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Abstract

We prove that the obstacle problem for a non-uniformly parabolic operator of Kol-
mogorov type, with Cauchy (or Cauchy-Dirichlet) boundary conditions, has a unique
strong solution u. We also show that u is a solution in the viscosity sense.

1 Introduction

We consider a class of second order differential operators of Kolmogorov type

Lu(z) :=
m∑

i,j=1

aij(z)∂xixj
u(z) +

m∑
i=1

bi(z)∂xi
u(z) +

N∑
i,j=1

bijxi∂xj
u(z)− ∂tu (1.1)

where z = (x, t) ∈ RN+1, 1 ≤ m ≤ N and bij ∈ R for every i, j = 1, . . . , N . We assume:

H1 the coefficients aij = aji and bi are bounded continuous functions for i, j = 1, . . . , m.
Moreover, there exists a positive constant Λ such that

Λ−1|ζ|2 ≤
m∑

i,j=1

aij(z)ζiζj ≤ Λ|ζ|2, ζ ∈ Rm, z ∈ RN+1;

H2 the operator

Ku :=
m∑

i=1

∂xixi
u +

N∑
i,j=1

bijxi∂xj
u− ∂tu (1.2)

is hypoelliptic, i.e. every distributional solution of Ku = f is a smooth solution,
whenever f is smooth.
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Hypothesis H2 is equivalent to the classical Hörmander condition [19]:

rank Lie (∂x1 , . . . , ∂xm , Y )(z) = N + 1, ∀ z ∈ RN+1

where Lie (∂x1 , . . . , ∂xm , Y ) denotes the Lie algebra generated by the vector fields ∂x1 , . . . , ∂xm

and

Y :=
N∑

i,j=1

bijxi∂xj
− ∂t.

We explicitly remark that uniformly parabolic operators satisfy H1 and H2 with m = N .
We also recall (cf. [25]) that H2 is equivalent to the existence of a basis of RN with
respect to which the matrix B = (bij) assumes the following block form




∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.3)

where the blocks ∗ are constant and arbitrary, Bj is a mj−1 ×mj matrix of rank mj and

m =: m0 ≥ m1 ≥ . . . ≥ mr ≥ 1, m0 + m1 + . . . + mr = N.

This paper is mainly concerned with the obstacle problem

{
max{Lu + au− f, ϕ− u} = 0, in RN× ]0, T [,

u(·, 0) = g, in RN ,
(1.4)

where a, f , g are bounded continuous functions. The assumptions on the obstacle function
ϕ will be specified in H4 in Section 3: we require that ϕ is locally Lipschitz continuous
and satisfies a weak convexity condition with respect to the variables x1, . . . , xm.

Apart from the obvious importance in PDEs’ theory, obstacle problems have natural
theoretical interest in stochastic control. Moreover they appear in several applications in
physics, biology and mathematical finance. Specifically, one of the best-known problems in
finance is that of determining the arbitrage-free price of American style options. Precisely,
we consider a financial model where the dynamic of the state variables is described by a
N -dimensional diffusion process X = (Xx

t ) which is a solution to the stochastic differential
equation

dXx
t = BXx

t dt + σ(t,Xx
t )dWt, X t0,x

t0 = x, (1.5)

where (x, t0) ∈ RN×[0, T ] and W denotes a m-dimensional Brownian motion, m ≤ N . An
American option with payoff ϕ is a contract granting the holder to receive the payment
of the sum ϕ(Xt) at a time t ∈ [0, T ], which is chosen by the holder. Then, according

2



to theory of modern finance (cf., for instance, Peskir and Shiryaev [32]) the arbitrage-
free price, at time 0, of the American option is given by the following optimal stopping
problem

u(x, t) = sup
t≤τ≤T

E
[
ϕ(X t,x

τ )
]
, (1.6)

where the supremum is taken over all stopping times τ ∈ [t, T ] of X. The main result
in [31] is that the function u in (1.6) is a solution of a problem in the form (1.4) where
the obstacle function ϕ corresponds to the payoff of the option and L is the Kolmogorov
operator associated to the diffusion X:

L =
1

2

m∑
i,j=1

(σσT )ij∂xixj
+ 〈Bx,∇〉 − ∂t.

In the uniformly parabolic case m = N , the valuation of American options has been stud-
ied starting from the papers by Bensoussan [4] and Karatzas [22] using a probabilistic
approach based on Snell envelopes and by Jaillet, Lamberton e Lapeyre [20] using vari-
ational techniques. However there are significant classes of American options, commonly
traded in financial markets, whose corresponding diffusion process X is associated with
Kolmogorov type operators that are not uniformly parabolic. Two remarkable examples
are provided by Asian style options (cf., for instance, Barucci, Polidoro and Vespri [3]) and
by some recent stochastic volatility model with dependence on the past (cf. Hobson and
Rogers [18], Di Francesco and Pascucci [9], Foschi and Pascucci [12]). A general theory
for these financial instruments is not available. Actually, the several papers on American
Asian options available in literature (cf., for instance, Rogers and Shi [34], Barraquand
and Pudet [2], Barles [1], Hansen and Jorgensen [17], Meyer [29], Jiang and Dai [21],
Marcozzi [28], Dai e Kwok [8]) mainly consider numerical issues.

The aim of this paper, and of the related work [31], is to develop a rigorous theory
for the obstacle problem (1.4) and the optimal stopping problem (1.6). The main results
of this paper are the existence of a strong solution to the obstacle problem in a bounded
cylindrical domain (cf. Theorem 3.1) and in the strip RN×]0, T [ (cf. Theorem 4.1). We
recall that, even in the standard framework of uniformly parabolic operators, problem
(1.4) generally does not admit a solution in the classical sense. Three main approaches are
used to tackle the existence problem: these are based on the notion of variational solution
(cf. Bensoussan and Lions [5], Kinderlehrer and Stampacchia [23]), strong solution (cf.
Friedman [13], [15]) and, more recently, viscosity solution (cf. Crandall, Ishii and Lions
[7], Barles [1]). Since operator (1.1) appears in non-divergence form, we adapt a classical
penalization technique to find a unique strong solution to (1.4), obtained as the limit of
solutions to a suitable class of non-linear problems.

We also show in Theorem 5.2 that the strong solutions are viscosity solutions and in
[31] it is proved that the function u defined in (1.6) is a strong solution to the obstacle
problem (1.4). As a consequence, the solutions to American option problem provided by
means of different methodologies in [1], [21] and [8], must coincide.
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Concerning the regularity, we emphasize that any strong solution u is Hölder contin-
uous with its first order derivatives ∂x1u, . . . , ∂xmu (see Section 2). This result, combined
with the above remark, improves the regularity of viscosity solutions and solutions of
the optimal stopping problem (1.6), obtained by probabilistic techniques. Starting from
these results, we aim to investigate the regularity properties of the obstacle problem in a
forthcoming study.

