaction between
sample values and prior values can be appreciated. Such differences are
smoothed in the computation of the posterior of the general mean.
Indeed, when comparing solutions in the case of perfect information, a
feature to remark is the greater influence of the different assumptions
on the vector of the posterior group means rather that on the general
mean.

Also the effect of the sample sizes is strong: if the n, are equal - and

the sampling fractions are different - the posterior variances of the p,’s

will be equal; therefore the differences between the posterior variances
isto be attributed only to the variation in the sample sizes in the different
groups.

We also notice that, in the case of proportional sampling, the solution
of Scott and Smith (1969), which employs the whole information avai-
lable when computing the posterior expectations of the group averages
and obtains a different value for each of them, gives a posterior general
mean which is equal to the corresponding sample value.

(c) Consequences of the specification error on the superpopulation mean

In order to evaluate the consequences of the relaxation of the perfect
information on the general mean, the values m, = {70, 100, 130} have been
alternatively checked, choosing, in the different trials, the values pre-
serving the coefficients of variation fixed before. The analysis concerning
the specification error for m, does not deserve particular comments. In
fact, when the other components of the prior evaluations are those of
perfect information, the error modifies only the balancing, usual in the
Bayesian analysis, between prior values and values generated by
sampling.

(d) A detailed example
We do not report results on the whole set of trials, but we comment

in detail the case coming from the scenario where o} = 1600 and o3 = 25600,

with constant sampling fraction. For such data set, the prior specifica-
tions with perfect information for the different parameters are:
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(mg= 100 M= 2500 v,= 1600 V,= 6400 v,= 25600 V,= 102400 )
(a;= 0 a,= 7699200 b= 0 b= 1966387200 )

The following table, together with the population group averages and
the sample group averages (note that the described case presents a high
structural variability within groups), shows the posterior expectations
(exact or approximate according to the solution, and therefore denoted
by a generic symbol) of the group averages and the general mean,
together with the posterior variance (which also can be exact or appro-
ximate) of the general mean. We do not reproduce the posterior
variance-covariance matrix of the group averages.

The comments made on the whole sets of simulations on the 15 sce-
narios according to the two sampling schemes can be verified in the
example, where it can be noticed how the introduction of the covariance
between |, and o (here considered through the corresponding linear

correlation coefficient) tends to decrease the posterior values with
respect to those determined when such covariance is supposed null.

12402 |os03 7015 |s520 |76.38
A 168.14 |109.52 |[78.056 |104.34 [104.87 [§=107.24

EQu) EQw) E) E(Q) Egus) E@®) V@

CC85 ]115.88 105.29 92.68 102.17 103.18 104.17 181.23
SS9 |121.88 108.97 88.21 106.32 106.06 107.24 256.0
CM90 (120.56779 [108.1721 |97.011 105.4174 1105.4369 §106.576 }235.4855
CM91 ]120.5779 [108.1721 ]97.011 105.4174 11065.4369 [106.576 [235.468565 |py, =0

CM81 |120.5143 |108.1333 [96.9528 [105.3738 |105.40685 |106.5436 |235.4648 |p, =2
CM91 [120.4189 |108.0749 196.8653 |105.3081 |105.3608 |106.485 [235.4811 |p,,=.5
CM91 ]120.2912 |107.9969 |96.7482 |105.2203 |105.2997 [106.43 235.4512 |pg,=.9
CM91 |[120.6413 [108.2108 |97.0691 [105.4610 |105.46872 |106.6082 |235.4648 }p,,=~2
CM91 1120.7363 [108.2889 |97.1562 ]105.5263 [105.5126 |106.6566 |235.4611 [p,,=-S$
CM91 }120.8627 |108.3462 92.2721 {105.6133 [105.5731 |106.7210 |235.4512 |p,,=-9

(e) The error in the evaluation of the variances expectation

If the trial of different values of m, gives results which do not deserve

particular comments, the interpretation of the elicitation error for the
variances expectations is not so simple. In the first part of the following

table, where o} =25600 and o} = 6400, with constant sampling fraction,

the two exact solutions obtained conditionally on o} and o} are shown
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the two exact solutions obtained conditionally on o} and o? are shewn
(we are checking a case where the variability between groups is very
high). In the second part of the table, where the solution with perfect
information is put in evidence, the posterior evaluations obtained with
erroneous conjectures for v, and v, are reported.

