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Abstract

In this paper we generalize the Dynamics Theorem for nonzero CMC' sur-
faces in R® to a new Dynamics Theorem for nonzero CMC hyper-surfaces in a
homogeneous manifold. In this case, the role of translations of R? is played by
a subgroup, G, of the isometry group of N which acts transitively on V.
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1 Introduction.

This paper is a preliminary version. Throughout this paper N will denote a non-
compact homogeneous n-manifold'. For H > 0, we let M*(N) denote the space of
connected, non-compact, separating hypersurfaces of N which are properly embedded
with constant mean curvature H. Recall that in a simply-connected manifold, any
properly embedded hypersurface separates. The special case where N is R® was
considered in our previous paper [2].

Our first result is the following proposition.

Proposition 1.1 Suppose M € M (N) has bounded second fundamental form and
G is a subgroup of the isometry group of N which acts transitively on N. Forp € N,
any divergent sequence of points p, € M and isometries i, € G with i(p,) = p, a
subsequence of the surfaces i, (M) converges to a properly immersed surface in N with
connected component My, passing through p.
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LA Riemannian manifold N is homogeneous if for any two points p, ¢ € N, there exists an
isometry of NV taking p to q.



In this paper we will obtain dynamics-type results for the set ’Z;G(M ) of limit
surfaces M obtained in the above theorem. We consider every surface My, in 7,% (M)
to be pointed in the following sense. Consider M, together with a base point x and
an isometric immersion f: M, — N with f(z) = p. For a generic element M,
in TC(M), f~'(p) consists of a single point of M. We note that the maximum
principle for constant mean curvature hypersurfaces implies f~!(p) never has more
than two points. If f~!(p) consists of two points, then we consider the surface M,
to represent two distinct elements in ’];DG(M ) corresponding to the two different base
points in f~1(p).

We now state our main theorem. In what follows we let By (p, £) denote the open

ball in N centered at p with radius R; we let By (p, €) denote the corresponding closed
ball.

Theorem 1.2 (CMC Dynamics Theorem) Suppose M € MH(N) has bounded
second fundamental form. Then the following statements hold.

1. M admits a uniform one-sided reqular neighborhood on its mean convex side.
In particular, there exists a constant C' such that for all g € N and R > 0,

Volumey (M NBy(q, R)) < C - Volumey (By(g, R))

2. ’];G(M) 1s a compact metric space with respect to a natural distance function
induced by the Hausdorff distance function on compact subsets of N.

3. For any ¥ € TF(M), TF(X) C TH(M).

4. Bvery nonempty ’];G—mvam'ant subset A C '];G(M) contains a nonempty mini-
mal, i.e. smallest, nonempty ’Z;G—mvam'ant subset®. In particular, since ’Z;G(M)
15 a nonempty ’];G-mvam'ant set, ’];,G(M ) contains minimal elements’.

5. Let ¥ be a minimal element of T.C(M). For all e > 0, there exists a d. > 0
such that the following statements holds. For every smooth, connected compact
domain W C X and for all ¢ € X, there exists a compact smooth, connected
domain W' C ¥ and an isometry i € G such that

dE(Qa W/) < da and d'H(VVa Z(W/)) <ég,

where dx, is distance function on X and dy is the Hausdorff distance on compact
sets in N.

We remark that the C'MC' Dynamics Theorem and its proof are motivated by the
statement and proof of the Dynamics Theorem for Minimal Surfaces in R* by Meeks,
Perez and Ros [1] and by results in our previous paper [2].

A subset A € T.¢(M) is T,%-invariant if for any ¥ € A, T.¢(%) C A.
3A surface ¥ € ’];)G(M ) is a minimal element if it lies in a minimal ’];G—invariant subset of ’];G.
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2 The proof of the CMC Dynamics Theorem

Fix a § > 0 and a point p € N. Let M (N,8) = {M € MY (N) | |Ay| <d and p €
M}. In [3], it is proved that there exists an € > 0 such that every M € MI(N,0)
has a one-sided regular neighborhood on its mean convex side. Define Af (N,¢e) be
the set of properly immersed pointed surfaces f: (X, z) — (N, p) which have constant
mean curvature H and a one-sided open regular neighborhood of radius ¢ on their
mean convex side. Since there is a uniform bound on the second fundamental form of
every surface in Aff(N,¢), there exists and v > 0, so that for every f: (X,z) — (N, p)
in Af'(N,¢), the component D(e,z) of f~'(B(p,v)) with € D(X, z) is a ball whose
image under f can be considered to be a small graph over the tangent plane 7,% at
p = f(z) in Fermi coordinates around p € N.