This paper is organized as follows. In Section 2 we set the notations and introduce the
functional setting suitable for the study of the regularity properties of the operator (1.1):
specifically, our study is cast in the framework of analysis on Lie groups. The proofs of
some of the results stated in this section are postponed to Section 6. In Sections 3 and 4
we prove the existence and uniqueness of the solution to the obstacle problem in bounded
domains and in RN , respectively. The main result of Section 5 states that the strong
solutions are also viscosity solutions.

2 Functional analysis on Lie groups

Since the works by Folland [11], Rothschild and Stein [35], Nagel, Stein and Wainger
[30], it is known that the natural framework for the study of operators satisfying the
Hörmander condition is the analysis on Lie groups. The Lie group structure related to
Kolmogorov operators has been first studied by Lanconelli and Polidoro in [25]. The
explicit expression of the group law is defined by

(ξ, τ) ◦ (x, t) = (x + E(t)ξ, t + τ), (2.1)

where E(t) = e−tBT
and BT denotes the transpose of B. The solutions of the equation

Ku = 0, with K as in (1.2), have the remarkable property of being invariant with respect
to the left translations defined by (2.1):

Ku(ζ ◦ z) = (Ku)(ζ ◦ z)

or equivalently, if Ku = f , then

m∑
i=1

∂xixi
u(ζ ◦ z) +

N∑
i,j=1

bijxi∂xj
u(ζ ◦ z)− ∂tu(ζ ◦ z) = f(ζ ◦ z),

for every z = (x, t), ζ = (ξ, τ) ∈ RN+1. Moreover, if and only if the ∗-blocks in (1.3) are
null, operator K is homogeneous of degree two with respect to the dilations defined by

D(λ) = diag(λIm0 , λ
3Im1 , . . . , λ

2r+1Imr , λ
2)

where Imj
denotes the mj ×mj identity matrix. The number

Q + 2 = m0 + 3m1 + . . . + (2r + 1)mr + 2

4



is usually called D(λ)-homogeneous dimension of RN+1. Then GB = (RN+1, ◦, (D(λ))) is
a homogeneous Lie group only determined by B.

We also recall the definition of a D(λ)-homogeneous norm: for every z ∈ RN+1 \ {0},
we define ‖z‖ = ρ if ρ is the unique positive solution of

x2
1

ρ2q1
+

x2
2

ρ2q2
+ . . . +

x2
n

ρ2qN
+

t2

ρ4
= 1,

and q1, . . . qN are the integers such that

D(λ)(x, t) =
(
λq1x1, λ

q2x2, . . . , λ
qN xN , λ2t

)
. (2.2)

Some functional spaces related to the Lie group GB are defined as follows. Let Ω be a
domain of RN+1 and p ≥ 1. We set

Sp(Ω) = {u ∈ Lp(Ω) : ∂xi
u, ∂xixj

u, Y u ∈ Lp(Ω), i, j = 1, . . . , m}

and

‖u‖Sp(Ω) = ‖u‖Lp(Ω) +
m∑

i=1

‖∂xi
u‖Lp(Ω) +

m∑
i,j=1

‖∂xixj
u‖Lp(Ω) + ‖Y u‖Lp(Ω)

We say that u ∈ Sp
loc(Ω) if u ∈ Sp(O) for every compact O ⊂ Ω. Moreover, we denote

respectively by Cα
B(Ω), C1,α

B (Ω) and C2,α
B (Ω) the Hölder spaces defined by the following

norms:

‖u‖Cα
B(Ω) = sup

Ω
|u|+ sup

z,ζ,∈Ω

z 6=ζ

|u(z)− u(ζ)|
‖ζ−1 ◦ z‖α

,

‖u‖C1,α
B (Ω) = ‖u‖Cα

B(Ω) +
m∑

i=1

‖∂xi
u‖Cα

B(Ω),

‖u‖C2,α
B (Ω) = ‖u‖C1,α

B (Ω) +
m∑

i,j=1

‖∂xixj
u‖Cα

B(Ω) + ‖Y u‖Cα
B(Ω).

Note that any u ∈ Cα
B(Ω) is Hölder continuous in the usual sense since

‖ζ−1 ◦ z‖ ≤ c|z − ζ| 1
2r+1 .

Next we state some results extending the usual embedding theorems and a priori inte-
rior estimates. In the case of homogeneous Kolmogorov operators they have been proved
in several papers (cf. Bramanti, Cerutti and Manfredini [6], Manfredini and Polidoro [27],
Manfredini [26]). In the Appendix we generalize these results to the non-homogeneous
case. Hereafter when we claim that a constant depends on L we mean that it depends on
N, m, B and the constant Λ in H1.
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Theorem 2.1 (Embedding theorem). Let O, Ω be bounded domains of RN+1 such that
O ⊂⊂ Ω and p > Q + 2. There exists a positive constant c, only dependent on L, Ω, O
and p, such that

‖u‖C1,α
B (O) ≤ c‖u‖Sp(Ω), α = 1− Q + 2

p
, (2.3)

for any u ∈ Sp(Ω).

Theorem 2.2 (A priori Sp interior estimates). Let O, Ω be bounded domains of RN+1

such that O ⊂⊂ Ω. There exists a positive constant c, only depending on L,O, Ω and p,
such that

‖u‖Sp(O) ≤ c
(‖u‖Lp(Ω) + ‖Lu‖Lp(Ω)

)
(2.4)

for every u ∈ Sp(Ω), 1 < p < ∞.

In the sequel, we also use the following Schauder type estimate, proved by Di Francesco
and Polidoro in [10]:

Theorem 2.3 (Interior Schauder estimate). Let O, Ω be bounded domains of RN+1, such
that O ⊂⊂ Ω. Let the coefficients aij, bi ∈ Cα

B(Ω). For any u ∈ C2,α
B (Ω) we have

‖u‖C2,a
B (O) ≤ c

(
sup

Ω
|u|+ ‖Lu‖Cα

B(Ω)

)
(2.5)

for some positive constant c only depending on α, Ω, O, L, ‖aij‖Ca
B(Ω) and ‖bi‖Ca

B(Ω).

3 Obstacle problem on bounded domains

In this section, we prove the existence and uniqueness of a strong solution to the obstacle
problem {

max{Lu + au− f, ϕ− u} = 0, in H(T ) := H× ]0, T [,

u|∂P H(T ) = g,
(3.1)

where H is a bounded domain in RN and

∂P H(T ) := ∂H(T ) \ (H × {T})
denotes the parabolic boundary of H(T ). We say that u ∈ S1

loc(H(T )) ∩ C(H(T )) is a
strong solution to problem (3.1) if the differential inequality is satisfied a.e. in H(T ) and
the boundary datum is attained pointwisely.

