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Abstract

We study the quotients for the diagonal action of SL3(C) on the prod-
uct of n-fold of P2(C): we are interested in describing how the quotient
changes when we vary the polarization (i.e. the choice of an ample lin-
earized line bundle). We illustrate the different techniques for the con-
struction of a quotient, in particular the numerical criterion for semi-
stability and the “elementary transformations” which are resolutions of
precisely described singularities (case n = 6).

Introduction

Consider a projective algebraic variety X acted on by a reductive alge-
braic group G. Geometric Invariant Theory (GIT) gives a construction of a
G-invariant open subset U of X for which the quotient U//G exists and U is
maximal with this property (roughly speaking, U is obtained by X throwing
away “bad” orbits). However the open G-invariant subset U depends on the
choice of a G-linearized ample line bundle. Given an ample G-linearized line
bundle L ∈ PicG(X) over X , one defines the set of semi-stable points as

XSS(L) := {x ∈ X | ∃n > 0 and s ∈ Γ(X, L⊗n)G s.t. s(x) 6= 0},

and the set of stable points as

XS(L) := {x ∈ XSS(L) |G·x is closed in XSS(L) and the stabilizer Gx is finite}.

Then it is possible to introduce a categorical quotient XSS(L)//G in which two
points are identified if the closure of their orbits intersect. Moreover as shown
in [13], XSS(L)//G exists as a projective variety and contains the orbit space
XS(L)/G as a Zariski open subset.

X
∪

XSS(L)
φ

−→ XSS(L)//G
∪ ∪

XS(L)
φ
|XS(L)
−→ XS(L)/G
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Question. If one fixes X, G and the action of G on X , but lets the linearized
ample line bundle L vary in PicG(X), how do the open set XSS(L) ⊂ X and
the quotient XSS(L)//G change?
Dolgachev-Hu [5] and Thaddeus [19] proved that only a finite number of GIT
quotients can be obtained when L varies and gave a general description of the
maps relating the various quotients.

In this paper we study the geometry of the GIT quotients for X = P2(C) ×
. . . × P2(C) = P2(C)n. We give examples for n = 5 and n = 6. The contents of
the paper are more precisely as follows.

Section 1 treats the general case X = P2(C)n: first of all the numerical crite-
rion of semi-stability is proved (Proposition 1.1). By means of this it is possible
to show that only a finite number of quotients XSS(m)//G exists (Subsection
1.2). At the end of the section we introduce the elementary transformations
which relate the different quotients.

Section 2 is concerned with the case n = 5. Theorem 2.1 contains the main
result of Section 2: we show that there are precisely six different quotients.

Section 3 discusses the case n = 6: the main results of this Section are con-
cerned with the number of different geometric quotients that may be obtained
(it is 38: Table 3.1) and with the singularities that may appear in the quotients.
In particular there are only two different types of singularities: in Subsection 3.2
they are described, using the Étale Slice theorem. Theorem 3.2 collects these
results. At the end of the Section two examples shows how these singularities
are resolved by “crossing the wall”.
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like to express deep gratitude to my supervisor prof. Luca Migliorini, whose
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1 The general case X = P2(C)n

Let G be the group SL3(C) acting on the variety X = P2(C)n and let σ be
the diagonal action

σ : G × P2(C)n → P2(C)n

g , (x1, . . . , xn) 7→ (gx1, . . . , gxn)

A line bundle L over X is determined by L = L(m) := L(m1, . . . , mn) =⊗n
i=1 π∗

i (OP2(C)(mi)), mi ∈ Z ∀i , where πi : X → P2(C) is the i-th projection.
In particular L is ample iff mi > 0 , ∀i.
Moreover since each πi is an G-equivariant morphism, L admits a canonical
G-linearization:

PicG(X) ∼= Zn .
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Thus a polarization is completely determined by the line bundle L.
Recall that a point x ∈ X is said to be semi-stable with respect to the

polarization m iff there exists a G-invariant section of some positive tensor
power of L, γ ∈ Γ(X, L⊗k)G, such that γ(x) 6= 0. A semi-stable point is stable
if its orbit is closed and has maximal dimension. The categorical quotient of the
open set of semi-stable points exists and is denoted by XSS(m)//G:

XSS(m)//G ∼= Proj

(
∞⊕

k=0

Γ(X, L⊗k)G

)
.

Moreover the open set XS(m)/G of XSS(m)//G is a geometric quotient.
We set XUS(m) = X\XSS(m), the closed set of unstable points and XSSS(m) =
XSS(m) \ XS(m), the set of strictly semi-stable points.

1.1 Numerical Criterion of semi-stability

Fixed a polarization L(m), we want to describe the set of semi-stable points
XSS(m): using the Hilbert-Mumford numerical criterion, we prove the following

Proposition 1.1. Let x ∈ X. Then we have

x ∈ XSS(m) ⇔





∑
k,xk=y mk ≤ |m|

3

∑
j,xj∈r mj ≤ 2 |m|

3

(1)

where |m| :=
∑n

i=1 mi , and y, r are respectively a point and a line in P2(C).

Proof. Fixing projective coordinates on the i-th copy of P2(C), [xi0 : xi1 :
xi2], a point x ∈ X

(
⊂ P(Γ(X, L(m))∗) = PN (C)

)
, is described by homogeneous

coordinates of this kind:
n∏

i=1

xji

i0x
ki

i1x
mi−(ji+ki)
i2

where 0 ≤ ji, ki ≤ mi, ji + ki ≤ mi.
Let λα0,α1,α2 a one-parameter subgroup of G; it is defined by λα0,α1,α2(t) =

diag(tα0 , tα1 , tα2) where α0 + α1 + α2 = 0; we can assume α0 ≥ α1 ≥ α2.
The subgroup λα0,α1,α2 acts on every component of CN+1, multiplying by

tα0

∑
i ji+α1

∑
i ki+α2

∑
i(mi−(ji+ki)) .

By the definition of the numerical function of Hilbert-Mumford µL(x, λ), we are
interested in determining the minimum value of

α0

n∑

i=1

ji + α1

n∑

i=1

ki + α2

n∑

i=1

(mi − (ji + ki)) .
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This should be obtained when ji = ki = 0, ∀i ; but if there are some xi2 = 0,
then the minimum value becomes:

α2

∑

i,xi2 6=0

mi + α1

∑

j,xj2=0,xj1 6=0

mj + α0

∑

k,xk2=xk1=0

mk . (2)

Thus x ∈ X is semi-stable if and only if expression (2) is less or equal than zero.
Let

α0 = β0 + β1 , α1 = −β0 , α2 = −β1 ;

it follows that β1 ≥ −2β0, β1 ≥ β0 e β1 ≥ 0.
The expression (2) can be rewritten and the minimum value is

β0


 ∑

k,xk2=xk1=0

mk −
∑

j,xj2=0,xj1 6=0

mj


+β1


 ∑

k,xk2=xk1=0

mk −
∑

i,xi2 6=0

mi


 ≤ 0

(3)
The figure 1 shows that every couple (β0, β1) that satisfies (3) is a positive

Figure 1: Plane β0, β1

linear combination of v1 = (1, 1) e v2 = (−1, 2). Thus the relation (3) must be
verified in the two cases β0 = β1 = 1 e β0 = −1, β1 = 2. After few calculations
we obtain { ∑

h,xh=y mh ≤ |m|/3 , y ∈ P2(C) ;∑
l,xl∈r ml ≤ 2|m|/3 , r ⊂ P2(C) .