The most striking feature of all the essays is given by the greater
relevance of o} with respect to o]. When o} is exactly conjectured, the
results are closer to those of perfect information, for which the solution

of Scott and Smith (1969) constitutes an upper limit. On the contrary,
aberrant values of v, tend to alterate the different posterior evaluations

of the y1,’s, even if compensating in the posterior expectation of the

general mean: if very high values, with respect to the correspondent
population ones, of v, bring to overcome the upper limit for the variance
constituted by the Scott and Smith solution, exceptionally small values
for the variance expectation within groups dominate the sample infor-
mation, producing a posterior variance which is strongly influenced by
the prior evaluation and is lower than the bound of the exact solution.
As a general comment, we can say that the prior evaluation of o] ought

to be given very cautiously, since the errors concerning it will mostly
influence, as we have seen, posterior results.

At b ——

196.10 [s0.10 |-19.41 {7918 |552
A 213.16 |87.35 |-15.46 |5461 1977 [f=32m

EQu) E@) EQy) EQ) EGs) E@) Y_(ﬁ)

CC85 208.63 87.51 -11.98 -52.23 20.43 33.39 63.22
S5S69 206.81 86.88 -13.49 -53.01 20.01 32.77 64.00

vy vy

25600 6400 |207.9758 187.3030 |-12.4586 |-52.4857 [20.2935 |[33.1865 |[63.4702

256001400 1212.8201 |87.3459 |-15.2664 |-54.4778 [19.7988 132.7338 ]3.8979
25600125600(194.6739 [87.1788 |-4.4331 |-46.4720 121.8305 [34.4287 |247.8653
6400 |25600]154.3906 |83.8310 [11.7742 {.20.4418 1252334 [368.2244 [240.3667
5760026600 |204.7439 |87.4320 1-9.8473 |-50.8725 120.8080 [33.6716 [251.4688
57600 (6400 [210.9376 87.3696 {-13.9958 |-53.6077 [20.0289 [32.9952 [83.7102
57600400 }213.0156 |87.3501 [-15.3871 | 51.5494 |19.7821 [32.7818 }3.9989
6400 |400 [211.6489 |87.2852 [-14.8210 |-54.1358 |19.8636 |[32.8205 [3.9958
8400 |6400 |192.1908 86.3511 [-6.3645 |-47.4945 |21.2698 [33.6278 162.9468
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(D) The possibility of keeping non normality into account

In order to begin dealing with non-normality, let us briefly consider
the example of a data generation process given, with constant sampling
fraction, o} = 1600 and o} = 25600, by a  distribution with 8 d.f. both for
the n,’s and the ji,’s. Normal and non normal solutions can be compared
since the values of f, and the corresponding normal values are the same
percentiles of the respective distributions.

The condition of perfect information with respect to @, and @, corre-
sponds to the adequate choice of the values of g, b,, j =3,4 reported in
paragraph 5.1,

NG 125.09 [04.88 |6s63 |51.82  |75.35
ER0) 165.94 [48.01 14734 [4206 (14444 [7=109.55

EQ) Ep) EQ,) EQW) EQ@) E(D V@)

CM90  1136.7766 [77.8076 {127.472 |74.8266 |126.0223 [104.8757 |282.1287
CM91  |136.7766 |77.8076 |127.472 |74.8268 |126.0223 |104.8757 |282.1287 |py,=0
CM91  |136.7738 |77.8058 |[127.4702 |74.8247 |126.0506 ]104.8742 |282.1278 |py = 2
cM91  |136.7709 |77.8020 [127.4673 |74.8219 [126.0176 [104.8719 |282.1238 [p,,= S
CMo1  |136.7688 [77.7988 |[127.4633 |74.8178 [126.0135 [104.8687 |282.1121 {p,, =9

Alsofor the distribution, which is symmetric, there are no differences

between the solution of Cocchi and Mouchart (1990) and the solution
here discussed.

(g) The specification error in the form of the distribution

The difference between the two solutions just mentioned can on the
contrary be pointed out also in the normal case, when the conjectures
on a and b are erroneous. In fact, in the example where, with constant

sampling fractions, o} = 400 and o; = 1600, with perfect information on 6",
but where a, = b,= 300 and a, = b,= 0, we obtain the following results for
the two solutions:
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He 112.01 97.51 85.07 77.60 88.19

A 120.654 101.14 87.05 89.89 96.31 y=96.75

EQu) E(n) Eu) EQ) E() E(m v

CM980 111.5547 [100.6254 [90.7244 |[91.56245 |95.6383 106.7616 |15.8018
CM91 111.6834 |100.6816 |90.8162 |[91.5863 |95.6900 |96.8121 |156.9022

(h) Concluding remarks

The simulations performed are a contribution to the understanding
the role of the differences existing between different solutions, not all
necessarily Bayesian, either of exact or approximated type, to the same
superpopulation model for finite populations. We think that the role of
the available information within different contexts has been remarked,
by means of the different role of the parameters and prior evaluations
and their impact on the posteriors.