We assume that H(T ) is regular in the sense that at every point of its parabolic
boundary there exists a barrier function. Precisely,

H3 for any ζ ∈ ∂P H(T ) there exists a neighborhood V of ζ and a C2 function

w : V ∩H(T ) −→ R,

such that
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i) Lw ≤ −1 in V ∩H(T );

ii) w(z) > 0 in V ∩H(T ) \ {ζ} and w(ζ) = 0.

Next we state the assumption on the obstacle function ϕ.

H4 ϕ is a Lipschitz continuous function on H(T ) and there exists a constant C ∈ R such
that

m∑
i,j=1

ζiζj∂xixj
ϕ ≥ C|ζ|2, in H(T ), ζ ∈ Rm, (3.2)

in the distributional sense, that is

m∑
i,j=1

ζiζj

∫

H(T )

∂xixj
ψ(z)ϕ(z)dz ≥ C|ζ|2

∫

H(T )

ψ(z)dz,

for any ζ ∈ Rm and ψ ∈ C∞
0 (H(T )), ψ ≥ 0.

We explicitly note that C2 functions satisfy assumption H4 as well as Lipschitz continuous
function that are convex with respect to the first m variables.

The main result of this section is the following

Theorem 3.1. Assume H1, H2, H3 and H4. Let g ∈ C(∂P H(T )), such that g ≥ ϕ,
and f, a ∈ C ∩ L∞(H(T )). Then there exists a strong solution u of the problem (3.1).
Moreover, for every p ≥ 1 and O compact subset of H(T ), there exists a positive constant
c, only depending on L, O,H(T ), p and on the L∞-norms of f, g, ϕ and a, such that

‖u‖Sp(O) ≤ c. (3.3)

We prove Theorem 3.1 by adapting a standard penalization technique (cf., for instance,
Friedman [14]). Therefore we consider a family (βε)ε∈ ]0,1[ of smooth functions: fixed ε > 0,
βε is an increasing function, bounded with its first order derivatives, such that

βε(0) = 0, βε(s) ≤ ε, s > 0,

and
lim
ε→0

βε(s) = −∞, s < 0.

For δ ∈ ]0, 1[, we denote by Lδ the operator obtained from L by mollifying the coefficients
aij and bi. We also denote by ϕδ (respectively, aδ, f δ) the regularization1 of ϕ (resp. a, f).
Since g ≥ ϕ in ∂P H(T ) we have

gδ := g + λδ ≥ ϕδ, in ∂P H(T ),

1We may suitably extend ϕ, a, f by continuity in a neighborhood of H(T ).
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where λ is the Lipschitz constant of ϕ. Then we consider the penalized problem
{

Lδu + aδu = f δ + βε(u− ϕδ), in H(T ),

u|∂P H(T ) = gδ.
(3.4)

As a first step, we prove that a classical solution of (3.4) exits.

Theorem 3.2. Assume H1, H2 and H3. Let g ∈ C (∂P H(T )) and let h = h(z, u)
be a Lipschitz continuous function on H(T ) × R. Then there exists a classical solution
u ∈ C2,α

B (H(T )) ∩ C(H(T )) of problem

{
Lδu = h(·, u), in H(T ),

u|∂P H(T ) = g.

Moreover, there exists a positive constant c, only depending on h and H(T ), such that

sup
H(T )

|u| ≤ ecT (1 + ‖g‖L∞). (3.5)

Proof. We use a monotone iterative method. We set

u0(x, t) = ect(1 + ‖g‖L∞)− 1,

where c is a positive constant such that |h(z, u)| ≤ c(1+ |u|) for (z, u) ∈ H(T )×R. Then
we define recursively the sequence (uj)j∈N by

{
Lδuj − λ uj = h(·, uj−1)− λ uj−1, in H(T ),

uj|∂P H(T ) = g,
(3.6)

where λ is the Lipschitz constant of h. Let us recall that the linear problem (3.6) has a
unique classical solution C2,α

B (H(T )) ∩ C(H(T )), α ∈]0, 1], by Theorem 4.1 in [10].
Next we prove by induction that (uj) is a decreasing sequence. By the maximum

principle we have u1 ≤ u0: indeed

Lδ(u1 − u0)− λ(u1 − u0) = h(·, u0)− Lδu0 = h(·, u0) + c(1 + u0) ≥ 0,

and u1 ≤ u0 on ∂P H(T ). Now, fixed j ∈ N, we assume the inductive hypothesis uj ≤ uj−1;
then, recalling that λ is the Lipschitz constant of h, we have

Lδ(uj+1 − uj)− λ(uj+1 − uj) = h(·, uj)− h(·, uj−1)− λ(uj − uj−1) ≥ 0.

Moreover uj+1 = uj on ∂P H(T ), so that the maximum principle implies uj+1 ≤ uj. The
same argument shows that uj is bounded from below by −u0. In conclusion, for j ∈ N,
we have

−u0 ≤ uj+1 ≤ uj ≤ u0. (3.7)
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Let us denote by u the pointwise limit of (uj) in H(T ). Since uj is a solution of (3.6) and
by the uniform estimate (3.7), we can apply Theorem 2.1 and 2.2 to conclude that, for
any compact subset O of H(T ) and α ∈ ]0, 1[, ‖uj‖C1,α

B (O) is bounded by a constant only

dependent on L, H(T ), O, α and λ. Hence by the Schauder interior estimate (2.5), we
deduce that ‖uj‖C2,α

B (O) is bounded uniformly in j ∈ N. It follows that (uj)j∈N admits a

subsequence (denoted by itself) that locally converges in C2,α
B . Thus passing at limit in

(3.6) as j →∞, we have
Lδu = h(·, u), in H(T ),

and u|∂pH(T ) = g.

In order to prove that u ∈ C(H(T )), we use the standard argument of barrier functions.
Fixed ζ ∈ ∂P H(T ) and ε > 0, let V be an open neighborhood of ζ such that

|g(z)− g(ζ)| ≤ ε, z ∈ V ∩ ∂P H(T ),

and a barrier function w as in H3 is defined. We set

v±(z) = g(ζ)± (ε + kεw(z))

where kε is a suitably large positive constant, independent of j, such that

Lδ(uj − v+) ≥ h(·, uj−1)− λ (uj−1 − uj) + kε ≥ 0,

and uj ≤ v+ on ∂(V ∩ H(T )). The maximum principle yields uj ≤ v+ on V ∩ H(T );
analogously we have uj ≥ v− on V ∩H(T ), and letting j →∞ we get

g(ζ)− ε− kεw(z) ≤ u(z) ≤ g(ζ) + ε + kεw(z), z ∈ V ∩H(T ).