Remark 1.2. x ∈ XS(m) iff the numerical criterion (1) is verified with strict
inequalities.

The numerical criterion can be restated as follows: if K, J are subset of
[n] := {1, . . . , n}, then we can associate them with the numbers:

γC
K(m) = |m| − 3

∑

k∈K

mk , γL
J (m) = 2|m| − 3

∑

j∈J

mj .

In particular we have: γC
J (m) = −γL

J′(m) where J ′ = [n] \ J .
Now for every subset K ⊆ [n], we consider the set of configurations (x1, . . . , xn)

where the points indexed by K are coincident, while the others are all distinct:

UC
K = {x ∈ X |xk1 = . . . = xk|K|

6= xi, xj 6= xl ∀i, j, l /∈ K} ;
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if UC
K ⊂ XSS(m), then γC

K(m) ≥ 0 .
In the same way if r is a fixed line of P2(C), let

UL
J = {x ∈ X |xj1 , .., xj|J|

∈ r, xi /∈ r, xi, xk, xl not collinear , ∀i, k, l /∈ J},

the set of configurations (x1, . . . , xn) where the points indexed by J are collinear,
while the others are not; if UL

J ⊂ XSS(m) , then γL
J (m) ≥ 0 .

1.2 Quotients

Proposition 1.3. Let

UGEN := {x ∈ X | x1, . . . , xn in general position} ⊂ X ,

(i.e. every four points among {x1, . . . , xn} are a projective system of P2(C)).
Then:

1. XSS(m) 6= ∅ ⇔ UGEN ⊂ XSS(m);

2. XS(m) 6= ∅ ⇔ UGEN ⊂ XS(m) ⇔ dim(XSS(m)//G) = 2(n − 4).

We know that the quotient XSS(m)//G depends on the choice of the polar-
ization L(m): moreover Dolgachev-Hu [5] and Thaddeus [19] have proved that
when L(m) varies, then there exists only a finite number of different quotients.

Now we give a proof of the same result in our case.
If XSS(m) 6= ∅, then by the previous Proposition we have UGEN ⊂ XSS(m).
Moreover sets UC

K and UL
J are in a finite number since they consist in particular

combinations of x1, . . . , xn.
Fixed a polarization m, XSS(m) can be described as

XSS(m) = UGEN ∪ USS(m) ,

where USS(m) :=
{

UC
K , UL

J |UC
K , UL

J ⊂ XSS(m)
}
. In particular we can con-

struct only a finite number of different sets USS(m) and as a consequence there
exists a finite number of different open sets XSS(m); in conclusion only a finite
number of quotients XSS(m)//G exists.

1.3 Elementary transformations

Let m be a polarization such that 3 divides |m| and XS(m) 6= ∅, XS(m) (
XSS(m); let us consider “variations” of m as follows:

m̂ = m ± (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) .

We can have two different kind of variations, depending on the value |m̂| :

1. m̂
+1i−→ m (i.e. |m̂| ≡ 2 mod 3) ;
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2. m̂
−1i−→ m (i.e. |m̂| ≡ 1 mod 3) .

In both cases we have XS(m̂) = XSS(m̂); studying the relations between values
γC

J (m̂), γL
K(m̂) and values γC

J (m), γL
K(m), we observe that

1. m̂
+1i−→ m

XS(m̂) ⊂ XSS(m) , XS(m̂) = XSS(m) \
⋃

i/∈J,γC
J

(m)=0∨ γL
J

(m)=0

U∗
J ;

XS(m) ⊂ XS(m̂) , XS(m) = XS(m̂) \
⋃

i∈H,γC
H

(m̂)=2∨ γL
H

(m̂)=1

U∗
H .

2. m̂
−1i−→ m

XS(m̂) ⊂ XSS(m) , XS(m̂) = XSS(m) \
⋃

i∈J,γC
J

(m)=0∨ γL
J

(m)=0

U∗
J ;

XS(m) ⊂ XS(m̂) , XS(m) = XS(m̂) \
⋃

i/∈H,γC
H

(m̂)=1∨ γL
H

(m̂)=2

U∗
H .

At the end, we can illustrate the inclusions of the open sets of stable and semi-
stable points, with the following diagrams:

XSS(m̂) =XS(m̂)
�

� α // XSS(m)

XS(m)

β

OO 99
s

s
s

s
s

s
s

s
s

'

&

$

%

'

&

$

%
�
�

�
�XS(m)

XSS(m)

XS(m̂)

The inclusions XS(m) ⊂ XS(m̂) ⊂ XSS(m) induce a morphism

θ : XS(m̂)/G −→ XSS(m)//G , (4)

which is an isomorphism over XS(m)/G, while over
(
XSS(m)//G

)
\
(
XS(m)/G

)

is a contraction of subvarieties.
In fact, let us consider a point ξ ∈

(
XSS(m)//G

)
\
(
XS(m)/G

)
: this is
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the image in XSS(m)//G of different open, strictly semi-stable orbits, that all
have in their closure a closed, minimal orbit Gx, for a certain configuration x =
(x1, . . . , xn) ∈ XSSS(m). In particular this configuration x has |J | coincident
points, and the others n − |J | collinear; by the numerical criterion, we get
γC

J (m) = 0 and γL
J′(m) = 0, where J indicates the coincident points, while

J ′ = [n] \ J indicates the collinear ones.
For the sake of simplicity, we can assume x as




1 . . . 1 0 0 0 0 . . . 0
0 . . . 0 1 0 1 1 . . . 1
0 . . . 0 0 1 β1 β2 . . . βn−|J|−2


 , βk ∈ C∗, ∀k .

The open orbits O that contain Gx in their closure, are characterized by
γC

J (m) = 0 or γL
J′(m) = 0; there are two different cases:

1. γC
J (m) = 0: orbits look as

O1 =




1 . . . 1 0 0 α1 α2 . . . αn−|J|−2

0 . . . 0 1 0 1 1 . . . 1
0 . . . 0 0 1 ρβ1 ρβ2 . . . ρβn−|J|−2


 , ρ ∈ C∗, αk ∈ C.

2. γL
J′(m) = 0: orbits look as

O2 =




1 1 . . . 1 0 0 0 0 . . . 0
0 δ1 . . . δ|J|−1 1 0 1 1 . . . 1
0 ǫ1 . . . ǫ|J|−1 0 1 β1 β2 . . . βn−|J|−2


 , δk, ǫk ∈ C.

