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Abstract

In this paper we generalize the Dynamics Theorem for nonzero CMC sur-
faces in R3 to a new Dynamics Theorem for nonzero CMC hyper-surfaces in a
homogeneous manifold. In this case, the role of translations of R3 is played by
a subgroup, G, of the isometry group of N which acts transitively on N .
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1 Introduction.

This paper is a preliminary version. Throughout this paper N will denote a non-
compact homogeneous n-manifold1. For H > 0, we let MH(N) denote the space of
connected, non-compact, separating hypersurfaces of N which are properly embedded
with constant mean curvature H. Recall that in a simply-connected manifold, any
properly embedded hypersurface separates. The special case where N is R3 was
considered in our previous paper [2].

Our first result is the following proposition.

Proposition 1.1 Suppose M ∈ MH(N) has bounded second fundamental form and
G is a subgroup of the isometry group of N which acts transitively on N . For p ∈ N ,
any divergent sequence of points pn ∈ M and isometries in ∈ G with i(pn) = p, a
subsequence of the surfaces in(M) converges to a properly immersed surface in N with
connected component M∞ passing through p.

∗This material is based upon work for the NSF under Award No. DMS - 0703213. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF.

1A Riemannian manifold N is homogeneous if for any two points p, q ∈ N , there exists an
isometry of N taking p to q.
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In this paper we will obtain dynamics-type results for the set T G
p (M) of limit

surfaces M∞ obtained in the above theorem. We consider every surface M∞ in T G
p (M)

to be pointed in the following sense. Consider M∞ together with a base point x and
an isometric immersion f : M∞ → N with f(x) = p. For a generic element M∞
in T G

p (M), f−1(p) consists of a single point of M∞. We note that the maximum
principle for constant mean curvature hypersurfaces implies f−1(p) never has more
than two points. If f−1(p) consists of two points, then we consider the surface M∞
to represent two distinct elements in T G

p (M) corresponding to the two different base
points in f−1(p).

We now state our main theorem. In what follows we let BN(p, ε) denote the open
ball in N centered at p with radius R; we let BN(p, ε) denote the corresponding closed
ball.

Theorem 1.2 (CMC Dynamics Theorem) Suppose M ∈ MH(N) has bounded
second fundamental form. Then the following statements hold.

1. M admits a uniform one-sided regular neighborhood on its mean convex side.
In particular, there exists a constant C such that for all q ∈ N and R > 0,

VolumeM(M ∩ BN(q, R)) ≤ C · VolumeN(BN(q, R))

2. T G
p (M) is a compact metric space with respect to a natural distance function

induced by the Hausdorff distance function on compact subsets of N .

3. For any Σ ∈ T G
p (M), T G

p (Σ) ⊆ T G
p (M).

4. Every nonempty T G
p -invariant subset ∆ ⊂ T G

p (M) contains a nonempty mini-
mal, i.e. smallest, nonempty T G

p -invariant subset2. In particular, since T G
p (M)

is a nonempty T G
p -invariant set, T G

p (M) contains minimal elements3.

5. Let Σ be a minimal element of T G
p (M). For all ε > 0, there exists a dε > 0

such that the following statements holds. For every smooth, connected compact
domain W ⊂ Σ and for all q ∈ Σ, there exists a compact smooth, connected
domain W ′ ⊂ Σ and an isometry i ∈ G such that

dΣ(q, W ′) < dε and dH(W, i(W ′)) < ε,

where dΣ is distance function on Σ and dH is the Hausdorff distance on compact
sets in N .

We remark that the CMC Dynamics Theorem and its proof are motivated by the
statement and proof of the Dynamics Theorem for Minimal Surfaces in R3 by Meeks,
Perez and Ros [1] and by results in our previous paper [2].

2A subset ∆ ⊂ T G
p (M) is T G

p -invariant if for any Σ ∈ ∆, T G
p (Σ) ⊂ ∆.

3A surface Σ ∈ T G
p (M) is a minimal element if it lies in a minimal T G

p -invariant subset of T G
p .
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2 The proof of the CMC Dynamics Theorem

Fix a δ > 0 and a point p ∈ N . Let MH
p (N, δ) = {M ∈MH(N) | |AM | ≤ δ and p ∈

M}. In [3], it is proved that there exists an ε > 0 such that every M ∈ MH
p (N, δ)

has a one-sided regular neighborhood on its mean convex side. Define ∆H
p (N, ε) be

the set of properly immersed pointed surfaces f : (Σ, x) → (N, p) which have constant
mean curvature H and a one-sided open regular neighborhood of radius ε on their
mean convex side. Since there is a uniform bound on the second fundamental form of
every surface in ∆H

p (N, ε), there exists and ν > 0, so that for every f : (Σ, x) → (N, p)
in ∆H

p (N, ε), the component D(ε, x) of f−1(B(p, ν)) with x ∈ D(Σ, x) is a ball whose
image under f can be considered to be a small graph over the tangent plane TpΣ at
p = f(x) in Fermi coordinates around p ∈ N .

We define the distance d∆(f, g) for f : (Σ, x) → (N, p) and g : (Σ′, x′) → (N, p) in
∆H

p (N, ε) to be the Hausdorff distance between f(D(Σ, x)) and g(D(Σ′, x′)).

Assertion 2.1 With respect to the distance function d∆, ∆H
p (N, ε) is a compact met-

ric space.

Proof. Since the Hausdorff distance is metric on compact subsets of N , one easily
checks that d∆ is a metric on 〈∆H

p (N, ε), d∆〉. We will prove that it is compact by
checking that this space is sequentially compact.