Then
g(ζ)− ε ≤ lim inf

z→ζ
u(z) ≤ lim sup

z→ζ
u(z) ≤ g(ζ) + ε, z ∈ V ∩H(T ),

which proves the thesis since ε is arbitrary. Eventually the bound (3.5) is a direct conse-
quence of the maximum principle and (3.7).

Proof of Theorem 3.1. By Theorem 3.2 with

h(·, u) = f δ + βε(u− ϕδ)− aδu,

the penalized problem (3.4) has a classical solution uε,δ ∈ C2,α
B (H(T ))∩C(H(T )). In the

sequel we assume a ≤ 0: up to a standard transformation, this is not restrictive. We first
show that

|βε(uε,δ − ϕδ)| ≤ c̃ (3.8)

for a constant c̃ independent of ε and δ. Since βε ≤ ε we only have to prove the estimate
from below. Let us denote by ζ a minimum point of the function βε(uε,δ−ϕδ) ∈ C(H(T ))
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and assume βε(uε,δ(ζ) − ϕδ(ζ)) ≤ 0, since otherwise there is nothing to prove. If ζ ∈
∂P H(T ) then

βε(g
δ(ζ)− ϕδ(ζ)) ≥ βε(0) = 0.

If ζ ∈ H(T ), since βε is an increasing function, uε,δ − ϕδ also assumes the (negative)
minimum at ζ: then

Lδuε,δ(ζ)− Lδϕδ(ζ) ≥ 0 ≥ −a(ζ)
(
uε,δ(ζ)− ϕδ(ζ)

)
. (3.9)

Now, by H4, Lδϕδ(ζ) is bounded from below by a constant independent of δ. Therefore,
by (3.9), we have

βε(uε,δ(ζ)− ϕδ(ζ)) = Lδuε,δ(ζ) + aδ(ζ)uε,δ(ζ)− f δ(ζ)

≥ Lδϕδ(ζ) + aδ(ζ)ϕδ(ζ)− f δ(ζ) ≥ c̃,

with c̃ independent of ε, δ. This concludes the proof of (3.8).
By the maximum principle, we have

‖uε,δ‖∞ ≤ ‖g‖L∞ + T (‖f‖L∞ + c̃) . (3.10)

Therefore, using the Sp interior estimates and (3.8), (3.10) we infer that, for every O ⊂⊂
H(T ) and p ≥ 1, the norm ‖uε,δ‖Sp(O) is bounded uniformly in ε and δ. It follows that

the (uε,δ) converges as ε, δ → 0, weakly in Sp (and in C1,α
B ) on compact subsets of H(T )

to a function u. Moreover
lim sup

ε,δ→0
βε(uε,δ − ϕδ) ≤ 0,

so that Lu + au ≤ f a.e. in H(T ). On the other hand, Lu + au = f a.e. in the set
{u > ϕ}.

Finally, repeating the argument based on barrier functions at the end of the proof of
Theorem 3.2, we conclude that u ∈ C(H(T )) and u = g on ∂P H(T ).

We close this section by proving a comparison result.

Proposition 3.3. Let u be a strong solution of (3.1) and v ∈ S1
loc(H(T )) ∩ C(H(T )) be

such that {
max{Lv + av − f, ϕ− v} ≤ 0, a.e. in H(T ),

v|∂P H(T ) ≥ g.

Then u ≤ v in H(T ). In particular the solution to (3.1) is unique.

Proof. By contradiction, suppose that the open set

D := {z ∈ H(T ) | u(z) > v(z)}
is nonempty. Then, since u > v ≥ ϕ in D, we have

Lu + au = f, Lv + au ≤ f in D,

and u = v on ∂D. Then the maximum principle implies u ≥ v in D and we get a
contradiction.
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4 Obstacle problem on unbounded domains

In this section, we prove the existence of a unique strong solution to the obstacle problem
{

max{Lu + au− f, ϕ− u} = 0, in ST := RN× ]0, T [,

u(·, 0) = g, in RN .
(4.1)

We say that ū is a (strong) super-solution of problem (4.1) if ū ∈ S1
loc(ST )∩C(RN× [0, T [)

and {
max{Lū + aū− f, ϕ− ū} ≤ 0, a.e. in ST ,

ū(·, 0) ≥ g, in RN .
(4.2)

and that u is a (strong) sub-solution if the conditions (4.2) hold with the inequalities
reversed. Finally u is a strong solution of problem (4.1), if u is super and sub-solution.
We assume

H5 ϕ is a locally Lipschitz continuous function on ST such that, for every convex and
compact subset M of ST , the convexity condition (3.2) holds with real constant C
dependent on M .

Our main result is the following

Theorem 4.1. Assume H1, H2, H5 and let a, f ∈ C(ST ) with a ≤ a0 for some a0 ∈ R
and g ∈ C(RN) such that g ≥ ϕ(·, 0). If there exists a strong super-solution ū of problem
(4.1) then there also exists a strong solution u of (4.1) such that u ≤ ū in ST .

The existence of a supersolution is ensured for instance if g, ϕ are bounded functions
and f ≥ 0. In this case we can simply set ū(x, t) := ea0t max{‖g‖∞, ‖ϕ‖∞}.
Proof. We prove the theorem by solving a sequence of obstacle problems on regular
bounded domains. Specifically we define the cylindrical domain Hn(T ), n ∈ N, as follows:
let e1 = (1, 0, . . . , 0) be the first vector of the canonical basis of RN and denote by Bn(x0)
the Euclidean ball of RN with center at x0 ∈ RN and radius n. We define

On = Bn+1(e1) ∩Bn+1(−e1), (4.3)

and, for every T > 0,
Hn(T ) = On×]0, T [. (4.4)

For such a domain a barrier function is defined at every point of the parabolic boundary

∂P Hn(T ) = (On × {0}) ∪ (∂On × [0, T ]) .

See, for instance [24] or [10] for details. Note that the sequence (Hn(T ))n∈N covers ST .
For every n ∈ N, we consider a cut-off function χn ∈ C(RN ; [0, 1]) such that χn(x) = 1

if x ∈ On− 1
2

and χn(x) = 0 if x 6∈ On, and set

gn(x, t) = χn(x)g(x) + (1− χn(x))ū(x, t), (x, t) ∈ ST .
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By Theorem 3.1, for every n ∈ N, there exists a strong solution un of

{
max{Lu + au− f, ϕ− u} = 0, in Hn(T ),

u|∂P Hn(T ) = gn,

By Proposition 3.3 it is straightforward to prove that

ϕ ≤ un+1 ≤ un ≤ ū, in Hn(T ).