Now, calculating θ−1(ξ), it follows:

θ−1(ξ) = θ−1
(
φ(UC

J ∪ UL
J′)
)

;

by the numerical criterion, only one between UC
J and UL

J′ is included in XS(m̂).

Dealing with an elementary transformation of the first type (m̂
+1i−→ m), then

- if i ∈ J ⇒ θ−1(ξ) = θ−1
(
φ(UC

J ∪ UL
J′)
)

= φ̂
(
UC

J ∩ XS(m̂)
)

.

When n ≥ 5, this has dimension:

d = n − |J | − 3 . (5)

In fact, let us consider the minimal closed orbit Gx: all the orbits that
contain Gx in their closure and are stable in XS(m̂), are characterized by
the coincidence of |J | points (O1 orbits ).

- if i ∈ J ′ ⇒ θ−1(ξ) = θ−1
(
φ(UC

J ∪ UL
J′)
)

= φ̂
(
UL

J′ ∩ XS(m̂)
)

.

Now the dimension d of θ−1(ξ) is

d = 2 (n − |J ′| − 1) − 1 . (6)

Dealing with an elementary transformation of the second type (m̂
−1i−→ m), then

i ∈ J ⇒ d = 2 (n − |J ′| − 1) − 1 ; i ∈ J ′ ⇒ d = n − |J | − 3 . (7)
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2 X = P2(C)5

2.1 Number of quotients

Let us study the case n = 5: X = P2(C)5. First of all let us determine how
many different quotients we may get when the polarization varies.

Let us examine the number of Geometric quotients; let L(m) be a polar-
ization such that XS(m) 6= ∅: by the Proposition 1.3 it follows that UGEN ⊂
XS(m). In particular

XS(m) = UGEN ∪ US(m) ,

where US(m) :=
{

UC
K , UL

J |UC
K , UL

J ⊂ XS(m)
}
. Obviously there is only a finite

number of sets US(m): we want to describe their structure.
Let m = (m1, . . . , m5) be a polarization such that XS(m) = XSS(m) 6= ∅;

we can assume mi ∈ Q and

0 < mi <
1

3
, mi ≥ mi+1 , |m| = 1 .

As a consequence only strictly inequalities are allowed in the numerical criterion:

x ∈ XS(m) ⇔
∑

k,xk=y,k∈K

mk <
1

3
,

∑

j,xj∈r,j∈J

mj <
2

3
⇔ γC

K(m) > 0 , γL
J (m) > 0

In particular sets K that indicate coincident points, can have only two elements
(otherwise it would be possible to find a weight mi greater than 1/3), and in
the same way non trivial sets J that indicate collinear points, have only three
elements.
Moreover by the numerical criterion, only some sets UC

K , UL
J may be included

in XS(m):
UC

15 , UC
25 , UC

34 , UC
35 , UC

45 ,
UL

234 , UL
134 , UL

125 , UL
124 , UL

123 .
(8)

They can be examined in couple, because γC
K(m) = −γL

K′(m) , K ′ = [5] \K and
then only one between UC

K and UL
K′ may be included in XS(m).

The number of geometric quotient is six.
In fact

0. in US(m) there may be only sets as UL
J : an example is the polarization

m = (1/5, 1/5, 1/5, 1/5, 1/5);

1. if in US(m) there is one set as UC
K , it is UC

45: in fact if it were UC
34, then it

follows

m3 + m4 < 1/3 and m4 + m5 > 1/3 ⇒ m3 < m5 ⇒ Impossible.

Example: m = (1/4, 1/4, 1/4, 1/8, 1/8);
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2. if in US(m) there are two sets as UC
K , they are UC

45 and UC
35: the argument

is similar to the previous one.
Example: m = (3/11, 3/11, 2/11, 2/11, 1/11);

3. if in US(m) there are three sets as UC
K , we can have two cases:

(a) UC
45, U

C
35 and UC

25 , example m = (3/10, 1/5, 1/5, 1/5, 1/10);

(b) UC
45, U

C
35 and UC

34 , example m = (3/10, 3/10, 1/5, 1/10, 1/10).

4. if in US(m) there are four sets as UC
K , they are UC

45, U
C
35, U

C
25 and UC

15.
Example: m = (1/4, 1/4, 1/4, 2/9, 1/36);

5. the case of all UC
K sets in US(m) is impossible, because UC

45, UC
35, UC

34, UC
25

are incompatible.

We have found six cases:

0. US(m) = {UL
234, U

L
134, U

L
124, U

L
123, U

L
125}

1. US(m) = {UL
234, U

L
134, U

L
124, U

L
125, U

C
45} ,

2. US(m) = {UL
234, U

L
134, U

L
125, U

C
35, U

C
45} ,

3a. US(m) = {UL
234, U

L
125, U

C
25, U

C
35, U

C
45} ,

3b. US(m) = {UL
234, U

L
134, U

C
34, U

C
35, U

C
45} ,

4. US(m) = {UL
125, U

C
15, U

C
25, U

C
35, U

C
45} .

Then there are only six different open sets of stable points and thus six geometric
quotients.

Now let us examine the number of Categorical quotients. First of all let us
observe that sets UC

K , UL
K′ that may be included in XSS(m) are the same of

(8). What is different from the previous case is that now two sets UC
K and UL

K′

may be both included in XSS(m) (if γC
K(m) = γL

K′(m) = 0); this means that in
XSS(m) there are two distinct strictly semi-stable orbits:

- an orbit O1 with xk1 = xk2 , K = {k1, k2};

- orbits O2 with xi1 , xi2 , xi3 collinear, i1, i2, i3 ∈ K ′.

Orbit O1 and all orbits O2 contain in their closure a closed, minimal, strictly
semi-stable orbit O12, that is characterized by xk1 = xk2 and xi1 , xi2 , xi3 collinear:

�������������

s s scxk1 = xk2

xi1

xi2

xi3

In the categorical quotient XSS(m)//G, orbits O1 and O2 determine the same
point; in fact O12 ⊂ (O1 ∩ O2).

9



Let us examine the stable case more accurately: we know that only one
between O1 and O2 is included in XS(m); when O1 is included, it determines
a point of the geometric quotient. In fact if for example UC

45 ⊂ XS(m), then
φ(UC

45) may regarded as P2(C)4(m1, m2, m3, m4 +m5)/SL3(C) and the we have
a point. When orbits O2 are included in XS(m), they determine a P1(C) in
XS(m)/G. In fact if for example UL

123 ⊂ XS(m), then we can assume

O2 =




1 0 1 0 α
0 1 1 0 β
0 0 0 1 1


 , (α, β) ∈ C2 \ {(0, 0)} .

Applying to O2 a projectivity Gλ of P2(C) that fixes the line that contains
x1, x2, x3 (Gλ

∼= diag(λ, λ, λ−2), with λ ∈ C∗), , it follows:

Gλ · x =




1 0 1 0 λ3α
0 1 1 0 λ3β
0 0 0 1 1


 .

If α 6= 0, then we can assume λ3 = α−1; thus we obtain x5 = [1 : α−1β : 1]; in
the same way if β 6= 0, then x5 = [αβ−1 : 1 : 1].
Then it is clear that φ(O2) ∼= P1(C).