Suppose fn : (Σn, xn) → (N, p) is a sequence in ∆H
p (N, ε). Standard elliptic theory

implies that a subsequence of the ”graphs” fn(D(Σn, xn)) converges to a constant
mean curvature graph D over its tangent space TpD. A standard diagonal argument
implies that D is contained in a complete, connected, immersed surface Σ in N of
constant mean curvature H. Straightforward arguments prove that Σ ∈ ∆H

p (N, ε),
which completes the proof of the assertion. 2

We now give - the proof of Proposition 1.1 stated in the introduction.

Proof of Proposition 1.1. Let M ∈MH(N) have bounded second fundamental form.
Hence, M ∈ MH

p (N, δ) for some δ > 0. Suppose {pn}n is a divergent sequence of
points in M and in ∈ G is a sequence of isometries with in(pn) = p. Then for δ
and ε sufficiently small, we can consider the surface Mn = in(M) to lie in ∆H

p (N, ε).
By Assertion 2.1, a subsequence of the Mn considered to lie in the metric space
〈∆H

p (N, δ), d∆〉 converge to a surface M∞ in ∆H
p (H, δ) satisfying the conclusions of

Proposition 1.1. This completes the proof of the proposition.
We are now in a position to prove the CMC Dynamics Theorem stated in the

introduction.

Proof of the CMC Dynamics Theorem. Let M ∈ MH(N) have bounded second
fundamental form. Then statements 1, 2 and 3 in the theorem follows immediately
from Assertion 2.1.
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We next prove statement 4 holds. Assume now that ∆ ⊂ T G
p (M) is a nonempty

T G
p -invariant set. Let Σ ∈ ∆ and note that T G

p (Σ) ⊂ ∆ is a closed set in T G
p (M), since

the set of points limits of limit points of a set A in a metric space are themselves limit
points of A. Consider the collection C∆ of all nonempty T G

p -invariant subsets A of ∆,
which are closed subsets of T G

p (M). Note that C∆ is nonempty since T G
p (Σ) ∈ C∆.

Also note that C∆ is partially ordered by inclusion ⊂. As we just observed, every
nonempty T G

p -invariant set ∆′ ⊂ ∆ contains a subset which is an element in C∆ and
so, to prove statement 4, it suffices to prove that C∆ contains a minimal element with
respect to the partial ordering ⊂. We will prove this fact by demonstrating that every
nonempty totally ordered subset T = {∆α}α∈I of C∆ has a lower bound in C∆ and
then apply Zorn’s lemma.

Claim 2.2 Let T = {∆α}α∈I ⊂ C∆ be a nonempty totally ordered set. Then
⋂

T =⋂
α∈I ∆α is an element in C∆.

Proof. Since the collection {∆α}α∈I of sets is totally ordered, they satisfy the finite
intersection property4 and since the sets ∆α are also closed in the topological space
T G

p (M), then, by the compactness of T G
p (M),

⋂
α∈I ∆α is nonempty. We now check

that
⋂

α∈I ∆α is T G
p -invariant. Suppose Σ ∈

⋂
α∈I ∆α and so, Σ ∈ ∆α for all α. Since

each ∆α is T G
p -invariant T G

p (Σ) ⊂ ∆α for each α ∈ I. Hence, T G
p (Σ) ⊂

⋂
α∈I ∆α,

which implies
⋂

α∈I ∆α is T G
p -invariant. Finally, since the intersection of closed sets in

a topological space is always closed,
⋂

α∈I ∆α is a closed set in T G
p (M). By definition

of C∆,
⋂

α∈I ∆α is an element of C∆. This proves the claim, and, by Zorn’s lemma
completes the proof of statement 4. 2

We next prove statement 5 holds. Arguing by contradiction, suppose Σ ∈ T G
p (M)

is a minimal element such that statement 5 fails to hold. In this case, there exists an
ε > 0, a smooth, connected compact domain Wε ⊂ Σ and a sequence of points qn ∈ Σ
such that there do not exist smooth, connected compact domains Wε(n) ⊂ Σ with

dΣ(qn, Wε(n)) < n and dH(Wε, i(Wε(n)) < ε,

for some isometry i ∈ G.
First note that the sequence of points qn ∈ Σ is divergent in Σ and so, by the

properness of Σ, is divergent in N . Let in ∈ G be chosen so that in(qn) = p and
let Σ∞ ∈ T G

p (Σ) be a related limit arising from the sequence of pointed surface
(in(Σ), in(qn) = p). Since Σ is a minimal element of T G

p (M), the definition of minimal
T G

p -invariant set implies that for any Σ′ ∈ T G
p (Σ), then T G

p (Σ′) = T G
p (Σ) and so

Σ′ ∈ T G
p (Σ′). If also follows by similar reasoning that Σ ∈ T G

p (Σ) and so Σ ∈ T G
p (Σ∞).

Since Σ ∈ T G
p (Σ∞), there exists a smooth, connected compact domain Wε(∞) ⊂

Σ∞ and an isometry I ∈ G with I(Wε(∞)) being ε
2
-close to Wε. Suppose that the

distance on Σ∞ from p to Wε(∞) is d0. Since Σ∞ is a limit of the sequence in(Σ), for

4The intersection of any finite number of sets in {∆α}α∈I is nonempty.
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n large, there exist smooth, connected compact domains Wε(n) ⊂ in(Σ) of surface
distance at most 2d0 from qn and such that in(Wε(n)) is ε

2
-close to Wε(∞). By the

triangle inequality, i = I ◦ in(Wε(n)) is ε-close to Wε with respect to dH. Since
dΣ(qn, Wε(n)) ≤ 2d0, we obtain a contradiction, thereby proving statement 5 holds.
This completes the proof of Theorem 1.2.
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