In order to conclude, it is sufficient to use the same arguments as in the proofs of Theorems
3.1 and 4.1, based on the a priori Sp

loc interior estimates and the barrier functions.

5 Viscosity solutions

In this section we prove that any strong solution to (4.1) solves the same problem in the
viscosity sense as well. This is almost standard to verify by using the well-known fact that
viscosity solutions pass to the limit under uniform convergence. Adopting the notations
of the User’s Guide [7], we set

F (z, u, p,X) = pN+1 − trace(A(z)X)−
N∑

i,j=1

bijxipj − a(z)u + f(z), z = (x, t),

for p ∈ RN+1 (which stands for the gradient in RN+1 w.r.t. the variables (x, t)), X
symmetric (N + 1)× (N + 1) matrix and

Aij =

{
aij i, j = 1, . . . , m,

0 otherwise.

We denote by uδ the classical solution of the regularized and penalized equation

Lδuδ = f δ + βδ(uδ − ϕδ), in ST , (5.1)

subject to the initial condition u(·, 0) = g in RN . Moreover let F δ be the operator formally
defined as F with A, a, f respectively replaced by Aδ, aδ, f δ.

Then uδ is a viscosity solution of (5.1) i.e. uδ is continuous and it is a sub- and
super-solution of the equation in the sense that

F δ(z, uδ(z), p, X) + βδ(uδ(z)− ϕδ(z)) ≤ 0, z ∈ ST , (p,X) ∈ J2,+uδ(z), (5.2)

and

F δ(z, uδ(z), p, X) + βδ(uδ(z)− ϕδ(z)) ≥ 0, z ∈ ST , (p,X) ∈ J2,−uδ(z). (5.3)
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In (5.2)-(5.3) J2,+u(z) and J2,−u(z) denote respectively the second order super- and sub-
jet of u at z defined by

J2,+u(z) = {(Dψ(z), D2ψ(z)) | ψ ∈ C2(RN+1) and u− ψ has a local maximum at z},

and J2,−u(z) = −J2,+(−u)(z).
For what follows we need the following result which is contained [7], Proposition 4.3.

Lemma 5.1. Let u ∈ C(ST ), z ∈ ST , (p+, X+) ∈ J2,+u(z) and (p−, X−) ∈ J2,−u(z).
Suppose that (uδ) is a family of continuous functions, uniformly convergent as δ → 0 to
u in a neighborhood of z. Then there exist sequences (δn) in R, (zn) in ST , (p+

n , X+
n ) ∈

J2,+uδn(zn) and (p−n , X−
n ) ∈ J2,−uδn(zn) such that

lim
n→∞

(zn, p
+
n , X+

n , p−n , X−
n ) = (z, p+, X+, p−, X−).

Theorem 5.2. Any strong solution of (4.1) is also a viscosity solution.

Proof. Since u ∈ C(ST ) and u ≥ ϕ, it suffices to show that

i) Lu ≤ f on ST in the viscosity sense, that is

F (z, u(z), p,X) ≥ 0, for all z ∈ ST , (p,X) ∈ J2,−u(z); (5.4)

ii) Lu = f in the viscosity sense on {u > ϕ}.
To this end we consider a sequence (uδn) of solutions to the regularized and penalized

problem, locally uniformly convergent to u. Fixed z ∈ ST and (p−, X−) ∈ J2,−u(z), we
consider a sequence (zn, p−n , X−

n ) ∈ ST × J2,−uδn(zn) as in Lemma 5.1. Then we have

lim
n→∞

Fn(zn, uδn(zn), p−n , X−
n ) = F (z, u(z), p−, X−)

and, by (5.1),

lim
n→∞

Fn(zn, uδn(zn), p−n , X−
n ) = − lim

n→∞
βn(uδn(zn)− ϕn(zn)) ≥ 0,

and this proves (5.4).
Analogously, fixed z ∈ ST such that u(z) > ϕ(z) and (p+, X+) ∈ J2,+u(z), by Lemma

5.1 we may select a sequence (zn, p
+
n , X+

n ) ∈ ST × J2,+uδn(zn) such that uδn(zn) > ϕn(zn)
and then we conclude

F (z, u(z), p+, X+) = lim
n→∞

Fn(zn, uδn(zn), p+
n , X+

n ) = − lim
n→∞

βn(uδn(zn)− ϕn(zn)) = 0.
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6 Proof of Theorems 2.1 and 2.2

The proof of Theorem 2.2 relies on some representation formulas in terms of a parametrix,
i.e. of the fundamental solution of a suitable homogeneous operator Lz. We first recall
some known fact about the fundamental solution of the homogeneous operator, and about
the related singular integrals.

We next fix some notations useful in the sequel. We denote by B0 the matrix obtained
by replacing every block “∗” in (1.3) with a block matrix of zeros:

B0 =




0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Br

0 0 0 . . . 0




. (6.1)

The Lie group related to B0 will be denoted as

z · w = (y + E0(s)x, t + s), where E0(s) = es B0 , (6.2)

for every z = (x, t), w = (y, s) ∈ RN × R. We define the sets I0, I1, I by letting

I0 =
{
(i, j) : qi = qj

}
, I1 =

{
(i, j) : qi < qj

}
, I = I0 ∪ I1,

where q1, . . . , qN are the integers introduced in (2.2). Note that the coefficients bij of the
set I0 are the ones corresponding to the “∗” blocks of the principal diagonal of the matrix
B and that the coefficients in I1 are the ones in the blocks below the principal diagonal.
We point out that

〈y, BDv(w)〉 = 〈y,B0Dv(w)〉+
∑

(i,j)∈I
bijyi∂yj

v(w). (6.3)

We finally denote by Lz, the homogeneous operator with the coefficients aij frozen at
z ∈ RN+1:

Lzv(w) :=
m∑

i,j=1

aij(z)∂2
yiyj

v(w) + 〈y, B0Dv(w)〉 − ∂sv(w).

and by Γz its fundamental solution

Γz(ξ, τ ; y, s) =
(4π)−

N
2√

det Cz(τ − s)
e−

1
4
〈C−1

z (τ−s)(ξ−E0(τ−s)y),ξ−E0(τ−s)y〉 (6.4)

for τ > s and Γz(ξ, τ, y, s) = 0 if τ ≤ s, where Cz(t) is the N ×N matrix

Cz(t) =

∫ t

0

E0(s)

(
Az 0
0 0

)
ET

0 (s)ds, Az = (aij(z))i,j=1,...,m.
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It is known that Γz is homogeneous of degree −Q with respect to the dilations D(λ)λ>0,
i.e.

Γz(D(λ)ζ, 0) = λ−QΓz(ζ, 0), ∀ζ ∈ RN+1 \ {0}, λ > 0.