In the semi-stable case when UC
K , UL

K′ ⊂ XSS(m), we know that UC
K ∩UL

K′ 6=
∅ and they determine a non-singular point of XSS(m)//G, just as in the stable
case when UC

K ⊂ XS(m). In this way it follows that every categorical quotient
XSS(m)//G, where

XSS(m) = UGEN ∪ { UC
J , UL

I , . . . ,︸ ︷︷ ︸ UC
K , UL

K′ , . . . , UC
H , UL

H′︸ ︷︷ ︸},
stablesets semi − stablesets

is isomorphic to a geometric one XS(m′)/G, whose open set of stable points is

XS(m′) = UGEN ∪ {UC
J , UL

I , . . . , UC
K , UC

···, U
C
H , }.

In conclusion:

Theorem 2.1. Let X = P2(C)5: then there are six non trivial quotients.
Moreover a quotient XSS(m)//G is isomorphic to one of the following:

P2(C)
P2(C)with a point blown up (P2(C)1)
P1(C) × P1(C) (P1(C)2);
P2(C)with two points blown up (P2(C)2)
P2(C)with three points blown up (P2(C)3)
P2(C)with four points blown up (P2(C)4)
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2.2 Quotients P2(C)5//G

The following diagram shows the relations between some polarizations that
realize the quotients; for example if m = (22211), then XS(m) = P2(C)3 and
there is a morphism θ : XS(22211)/G = P2(C)3 → XSS(44322)//G = P1(C) ×
P1(C).

(11111)P2(C)4

��
(21111)P1(C)

(22111)(P1(C))2

OO

vvmmmmmmmmmmmm

(44322)(P1(C))2

(22211)P2(C)3

hhQQQQQQQQQQQQ

vvmmmmmmmmmmmm

((QQQQQQQQQQQQ

(33111)P0(C) (32211)P1(C) (22221)P2(C)

(33211)(P1(C))2

hhQQQQQQQQQQQQ

OO

vvmmmmmmmmmmmm

��

(32221)P2(C)1

hhQQQQQQQQQQQQ

66mmmmmmmmmmmm

��

(22222)P2(C)4

OO

��
(66522)(P1(C))2 (66432)(P1(C))2 (65442)P2(C)1 (54444)P2(C)4

(33311)P2(C)3

hhQQQQQQQQQQQQ

��

(33221)P2(C)2

hhQQQQQQQQQQQQ

OO

((QQQQQQQQQQQQ
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3 X = P2(C)6

3.1 Number of quotients

Now we study the case n = 6: X = P2(C)6; as in the previous case we
first determine how many different Geometric quotient we can get when the
polarization varies.

For a polarization m = (m1, . . . , m6) such that XS(m) 6= ∅, then

XS(m) = UGEN ∪ US(m) .

We want to describe the structure of the sets US(m); assume that 0 < mi < 1
3 ,

mi ≥ mi+1 , |m| = 1 .
We are interested in those sets UC

K that are included in XS(m): some are always

included in XS(m):
UC

36 , UC
46 , UC

56 ,

and others may be included in XS(m):

UC
15 , UC

16 , UC
23 , UC

24 , UC
25 , UC

26 , UC
34 , UC

35 , UC
45 ,

UC
156 , UC

256 , UC
345 , UC

346 , UC
356 UC

456 .

The number of different sets US(m) is 38.
First of all the minimum number of sets UC

K with |K| = 2, included in XS(m)
is five: in fact for example consider only the sets UC

36, U
C
46, U

C
56 that are always

included in XS(m), then obviously

m1 + m6 >
1

3
, m2 + m5 >

1

3
, m3 + m4 >

1

3
⇒

6∑

i=1

mi > 1 : impossible.

In a similar way it is impossible to have only four sets UC
K (|K| = 2) in XS(m).

Then for five sets UC
K , we have UC

16, U
C
26, U

C
36, U

C
46, U

C
56: in fact with another

5-tuple (for example UC
45, U

C
26, U

C
36, U

C
46, U

C
56), it gets |m| > 1 , that is impossible.

Moreover with these combinations, it is impossible to obtain a set as UC
K with

|K| = 3.
Going on with the calculations, we are able to construct the following table,

that shows all the possible cases (in the “admissible” cells we exhibit an exam-
ple of a polarization that realize the geometric quotient). In particular it is not
possible to have more than ten sets UC

K (|K| = 2) in XS(m): we would obtain
|m| < 1.

12



Table 3.1.

UC

K , No UC

K , 1 set UC

K , 2 sets UC

K , 3 sets UC

K , 4 sets UC

K ,

|K| = 2 |K| = 3 |K| = 3 |K| = 3 |K| = 3 |K| = 3

UC
16, U

C
26, U

C
36, X No(∗) No No No

UC
46, U

C
56

1
11

(222221)

UC
16, U

C
26, U

C
36, X UC

456 No(∗) No No

UC
45, U

C
46, U

C
56

1
14

(333221) 1
17

(444221)

UC
34, U

C
35, U

C
36, X UC

456 UC
456, U

C
356 UC

456, U
C
356, UC

456, U
C
356,

UC
45, U

C
46, U

C
56 UC

346 UC
346, U

C
345

1
8
(221111) 1

11
(332111) 1

14
(442211) 1

17
(552221) 1

10
(331111)

UC
25, U

C
26, U

C
35, X UC

456 UC
456, U

C
356 UC

456, U
C
356, No(∗)

UC
36, U

C
45, U

C
46, UC

256

UC
56

1
11

(322211) 1
14

(433211) 1
17

(543311) 1
19

(644311)

UC
26, U

C
34, U

C
35, X UC

456 UC
456, U

C
356 UC

456, U
C
356, No(∗∗)

UC
36, U

C
45, U

C
46, UC

346

UC
56

1
14

(432221) 1
17

(543221) 1
26

(875321) 1
16

(542221)

UC
16, U

C
26, U

C
35, X UC

456 UC
456, U

C
356 No(∗) No

UC
36, U

C
45, U

C
46,

UC
56

1
17

(443321) 1
20

(554321) 1
26

(775421)

UC
16, U

C
26, U

C
34, X UC

456 UC
456, U

C
356 UC

456, U
C
356, No(∗∗)

UC
35, U

C
36, U

C
45, UC

346

UC
46, U

C
56

1
13

(332221) 1
16

(443221) 1
19

(553321) 1
25

(774331)

UC
16, U

C
25, U

C
26, X UC

456 UC
456, U

C
356 UC

456, U
C
356, No(∗)

UC
35, U

C
36, U

C
45, UC

256

UC
46, U

C
56

1
16

(433321) 1
26

(766421) 1
26

(765521) 1
25

(755521)