Appendix

Most of the results of the third column of Table 1 derive from the
following theorems, proved in Appendix D of Cocchi and Mouchart (1989)
and reported here without proof.

In particular, noting that 1, and 1, may be rewritten as:

4=y Qy=nSQSn=nFn, =12 (54)
where

F,=SSZ(@4;' - n'i,i,)Z'S'S :N XN (55)
F,=S, ~SZA'Z'S'IS. N xN (56)

the evaluation of C(ty, . 1 Z,S, 6,1) = Z’S'SCM,N'FN1Z,S,0,1), i = 1,2, relies
on the following simple results:

Lemma 1. Letr= (f, werY If | ry E(r)=0 and E(r})=k, Vi, then, for

any matrix W, C(r,r'Wr) = kdy , where dy = (w;, wy ... o)~

Corollary 2. Under H5 and H9, for any matrix W:
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CM,WWN|Z,S,6,1) =20;WZ + B d,,.

Similarly, the evaluation of C(f,#|Z,S,8,1)=C(n'Fn,nFn|Z,8,6,p),
i,j=1,2, relies on the following theorems.

Lemma 3. Let r=(r,...r,Y, U=Uand V=V . If || r,E(r)=0,E()) =k,
and E(r=kVi, then C(@r'Ur,rVr)=(k—3k;)d"dy+2itr UV, where
dy=(y Uy ... 1) and dy = (v vy ... V,)"
Corollary 4. Under H5, (22), H9, (47) and (48):
CMUN,N'VN|Z,S,8,1) = (B, — 30)d’ d, + 205UV +

F2B,(d’,V +d' U Zp+ 4oy Z'UVZy

The following properties of the distribution of (t|Z,S, 6) permit the
passage to the last column of Table 1.
Lemma 5. Under H3, H7 and H9 we have both
[ENEAX)

Nl 81Z,5,6 and

Lemma 6. Under (45), (46) and (23)

VWZ'F,ZL|Z,S,0) = (a,~30}) (n —n”'n'n) + 20{tr(Z'F,Z)*
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Tables

Table 1. Moments requested for (47) and (48)

the conditioniﬁé is respectively on

components offconstituted by |(Z,S,6,1) (Z.S)
(4nand(48) | i.e. intermediate results|i.e. elements of (47) and (48)
E@l].):pxl [ R mgl, ’
E(T,|.):px1 An o
SO 1. —
ECT ) (p + < 1|ET, 1) e - D+ p{A~nml |y, - 1)+ v,(n —n"'n'n)
E(T,1) cin—p) vin—p)
Cw,Tyl.):pxp|0 ".A.+M,,!’n’
T’ C.T, 1) px1 |0 a,(n—n"n‘n)+cm(n—n"n'n)l’
Ppx(p+2)
CuT,):px1 |0 0
Vul.ypxp 0 - v, + ML’
VTl ):pxp oA, v, A+ v, A+ Moo’
VT, 1) (B30t - n@p = 1) |(Va +43)lgy (' - n 7 2p = 1)
+203(p -+ +2(p—1)]+(Vl+v,’)[g,(n—n"n’n)
4pl,~n"'pufu +2r(ZF 2V}
Hoip(A_—n"nn'),x Hp - l)’V,+V|(n —n“n’n)‘
+4v,v,(n ~n"'n'n)
V(T i) V{T,l) (B‘-k;)(n+n:—2p) (V2+v;)[g‘ (n+n'—2p)
w+xe+D 120%n - p) F2n-p)+ (- YV,
CT, Tyl (B.- 30t r* + - = 1| (V4 vl ot + D=2 - D)
+2npn-i J1 +Wyp-1)(n-p)
C(T,T,].):px] ﬂ&—n"nn’)ﬂ» B,(l’ —n"n) [(by], + GN(I’ - rl_'A.)
4o, (n —-n”'n’n)A_]l’
C(T,T,1.) :p x1|By@~1) byn-1)
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Table 2. A comparison berween different solutions 1o model (1)-(2)
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