Moreover the derivative ∂ξj
Γz(ζ, 0) is homogeneous of degree −Q− qj, (j = 1, . . . , N) and

∂2
ξjξk

Γz(ζ, 0) is homogeneous of degree −Q− qj − qk, (j, k = 1, . . . , N).
In the sequel we rely on some known results about potential estimates and singular

integral defined in terms of Γz and its derivatives (see [11]). Let Gα denote a homogeneous
function of degree α−Q−2, with α ∈ [0, Q+2[, and let f ∈ Lp(RN+1) for some p ∈]1, +∞[.
If α 6= 0, then the potential

Gα(f)(w) :=

∫

RN+1

Gα(ζ−1 · w)f(ζ)dζ (6.5)

defines a function belonging to Lq(RN+1), with 1
q

= 1
p
− α

Q+2
, and there exists a positive

constant cα, depending on Gα and p, such that

‖Gα(f)‖Lq(RN+1) ≤ cα‖f‖Lp(RN+1). (6.6)

If α = 0, we also require that G0 has the vanishing property
∫

‖ζ−1‖=1

G0(ζ
−1)dσ(ζ) = 0.

In that case the Principal Value of the singular integral

P.V.

∫

RN+1

G0(ζ
−1 · w)f(ζ) dζ := lim

ε→0

∫

‖ζ−1‖≥ε

G0(ζ
−1 · w)f(ζ) dζ

is a function in Lp(RN+1), and there exists a positive constant c0 = c0(G0, p) such that
∥∥∥∥P.V.

∫

RN+1

G0(ζ
−1 · w)f(ζ) dζ

∥∥∥∥
Lp(RN+1)

≤ c0 ‖f‖Lp(RN+1). (6.7)

In (6.6) and (6.7) ζ−1 denotes the inverse of ζ with respect to the operation “·”.
In the sequel, we will use a representation formula in terms of the homogeneous func-

tions ∂2
yiyj

Γz(y, s, ξ, τ) (i, j = 1, . . . , m) computed at (y, s) = (0, 0). By the invariance

with respect to the translation “·” we have Γz(w, ζ) = Γz(ζ
−1 · w, 0) =: Γz(ζ

−1 · w) then,
for the sake of brevity, in the sequel we will use the following notation:

∂2
yiyj

Γz(ζ
−1) := ∂2

yiyj
Γz(ζ

−1 · (y, s)) |(y,s)=(0,0) .

It is known that ∂2
yiyj

Γz(ζ
−1) is a homogeneous function of degree −Q−2 and has the van-

ishing property (see [6]). We next show that the same result holds for ∂3
yiyjξh

(ξkΓz(ζ
−1)),

for every index (h, k) ∈ I0. It is easy to see that ∂3
yiyjξh

(ξkΓz(ζ
−1)) is a homogeneous
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function of degree −Q − 2, for any (h, k) ∈ I0. To prove the vanishing property, we use
the same argument used in the proof of Theorem 2.2 in [6]: we use the “polar” change
of variables (formula (1.7) in [6]) and the fact that ∂3

yiyjξh
(ξkΓz(ζ

−1)) is homogeneous of
degree −Q− 2 and we get

∫

a≤‖ζ−1‖≤b

∂3
yiyjξh

(ξkΓz(ζ
−1))dζ = log

(
b

a

) ∫

‖ζ−1‖=1

∂3
yiyjξh

(ξkΓz(ζ
−1))dσ(ζ). (6.8)

Hence, it is enough to prove that the first integral is zero. The divergence theorem gives
∫

a≤‖ζ−1‖≤b

∂3
yiyjξh

(ξkΓz(ζ
−1))dζ =

∫

‖ζ−1‖=b

∂2
yiyj

(ξkΓz(ζ
−1))νhdσ(ζ)−

∫

‖ζ−1‖=a

∂2
yiyj

(ξkΓz(ζ
−1))νhdσ(ζ),

where νh is the h-th component of the outer normal to the surface {z ∈ RN+1 : ‖z−1‖ = ε}.
Proceeding as in the proof of Lemma 2.10 in [10] and using the fact that ∂2

yiyj
(ξk Γz(ζ

−1)) νh

is homogeneous of degree −Q, we see that
∫

‖ζ−1‖=ε

∂2
yiyj

(
ξk Γz(ζ

−1)
)
νh dσ(ζ) (6.9)

does not depend on ε > 0. Hence, the first integral in (6.8) equals zero, and this proves
the vanishing property of ∂3

yiyjξh
(ξkΓz(ζ

−1)).

Lemma 6.1. Let u ∈ C∞
0 (RN+1). Then the following representation formula holds:

uxixj
(z) = −P.V.

∫

RN+1

∂2
yiyj

Γz(ζ
−1)

( m∑

h,k=1

(ahk(z)− ahk(z ◦ ζ)) ∂2
ξhξk

u(z ◦ ζ)+

Lu(z ◦ ζ)− a(z ◦ ζ) u(z ◦ ζ)−
m∑

h=1

bh(z ◦ ζ) ∂ξh
u(z ◦ ζ)

)
dζ−

(
Lu(z)− a(z) u(z)−

m∑

h=1

bh(z) ∂ξh
u(z)

) ∫

‖ζ−1‖=1

∂yi
Γz(ζ

−1)νj dσ(ζ)+

∑

(h,k)∈I0

bhk P.V.

∫

RN+1

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ, +

u(z)
∑

(h,k)∈I0

bhk

∫

‖ζ−1‖=1

∂2
yiyj

(
ξk Γz(ζ

−1)
)

νh dσ(ζ)+

∑

(h,k)∈I1

bhk

∫

RN+1

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ,

(6.10)

for every z ∈ RN+1 and for i, j = 1, . . . , m.
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Proof. Fix z ∈ RN+1 and set v(w) := u(z ◦w). By using the invariance of Y with respect
to the translation “◦”, we get Lzv(w) = g(w), where (also using (6.3))

g(w) =
m∑

h,k=1

[ahk(z)− ahk(z ◦ w)]∂2
yhyk

v(w) +
∑

(h,k)∈I
bhkyk∂yh

v(w)+

Lu(z ◦ w)− a(z ◦ w)v(w)−
m∑

h=1

bh(z ◦ w) ∂yh
v(w).

(6.11)

To prove (6.10), we rely on the usual representation formulas for v and its derivatives

v(w) = −
∫

RN+1

Γz(ζ
−1 · w)g(ζ)dζ,

vxi
(w) = −

∫

RN+1

∂yi
Γz(ζ

−1 · w)g(ζ)dζ, i = 1, . . . , m, (6.12)

where ζ−1 denotes the inverse of ζ with respect to the operation “·”. We also consider
the function

Vε(w) := −
∫

RN+1

ηε(ζ
−1 · w)∂yi

Γz(ζ
−1 · w)g(ζ)dζ.