UC
25, U

C
26, U

C
34, X UC

456 UC
456, U

C
356 No(†) No

UC
35, U

C
36, U

C
45,

UC
46, U

C
56

1
31

(965542) 1
26

(865322) 1
13

(432211)
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UC

K , No UC

K , 1 set UC

K , 2 sets UC

K , 3 sets UC

K , 4 sets UC

K ,

|K| = 2 |K| = 3 |K| = 3 |K| = 3 |K| = 3 |K| = 3

UC
15, U

C
16, U

C
25, X UC

456 UC
456, U

C
356 UC

456, U
C
356, UC

456, U
C
356,

UC
26, U

C
35, U

C
36, UC

256 UC
256, U

C
156

UC
45, U

C
46, U

C
56

1
10

(222211) 1
13

(333211) 1
16

(443311) 1
25

(766411) 1
22

(555511)

UC
24, U

C
25, U

C
26, X UC

456 No(††) No No

UC
34, U

C
35, U

C
36,

UC
45, U

C
46, U

C
56

1
17

(533222) 1
10

(322111)

UC
23, U

C
24, U

C
25, X No(†††) No No No

UC
26, U

C
34, U

C
35,

UC
36, U

C
45, U

C
46,

1
7
(211111)

UC
56

(∗) This case is not possible, because there is not any available tern;

(∗∗) UC
345 is not included in XS(m), because otherwise m3 + m4 + m5 < 1

3 ,
m2 + m6 < 1

3 ⇒ m1 > 1
3 , that is impossible;

(†) UC
256, U

C
345, U

C
346 * XS(m);

(††) UC
246, U

C
256, U

C
345, U

C
346, U

C
356 * XS(m);

(†††) UC
236, U

C
246, U

C
256, U

C
345, U

C
346, U

C
356, U

C
456 * XS(m).

3.2 Singularities

In this section we study the singularities which appear in the categorical
quotients.
Suppose that |m| is divisible by 3, and that there exist strictly semi-stable
orbits (included in XSSS(m)); then we can have different cases depending on
some “partitions” of the polarization m ∈ Z6

>0:

1. there are two distinct indexes i, j such that mi + mj = |m|/3 ; as a conse-
quence, for the other indexes it holds mh + mk + ml + mn = 2|m|/3 (i.e.
minimal closed orbits have xi = xj and xh, xk, xl, xn collinear).
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�sxi = xj c
xhc

xkc
xlc

xn

In XSS(m)//G these orbits determine a curve Cij
∼= P1(C) .

1.1 particular case: mi +mj = mh +ml = mk +mn = |m|/3 for distinct
indexes (i.e. there is a “special” minimal, closed orbit other than the
orbits previously seen, characterized by xi = xj , xh = xl , xk = xn ).

sxi = xj

s
xk = xn

s
xh = xl

2. there are three distinct indexes h, i, j such that mh +mi +mj = |m|/3 ; as
a consequence for the other indexes it holds mk + ml + mn = 2|m|/3 (i.e.
there is a minimal, closed orbit such that xh = xi = xj , and xk, xl, xn

collinear).

�
�

�
�

�
�

�
��

sxh = xi = xj c
xkc

xlc
xn

Let us study minimal, closed orbits and what they determine in XSS(m)//G.

3.2.1 xi = xj and xh, xk, xl, xn collinear

Consider a polarization m = (m1, . . . , m6) as previously indicated and an
orbit Gx such that xi = xj (mi + mj = |m|/3), and the other four points
xh, xk, xl, xn collinear (mh + mk + ml + mn = 2|m|/3).
Gx is a minimal, closed, strictly semi-stable orbit and its image in XSS(m)//G
is a point ξ ∈ Cij . For the sake of generality, suppose that xh, xk, xl, xn are
collinear, but distinct; for example assume x as:

x =




1 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 a b


 , a, b ∈ C∗, a 6= b .
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Now let us apply the Luna Étale Slice Theorem, to make a local study of
ξ: in fact it states that if Gx is a closed semi-stable orbit and ξ is the corre-
sponding point of XSS(m)//G, then the pointed varieties (XSS(m)//G, ξ) and
(Nx//Gx, 0) are locally isomorphic in the étale topology, where Nx = NGx/X,x

is the fiber over x of the normal bundle of Gx in X (for more details about the
Étale Slice Theorem, see [12], [20] and [8]).

In our case the dimension of the stabilizer Gx is equal to one and Gx
∼=

{diag(λ−2, λ, λ), λ ∈ C∗} ∼= C∗. Moreover the orbit Gx is a 7-dimensional regu-
lar variety in C12 and the space TxC12 = C12 can be decomposed Gx-invariantly
as the direct sum TxGx ⊕ Nx.
So we study the action of the torus C∗ on Nx: it is induced by the diagonal
action of SL3(C) on P2(C)6(m) and it can be written as

v1 7→ λ3v1; v2 7→ λ3v2; v3 7→ λ−3v3; v4 7→ λ−3v4; v5 7→ v5

where (v1, . . . , v5) is a basis of Nx
∼= C5.

In this way a local model of (XSS(m)//G, ξ) is given by (C5//C∗, 0) with
“weights” (3, 3,−3,−3, 0) that is the 4-dimensional toric variety

Y := C[T1, . . . , T5]/(T1T4 − T2T3) .

In conclusion, the variety (XSS(m)//G, ξ), where ξ is a point of the curve
Cij

∼= P1(C), is locally isomorphic to the toric variety Y : it is singular and there
are different ways to resolve it ([10], [2]).

3.3 xi = xj, xh = xl, xk = xn

This study is analogous to the previous one.
Consider a polarization m such that it is possible to “subdivide” it as mi+mj =
mh + ml = mk + mn (for different indexes); we are examining the configuration
x, with xi = xj , xh = xl , xk = xn (this configuration is a particular case of the
previous one).
In the quotient XSS(m)//G the image of the orbit Gx is a point Oij,hl,kn that
lies on the three singular curves Cij , Chl, Ckn.

The orbit Gx is minimal, closed and strictly semi-stable: assume x equal to

x =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 .

Let us apply the Étale Slice Theorem: the stabilizer Gx is isomorphic to a
2-dimensional torus Gx

∼= {diag(λ, µ, λ−1µ−1), λ, µ ∈ C∗} which implies that
dimGx = 6. By the Étale Slice Theorem, let us study the action of Gx on Nx:
on the basis {v1, . . . , v6} of Nx it gives

v1 7→ λ−1µ · v1 ; v2 7→ λ−2µ−1 · v2 ; v3 7→ λµ−1 · v3 ;
v4 7→ λ−1µ−2 · v4 ; v5 7→ λ2µ · v5 ; v6 7→ λµ2 · v6 .
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It follows that a local model for (XSS(m)//G, Oij,hl,kn) is given by Y :=
(C6//(C∗)2, 0), where the action of (C∗)2 can be written (in the coordinates
(z1, . . . , z6) of Nx

∼= C6) as

(λ, µ)(z1, . . . , z6) → (λ−1µz1, λ
−2µ−1z2, λµ−1z3, λ

−1µ−2z4, λ
2µz5, λµ2z6). (9)

Thus we obtain a 4-dimensional toric variety:

Y = C[T1, . . . , T5]/(T1T2T3 − T4T5) . (10)

Its singular locus is given by three lines s1 = {(t, 0, 0, 0, 0), t ∈ C}, s2 =
{(0, t, 0, 0, 0), t ∈ C} and s3 = {(0, 0, t, 0, 0), t ∈ C} that have a common point,
the origin. These lines correspond to the curves Cij , Chl, Ckn.

A toric representation of Y is determined by a rational, polyhedral cone
σ ⊂ R4, such that Spec(σ∨ ∩ Z4) ∼= Y . The generators of the semi-group
σ∨ ∩ Z4 are w1, . . . , w5 ∈ Z4 and satisfy w1 + w2 + w3 = w4 + w5 . Assume

w1 = (1, 0, 0, 0) , w2 = (0, 1, 0, 0) , w3 = (0, 0, 1, 0) ,
w4 = (0, 0, 0, 1) , w5 = (1, 1, 1,−1) .

The primitive elements of σ are:

n1 = (0, 0, 1, 1) , n2 = (1, 0, 0, 0) , n3 = (0, 0, 1, 0) ,
n4 = (0, 1, 0, 1) , n5 = (1, 0, 0, 1) , n6 = (0, 1, 0, 0) .

It is clear that the cone σ is singular.
Let us intesect σ with a transversal hyperplane π of R4 and then consider

the projection on π. With π : y1 + y2 + y3 + y4 = 2 we get the polytope Π of
R3, with verteces

u1 = (0, 0, 1) , u2 = (2, 0, 0) , u3 = (0, 0, 2) ,
u4 = (0, 1, 0) , u5 = (1, 0, 0) , u6 = (0, 2, 0) .

Figure 2: Polytope Π

In conclusion the pointed variety (XSS(m)//G, Oij,hl,kn) is isomorphic to
the toric variety C[T1, . . . , T5]/(T1T2T3 − T4T5), where the action has weights

(
−1 −2 1 −1 2 1
1 −1 −1 −2 1 2

)
.

17



3.4 xh = xi = xj and xk, xl, xn collinear

Consider a polarization m such that mh + mi + mj = |m|/3 and mk + ml +
mn = 2|m|/3 (for different indexes); then let us study the configuration x where:
xh = xi = xj and xk, xl, xn collinear.
The orbit Gx is minimal, closed, strictly semi-stable and its image in XSS(m)//G
is a point Ohij . In particular xk, xl, xnhave to be all distinct.

As in the previous cases, by the Étale Slice Theorem, we obtain a local model for
(XSS(m)//G, Ohij): this is determined by Y := (C5//C∗, 0), where the action
of C∗ over C5 with coordinate (z1, . . . , z5) has weights (3, 3, 3, 3, −3) . Y is a
4-dimensional toric variety that corresponds to the smooth affine variety

Y = C[T1, . . . , T4] ∼= C4 .

In conclusion the corresponding point Ohij in XSS(m)//G is nonsingular.

We have classified the different singularities of XSS(m)//G:

Theorem 3.2. Let X = P2(C)6 and m ∈ Z6
>0 a polarization:

1. m s.t.

- 3 ∤ |m|,

- mi < |m|/3 ∀i,

then the quotient is geometric;

2. m s.t.

- 3 | |m|,

- mi < |m|/3 ∀i,

- for all couples and triples of indexes we have mi + mj 6= |m|/3 or
mh + mi + mj 6= |m|/3,

then the quotient is geometric;

3. m s.t.

- 3 | |m|,

- there exists an index i s.t. mi = |m|/3, while for the other indexes
j 6= i, mj < |m|/3 ,

then the quotient is (P1(C))5(m′)//SL2(C); its dimension is equal to two,
and the polarization m′ ∈ Z5

>0 is obtained from m by eliminating mi;

4. m s.t.

- 3 | |m|,

18



- there exist two different indexes i, j s.t. mi = mj = |m|/3, while for
the others h 6= i, j, mh < |m|/3 ,

then the quotient is (P1(C))4(m′′)//SL2(C) ∼= P1(C); the polarization
m′′ ∈ Z4

>0 is obtained from m by eliminating mi and mj;

5. m s.t.

- 3 | |m|,

- mi < |m|/3 ∀i,

- there are two different indexes i, j s.t. mi + mj = |m|/3,

then the quotient is categorical; moreover it includes a curve Cij
∼= P1(C),

that corresponds to strictly semi-stable orbits s.t. xi = xj or xh, xk, xl, xn

collinear. In particular points ξ of Cij are singular: locally, the variety
(XSS(m)//G, ξ) is isomorphic to the toric variety

C[T1, T2, T3, T4, T5]/(T1T4 − T2T3) .

6. m s.t.

- 3 | |m|,

- mi < |m|/3 ∀i,

- there is a “partition” of m such that mi +mj = mh +ml = mk +mn,

then the quotient is categorical; moreover it includes three curves Cij , Chl,
Ckn

∼= P1(C), that have a common point Oij,hl,kn.
In particular Oij,hl,kn is singular: locally the variety (XSS(m)//G, Oij,hl,kn)
is isomorphic to the toric variety

C[T1, T2, T3, T4, T5]/(T1T2T3 − T4T5) .

7. m s.t.

- 3 | |m|,

- mi < |m|/3 ∀i,

- there are three indexes h, i, j s.t. mh + mi + mj = |m|/3,

then the quotient is categorical; moreover it includes a point Ohij that
correspond to the minimal, closed, strictly semi-stable orbit Gx such that
xh = xi = xj and xk, xl, xn are collinear. The point Ohij is non singular.

3.5 Examples

Now we provide two examples that illustrate how to get explicitly a quotient,
via its coordinates ring, or via an elementary transformation.
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3.6 P2(C)6(222111)

|m| = 9; by the numerical criterion:
∑

k,xk=y mk ≤ 3,
∑

j,xj∈r mj ≤ 6. Then

XS(m) ⊂ XSS(m) .
Moreover it is easy to verify that there are nine Cij curves, six Oij,hl,kn points
and one Ohij point.

Let us study the graded algebra of G-invariant functions R6
2(m)G. A stan-

dard tableau τ of degree k associated to the polarization m looks like

τ =




a1
1 a2

2 a3
3

a1
2 a2

3 a3
4

a1
3 a2

4 a3
5

a1
4 a2

5 a3
6








3k (11)

where

|a1
1| = 2k, |a3

6| = k, |a1
2| + |a2

2| = 2k,
|a1

3| + |a2
3| + |a3

3| = 2k, |a1
4| + |a2

4| + |a3
4| = k, |a2

5| + |a3
5| = k,∑4

i=2 |a
1
i | = k,

∑5
i=2 |a

2
i | = 3k,

∑5
i=3 |a

3
i | = 2k .