It is clear that Vε(w) → vxi
(w), as ε → 0. Besides, Vε ∈ C∞ and

∂yj
Vε(w) = I1(ε, z, w) + I2(ε, z, w) + I3(ε, z, w),

where

I1(ε, z, w) := −
m∑

h,k=1

∫

RN+1

∂yj

(
ηε(ζ

−1 · w)∂yi
Γz(ζ

−1 · w)
)
(ahk(z)− ahk(z ◦ ζ))

∂2
ξhξk

u(z ◦ ζ) dζ,

I2(ε, z, w) := −
∑

(h,k)∈I
bhk

∫

RN+1

∂yj

(
ηε(ζ

−1 · w)∂yi
Γz(ζ

−1 · w)
)
ξk∂ξh

u(z ◦ ζ) dζ

I3(ε, z, w) := −
∫

RN+1

∂yj

(
ηε(ζ

−1 · w)∂yi
Γz(ζ

−1 · w)
) (

Lu(z ◦ ζ)− a(z ◦ ζ) u(z ◦ ζ)−
m∑

h=1

bh(z ◦ ζ) ∂ξh
u(z ◦ ζ)

)
dζ.

(6.13)
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The same argument used in the proof of Theorem 2.4 of [6] gives

lim
ε→0

I1(ε, z, 0) =−
m∑

h,k=1

P.V.

∫

RN+1

∂2
yiyj

Γz(ζ
−1) (ahk(z)− ahk(z ◦ ζ)) ∂2

ξhξk
u(z ◦ ζ)dζ,

lim
ε→0

I3(ε, z, 0) =− P.V.

∫

RN+1

∂2
yiyj

Γz(ζ
−1)

(
Lu(z ◦ ζ)− a(z ◦ ζ) u(z ◦ ζ)

m∑

h=1

bh(z ◦ ζ) ∂ξh
u(z ◦ ζ)

)
dζ−

(
Lu(z)− a(z) u(z)−

m∑

h=1

bh(z) ∂ξh
u(z)

) ∫

‖ζ−1‖=1

∂yi
Γz(ζ

−1)νj dσ(ζ).

Moreover, the convergence is uniform with respect to z. We next consider the terms
appearing in the sum in I2(ε, z, 0):

∫

RN+1

∂yj

(
ηε(ζ

−1)∂yi
Γz(ζ

−1)
)
ξk∂ξh

u(z ◦ ζ) dζ =
∫

‖ζ−1‖<ε

∂yj

(
ηε(ζ

−1)∂yi
Γz(ζ

−1)
)
ξk∂ξh

u(z ◦ ζ) dζ+

∫

‖ζ−1‖≥ε

∂2
yiyj

Γz(ζ
−1)ξk∂ξh

u(z ◦ ζ) dζ =: J1(ε, z) + J2(ε, z).

Concerning J1, we note that the functions ξk∂yi
Γz(ζ

−1) and ξk∂
2
yiyj

Γz(ζ
−1) are homoge-

neous of degree −Q−1+qk and −Q−2+qk, respectively, and that there exists a positive
constant c such that

∣∣∂yj
ηε(ζ

−1)
∣∣ ≤ c

ε
, for every ζ ∈ RN+1. As a consequence we get

J1(ε, ·) ⇒ 0, as ε → 0. (6.14)

By the divergence theorem we find

J2(ε, z) = −
∫

‖ζ−1‖≥ε

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ+

∫

‖ζ−1‖=ε

ξk∂
2
yiyj

Γz(ζ
−1) (u(z ◦ ζ)− u(z)) νh dσ(ζ)+

u(z)

∫

‖ζ−1‖=ε

ξk∂
2
yiyj

Γz(ζ
−1) νh dσ(ζ) =: J ′2(ε, z) + J ′′2 (ε, z) + u(z)J ′′′2 (ε, z).

We first consider the indices (h, k) in I0. Since the integral in (6.9) does not depend on
ε, we have

|J ′′2 (ε, z)| ≤ max
‖ζ−1‖=ε

|u(z ◦ ζ)− u(z)|
∫

‖ζ−1‖=1

∣∣∣∂3
yiyjξh

(
ξk Γz(ζ

−1)
)∣∣∣ dσ(ζ).
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then, by also using the continuity of v, we get J ′′2 (ε, z) → 0 as ε → 0. Moreover, we have
already observe that the function ∂3

yiyjξh
(ξk Γz(ζ

−1)) is homogeneous of degree −Q−2 and

has the vanishing property. Then, it is well defined the P.V.
∫
RN+1 ∂3

yiyjξh
(ξk Γz(ζ

−1)) u(z ◦
ζ) dζ.

We next consider the indices (h, k) ∈ I1. In this case the functions ∂2
yiyj

(ξk Γz(ζ
−1)) νh

and ∂3
yiyjξh

(ξk Γz(ζ
−1)) are homogeneous of degree −Q + qk − qh and −Q − 2 + qk − qh,

respectively. Since qh < qk, the function ∂3
yiyjξh

(ξk Γz(ζ
−1)) is locally integrable, then

lim
ε→0

J ′2(ε, z) =

∫

RN+1

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ.

On the other hand,
∫

‖ζ−1‖=ε

ξk∂
2
yiyj

Γz(ζ
−1) νh dσ(ζ) = εqk−qh

∫

‖ζ−1‖=1

ξk∂
2
yiyj

Γz(ζ
−1) νh dσ(ζ),

then, J ′′2 (ε, z) → 0 and J ′′′2 (ε, z) → 0 as ε → 0. We finally note that in each of the above
limits the convergence is uniform with respect to z. Hence, also using (6.14), we find

lim
ε→0

I2(ε, z, 0) =
∑

(h,k)∈I0

bhk P.V.

∫

RN+1

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ+

u(z)
∑

(h,k)∈I0

bhk

∫

‖ζ−1‖=1

∂2
yiyj

(
ξk Γz(ζ

−1)
)

νh dσ(ζ)+

∑

(h,k)∈I1

bhk

∫

RN+1

∂3
yiyjξh

(
ξk Γz(ζ

−1)
)
u(z ◦ ζ) dζ,

uniformly with respect to z. This identity accomplishes the proof of the Lemma.

Proof of Theorem 2.2. We first note that it is sufficient to prove the claim for any suitably
small ball Br = Br(z) := {ζ ∈ RN+1 | ‖ζ−1 ◦ z‖ < r}, i.e.

‖u‖Sp(B r
2
) ≤ c

(
‖Lu‖Lp(Br) + ‖u‖Lp(Br)

)
(6.15)

Theorem 2.2 will follow by a standard covering argument.
In order to prove (6.15), we recall that the coefficients ahk are continuous, then, for

every ε > 0 and z ∈ RN+1 there exists r > 0 such that

sup
‖ζ‖≤r

|ahk(z)− ahk(z ◦ ζ)| ≤ ε, ∀h, k = 1, . . .m.