Let α3 := |a1
3| , α4 := |a1

4| , β3 := |a3
3| , β4 := |a3

4|. Then it follows:

|a1
1| = 2k, |a2

2| = k + α3 + α4, |a3
3| = β3,

|a1
2| = k − (α3 + α4), |a2

3| = 2k − (α3 + β3), |a3
4| = β4,

|a1
3| = α3, |a2

4| = k − (α4 + β4), |a3
5| = 2k − (β3 + β4),

|a1
4| = α4, |a2

5| = β3 + β4 − k, |a3
6| = k.

Moreover α3, α4, β3, β4 must satisfy the inequalities:

0 ≤ α3, α4, β3, β4 ≤ 2k, α3 + 2α4 ≤ β3, α3 + α4 ≤ k,
k + α4 ≤ β3 + β4 ≤ 2k, β3 ≤ k + α3 + α4, 2β3 + β4 ≤ 3k + α4.

Assume
x := α4, y := α3 + α4, z := β3, w := β3 + β4 ;

the standard tableau τ (11) is completely determined by the vector (x, y, z, w)
that satisfy:

0 ≤ x ≤ y ≤ k, 0 ≤ z ≤ w ≤ 2k, 0 ≤ y + z − x ≤ 2k,
x + y ≤ z ≤ y + k, z ≤ w ≤ k + z, 0 ≤ w + x − z ≤ k, w ≥ x + k .

After few calculations we find out that for any k, there are

1

8
(k4 + 6k3 + 15k2 + 18k) + 1 (= dim(R6

2(m)G
k ) )

standard tableaux. Thus the Hilbert function of the graded ring R6
2(m)G is

equal to
∞∑

k=0

(
1

8
(k4 + 6k3 + 15k2 + 18k) + 1

)
tk =

1 − t3

(1 − t)6
.
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This suggests that the quotient XSS(m)//G is isomorphic to a cubic hypersur-
face in P5(C).

First of all we have the following generators of R6
2(m)G :

t0 = [124][135][236], t1 = [123][135][246], t2 = [123][134][256],
t3 = [123][125][346], t4 = [123][124][356], t5 = [123][123][456].

For every (i, j) 6= (2, 3), (3, 2), the product titj is a standard tableau function
from R6

2(m)G
2 . Applying the straightening algorithm (that allows to write any

tableau function as a linear combination of tableau standard functions), we
obtain:

t2t3 = t1t4 − u + t5(−t0 + t1 − t2 − t3 + t4 − t5). (12)

So the standard monomial u = [123][123][123][145][246][356] can be expressed
as polynomials of degree two in the ti.

In we take a tableau function µ(x,y,z,w,k) corresponding to a standard tableau
τ (11), we can write it as

µ(x,y,z,w,k) =





tk+x−z
0 tk+z−x−w

1 tw−y−k
2 ty−x

4 tx5 , z ≤ x + k, w ≤ k + z − x;

tk+x−z
0 tz−x−y

1 tk+y−w
3 tw−x−k

4 tx5 , z ≤ x + k, y ≤ z − x;

t3k+x−w−z
1 tw−y−k

2 tk+y−z
4 tx5uz−x−k, z ≥ x + k, w ≤ 3k + x − z;

t2k+x−y−z
1 tk+y−w

3 tw−z
4 tx5uz−x−k, z ≥ x + k, y ≤ 2k + x − z.

Applying the straightening algorithm to the non-standard product t0u, we
have:

t0u = t1t4(t1 − t2 − t3 + t4 − t5) .

Then by relation (12), it follows

t0
(
t1t4 − t2t3 + t5(−t0 + t1 − t2 − t3 + t4 − t5)

)
= t1t4(t1 − t2 − t3 + t4 − t5) ⇒

t0
(
− t2t3 + t5(−t0 + t1 − t2 − t3 + t4 − t5)

)
= t1t4(−t0 + t1 − t2 − t3 + t4 − t5) ⇒

(−t0 + t1 − t2 − t3 + t4 − t5)(t0t5 − t1t4) − t0t2t3 = 0

Let
F3 = (−T0 + T1 − T2 − T3 + T4 − T5)(T0T5 − T1T4) − T0T2T3 , (13)

there is a surjective homomorphism of the graded algebras

C[T0, T1, T2, T3, T4, T5]/(F3(T0, T1, T2, T3, T4, T5)) −→ R6
2(m)G .

Thus the quotient XSS(m)//G is isomorphic to the cubic hypersurface
F3(T0, T1, T2, T3, T4, T5) = 0.
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3.7 P2(C)6(221111)

|m̂| = 8; by the numerical criterion
∑

k,xk=y m̂k ≤ 8/3,
∑

j,xj∈r m̂j ≤ 16/3

and thus XS(m̂) = XSS(m̂) .
In order to determine this geometric quotient, we have to introduce the

elementary transformation m̂ = (221111)
+13−→ (222111) = m, and consequently

θ̂ : XS(m̂)/G −→ XSS(m)//G .

First of all let us study θ̂−1(O456): by relation (6) its dimension is equal
to d = 3; the semi-stable orbits of XSS(m) that determine O456 in the quo-
tient XSS(m)//G and are included in XS(m̂), are characterized by x1, x2, x3

collinear. Applying a projectivity of P2(C) such that it fixes the line that con-

tains x1, x2, x3 , we have θ̂−1(O456) ∼= P3(C).

Then θ̂−1(ξ), ξ ∈ Cij ; studying how semi-stable orbits change going from
XSS(m) to XS(m̂), there can be two different cases: coincidence or collinearity.

1. Consider the curve C14: by the numerical criterion for XS(m̂), orbits
which have x2, x3, x5, x6 collinear are stable. In particular by relation (6),

the dimension of θ̂−1(ξ1), ξ1 ∈ C14 is equal to d = 1: in fact

θ̂−1(ξ1) ∼= P1(C) . (14)

2. Consider the curve C36: by the numerical criterion for XS(m̂) orbits which
have x3 = x6 are stable. In particular by relation (5), the dimension of

θ̂−1(ξ2), ξ2 ∈ C36 is equal to d = 1; in fact

θ̂−1(ξ2) ∼= P1(C) . (15)

Let us study θ̂−1(Oij,hl,kn); consider O14,25,36. Strictly semi-stable orbits
that contain the orbit Gx (x1 = x4, x2 = x5, x3 = x6) in their closure, are
characterized by one of the following properties:

1. x1 = x4 and x1, x2, x5 collinear; 2. x1 = x4 and x1, x3, x6 collinear;
3. x2 = x5 and x1, x2, x4 collinear; 4. x2 = x5 and x2, x3, x6 collinear;
5. x3 = x6 and x1, x3, x4 collinear; 6. x3 = x6 and x2, x3, x5 collinear.

In particular configurations 1, 2, 3, 4 are unstable for the polarization m̂, while 5
and 6 are included in XS(m̂); moreover these sets have a common configuration:
(x3 = x6, x1, x3, x4 collinear, x2, x3, x5 collinear):

B
B
B
B
B
B
B
B
B

�
�

�
�
�

�
�
�
�

s x3 = x6

cx1
cx2cx4

cx5
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Every one of these two sets of stable configurations determine a copy of P1(C)
in the quotient XS(m̂)/G: thus these two copies of P1(C) have a common point.