If v ∈ C∞(Br(z)), then (6.7) yields
∥∥∥∥P.V.

∫

RN+1

∂2
yiyj

Γz(ζ
−1) (ahk(z)− ahk(z ◦ ζ)) ∂2

ξhξk
v(z ◦ ζ) dζ

∥∥∥∥
Lp(Br)

≤ c0 ε‖∂xhxk
v‖Lp(Br)
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for any h, k = 1, . . . ,m. By using the above estimate, together with (6.6) and (6.7), in
the representation formula (6.10), we find

‖vxixj
‖Lp(Br) ≤ c1

(
ε

m∑

h,k=1

‖vxhxk
‖Lp(Br) + ‖Lv‖Lp(Br) + ‖v‖Lp(Br) +

m∑

h=1

‖vxh
‖Lp(Br)

)
,

for some positive constant c1. Then, if ε is suitably small, we have

m∑
i,j=1

‖vxixj
‖Lp(Br) ≤ c2

(
‖Lv‖Lp(Br) + ‖v‖Lp(Br) +

m∑

h=1

‖vxh
‖Lp(Br)

)
.

We finally note that Y v = Lv−∑m
i,j=1 aijvxixj

−∑m
i=1 bivxi

−av, and that the coefficients
aij, bi and a are bounded, so that we get

m∑
i,j=1

‖vxixj
‖Lp(Br) + ‖Y v‖Lp(Br) ≤ c3

(
‖Lv‖Lp(Br) + ‖v‖Lp(Br) +

m∑

h=1

‖vxh
‖Lp(Br)

)
, (6.16)

for every v ∈ C∞(Br(z)), with r suitably small, where c3 is a positive constant that may
depend on ε.

We next prove (6.15). Consider a function u ∈ Sp(Br). For any ρ ∈]0, 1[, we set
ρ′ = (1 + ρ)/2 and we consider a function η ∈ C∞(RN+1) such that 0 ≤ η(ζ) ≤ 1,
η(ζ) = 1 if ζ ∈ Bρr, η(ζ) = 0 if ζ ∈ Br \Bρ′r. We may, and we do, assume that η satisfies
the following estimates

|∂xi
η(ζ)| ≤ c4

ρr
, |∂xixj

η(ζ)| c4

ρ2r2
, |Y η(ζ)| ≤ c4

ρ2r2
, ∀ i, j = 1, . . . , m ∀ ζ ∈ Br (6.17)

for some positive constant c4. The estimates (6.16) clearly apply to the function v := ηu.
By using the properties (6.17), we have

‖Lv‖Lp(Br) ≤ ‖ηLu‖Lp(Br) +
c5

ρ2r2
‖u‖Lp(Bρ′r) +

c5

ρr

m∑
i=1

‖uxi
‖Lp(Bρ′r)

so that, from (6.16) it follows that

m∑
i,j=1

‖uxixj
‖Lp(Bρr)+‖Y u‖Lp(Bρr) ≤

c6

(
‖Lu‖Lp(Br) +

1

ρ2r2
‖u‖Lp(Bρ′r) +

1

ρr

m∑
i=1

‖uxi
‖Lp(Bρ′r)

)
.

(6.18)

In order to conclude the proof, we have to remove the terms ‖uxi
‖Lp(Bρ′r) from the right

hand side of the above inequality. To this aim, we use a standard interpolation formula:

ρr‖uxh
‖Lp(Bρr) ≤ ε(ρr)2‖uxhxh

‖Lp(Bρr) +
cp

ε
‖u‖Lp(Bρr),
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(see, for instance, Theorem 7.27 in [16]). By using the above inequality in (6.18) we get

sup
0<ρ<1

(ρr)2

m∑
i,j=1

‖uxixj
‖Lp(Bρr) + sup

0<ρ<1
(ρr)2‖Y u‖Lp(Bρr) ≤

c7

(
r2‖Lu‖Lp(Br) + sup

0<ρ<1
‖u‖Lp(Bρr) + sup

0<ρ<1
(ρr)

m∑

h=1

‖u
h
‖Lp(Bρr)

)
≤

c7

(
r2‖Lu‖Lp(Br) +

(
1 +

cp

ε

)
sup

0<ρ<1
‖u‖Lp(Bρr) + ε sup

0<ρ<1
(ρr)2

m∑

h,k=1

‖uxhxk
‖Lp(Bρr)

)
.

Hence, if ε is sufficiently small, we have

sup
0<ρ<1

(ρr)2

m∑
i,j=1

‖uxixj
‖Lp(Bρr) + sup

0<ρ<1
(ρr)2‖Y u‖Lp(Bρr) ≤ c8

(
‖Lu‖Lp(Br) + ‖u‖Lp(Br)

)

The estimate (6.15) then follows by taking ρ = 1
2

in the above inequality.

Proof of Theorem 2.1. We first prove

‖u‖C1,α
B (Ω) ≤ C‖u‖Sp(Ω), for every u ∈ C∞

0 (Ω). (6.19)

A standard density argument and the use of a cut-off function plainly gives (2.3).
We denote by Γ the fundamental solution of the Kolmogorov operator in (1.2) and we

use the standard representation formulas

u(z) = −
∫

RN+1

Γ(z, w)Ku(w)dw, ∂xj
u(z) = −

∫

RN+1

∂xj
Γ(z, w)Ku(w)dw,

for j = 1, . . . , m. Aiming to prove (6.19) we recall the following pointwise estimates, that
have been proved in [10] (see Proposition 2.7). There exists a positive constant CΩ such
that,

Γ(ζ, w) ≤ CΩ

‖w−1 ◦ ζ‖Q
,

∣∣Γ(ζ, w)− Γ(ζ̄ , w)
∣∣ ≤CΩ

‖ζ−1 ◦ ζ̄‖
‖w−1 ◦ ζ‖Q+1

,

∣∣∂xj
Γ(ζ, w)

∣∣ ≤ CΩ

‖w−1 ◦ ζ‖Q+1
,

∣∣∂xj
Γ(ζ, w)− ∂xj

Γ(ζ̄ , w)
∣∣ ≤CΩ

‖ζ−1 ◦ ζ̄‖
‖w−1 ◦ ζ‖Q+2

,

for every ζ, ζ̄, w ∈ Ω such that ‖ζ−1 ◦ ζ̄‖ ≤ M‖w−1 ◦ ζ‖ and j = 1, . . .m. The estimate
(6.19) then follows from the same argument used in the proof of Theorem 2.1 in [33] (we
refer to [33] for the details).
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