θ̂−1(Oij,hl,kn) ∼= P1(C) ∪ P1(C) with a common point .

We can get this result in a different way, by constructing a subdivision of
the polytope Π (figure 2).

Since XUS(m) ⊂ XUS(m̂) and
(
XUS(m̂) \ XUS(m)

)
⊂ XSSS(m), we de-

termine (locally in Nx), which strictly semi-stable orbits for the polarization m
are unstable for m̂. By the machinery of the theory of homogeneous coordinates
for a toric variety ([1],[2], [4]), the local resolution of (XSS(m)//G, O14,25,36) ∼=
(C6/(C∗)2, 0) in the quotient XS(m̂)/G is determined by (C6 \ Z)//H , where
C6 \Z = C6 \{z ∈ C6 |z1z4 = 0, z2z3 = 0, z2z4 = 0} , and H is the 2-dimensional
torus H = {(λ1, λ2, λ

−1
1 , λ−1

1 λ2, λ
−1
2 , λ1λ

−1
2 ), λ1, λ2 ∈ C∗}.

The set C6 \ Z describes a particular resolution of Π.

Figure 3: Subdivision of type (221111) of Π

We can find three simplicial polytopes: figure 4.

Figure 4: The three polytopes of the subdivision (221111) of Π

The toric representation of Y , described by the polytope Π, is determined
by the cone σ: to solve its singularities let us construct a fan Σ, refinement of
σ. By the theory of toric varieties, there exists a proper, birational morphism ϕ

XΣ
∼= (C6 \ Z)//H ∼= (C6 \ Z)//(C∗)2

ϕ
−→ (C6//(C∗)

2
) ∼= (Nx//Gx) ∼= Xσ,

induced by the identity over the lattice R4: this application allows us to specify
the map θ̂:

θ̂ : XS(m̂)/G −→ XSS(m)//G .
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First of all let us take a cover of (C6 \ Z): for example the three open sets
U1, U2, U3:

U1 = C6 \ {z ∈ C6 | z1z4 = 0}; U2 = C6 \ {z ∈ C6 | z2z3 = 0};
U3 = C6 \ {z ∈ C6 | z2z4 = 0}.

Now let us consider the action of H ∼= (C∗)2 on these three open sets and con-

struct the three quotients: in the first case, the quotient Ũ1 = U1//H is the
smooth variety C[X1, X2, X3, X4, X6]/(X2 − X4X6).

In the same way Ũ2 = U2//H = C[Y1, Y2, Y3, Y5, Y7]/(Y3 − Y5Y7) and Ũ3 =
U3//H = C[Z1, Z2, Z3, Z8, Z9]/(Z1 − Z8Z9).

How do these quotients Ũi(i = 1, 2, 3) fit together? We have the following
“gluing”

X1 = Y1 = Z8Z9 Y1 = X1 = Z8Z9 Z2 = X4X6 = Y2

X3 = Y5Y7 = Z3 Y2 = X4X6 = Z2 Z3 = X3 = Y5Y7

X4 = Y1Y2Y7 = Z2Z8 Y5 = X1X3X6 = Z3Z8 Z8 = X−1
6 = Y1Y7

X6 = (Y1Y7)
−1 = Z−1

8 Y7 = (X1X6)
−1 = Z−1

9 Z9 = X1X6 = Y −1
7

(16)

The birational maps θ̂i : Ũi → Y that resolve the singularities of Y are
described by the pull back of the generators of the ring of Gx-invariant functions
(T1, T2, T3, T4, T5):

θ̂∗1(T1) = X1, θ̂∗2(T1) = Y1, θ̂∗3(T1) = Z8Z9,

θ̂∗1(T2) = X4X6, θ̂∗2(T2) = Y2, θ̂∗3(T2) = Z2,

θ̂∗1(T3) = X3, θ̂∗2(T3) = Y5Y7, θ̂∗3(T3) = Z3,

θ̂∗1(T4) = X4, θ̂∗2(T4) = Y1Y2Y7, θ̂∗3(T4) = Z2Z8,

θ̂∗1(T5) = X1X3X6, θ̂∗2(T5) = Y5, θ̂∗3(T5) = Z3Z9.

The point O14,25,36 corresponds to the origin in Y : let us study θ̂−1
i (0)

θ̂−1
1 (0) = (0, 0, 0, t1) ∼= C, θ̂−1

2 (0) = (0, 0, 0, u1) ∼= C,

θ̂−1
3 (0) = (0, 0, t2, u2) ∼= C ∪ C

where t1, u1, t2, u2 ∈ C and t2u2 = 0.
In particular the fiber θ̂−1

3 (0) is isomorphic to the union of two copies of C that

have a common point (0, 0, 0, 0) ∈ Ũ3. Moreover by the gluing (16), t1, t2 ∈ C
give a cover of P1(C), just like u1, u2 ∈ C.

In conclusion the resolution of O14,25,36 in XS(221111)/G is determined by
the union of two copies of P1(C) that have a common point

θ̂−1(O14,25,36) ∼= P1(C) ∪ P1(C) with a common point.

Let us calculate the resolutions of the three singular curves C14, C25, C36 that
meet in O14,25,36: we know that there is a correspondence between Cij , Chl, Ckn
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and the three lines s3 = {(0, 0, t, 0, 0)}, s2 = {(0, t, 0, 0, 0)}, s1 = {(t, 0, 0, 0, 0)}
of Y . Now let us calculate the fiber of a “generic” point of each line sj , for the

maps θ̂i.
Let ξ3 ∈ C14: θ̂−1

1 (ξ3) = (0, t, 0, τ), θ̂−1
2 (ξ3) = Imposs., θ̂−1

3 (ξ3) = (0, t, τ−1, 0);
thus

θ̂−1(ξ3) ∼= P1(C) , ∀ξ3 ∈ C14 ξ3 6= Oij,hl,kn.

In the same way for ξ2 ∈ C25 and ξ1 ∈ C36, ξ1, ξ2 6= Oij,hl,kn we obtain:

θ̂−1(ξ2) ∼= P1(C) , θ̂−1(ξ1) ∼= P1(C) .

In conclusion the map

θ̂ : XS(m̂)/G = (P2)6(221111)/G −→ (P2)6(222111)//G = XSS(m)//G

determines the quotient XS(m̂)/G: in fact θ̂ is an isomorphism over

XS(m̂)/G \


⋃

ξ∈S

θ̂−1(ξ)


 ∼

−→ XS(m)/G ,

where S = {ξ ∈ XSSS(m)//G}.

Then the map θ̂ is a contraction of subvarieties over
⋃

ξ∈S θ̂−1(ξ):

- if ξ ∈ Cij , then θ̂−1(ξ) = P1(C);

- if ξ = Oij,hl,kn, then θ̂−1(ξ) = P1(C) ∪ P1(C), with a common point;

- if ξ = O456, then θ̂−1(ξ) = P3(C).
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