We define the distance da(f,g) for f: (3,2) — (N,p) and g: (X', 2') — (V,p) in
AJI(N,¢) to be the Hausdorff distance between f(D(3,z)) and g(D(X',z”)).

Assertion 2.1 With respect to the distance function da, Af(N, g) is a compact met-
T1C Space.

Proof. Since the Hausdorff distance is metric on compact subsets of N, one easily
checks that da is a metric on (AM(N,¢),da). We will prove that it is compact by
checking that this space is sequentially compact.

Suppose fr,: (Xn, z,) — (N, p) is a sequence in Af(N, g). Standard elliptic theory
implies that a subsequence of the "graphs” f,(D(X%,,x,)) converges to a constant
mean curvature graph D over its tangent space T,D. A standard diagonal argument
implies that D is contained in a complete, connected, immersed surface > in N of
constant mean curvature H. Straightforward arguments prove that ¥ € Af (N,e),
which completes the proof of the assertion. O

We now give - the proof of Proposition 1.1 stated in the introduction.

Proof of Proposition 1.1. Let M € M (N) have bounded second fundamental form.
Hence, M € Mf(N, 9) for some 6 > 0. Suppose {p,}, is a divergent sequence of
points in M and i, € G is a sequence of isometries with i,(p,) = p. Then for ¢
and ¢ sufficiently small, we can consider the surface M, = i,(M) to lie in AJ/(N, ).
By Assertion 2.1, a subsequence of the M, considered to lie in the metric space
(AJ/(N,6),da) converge to a surface My, in Alf(H,0) satisfying the conclusions of
Proposition 1.1. This completes the proof of the proposition.

We are now in a position to prove the CMC' Dynamics Theorem stated in the
introduction.

Proof of the CMC Dynamics Theorem. Let M € M (N) have bounded second
fundamental form. Then statements 7, 2 and & in the theorem follows immediately
from Assertion 2.1.



We next prove statement 4 holds. Assume now that A C %G(M ) is a nonempty
T P-invariant set. Let ¥ € A and note that 7,¢(X) C A is a closed set in 7,¢(M), since
the set of points limits of limit points of a set A in a metric space are themselves limit
points of A. Consider the collection Cx of all nonempty ’];G—invariant subsets A of A,
which are closed subsets of 7,¢(M). Note that Ca is nonempty since 7,%(X) € Ca.
Also note that Ca is partially ordered by inclusion C. As we just observed, every
nonempty ’];G-invariant set A’ C A contains a subset which is an element in Cx and
so, to prove statement 4, it suffices to prove that Ca contains a minimal element with
respect to the partial ordering C. We will prove this fact by demonstrating that every
nonempty totally ordered subset T' = {A,}aer of Ca has a lower bound in Cx and
then apply Zorn’s lemma.

Claim 2.2 Let T = {As}aer C Ca be a nonempty totally ordered set. Then (T =
Nacr Ao is an element in Cx.

Proof. Since the collection {A, }aer of sets is totally ordered, they satisfy the finite
intersection property? and since the sets A, are also closed in the topological space
’Z;G(]\/[ ), then, by the compactness of ’Z;G(M )s Nuer Aq is nonempty. We now check
that (),c; Aa is ’];G-invariant. Suppose ¥ € (,c; As and so, X € A, for all . Since
each A, is T.C-invariant 79(X) C A, for each a € I. Hence, TE(Z) C (,e; Aas
which implies () o; Aq is ’Z;,G—invariant. Finally, since the intersection of closed sets in
a topological space is always closed, [,c; A4 is a closed set in ’];G(M ). By definition
of Ca, Naer Aa is an element of Ca. This proves the claim, and, by Zorn’s lemma
completes the proof of statement 4. O

We next prove statement 5 holds. Arguing by contradiction, suppose > € ’];G(M )
is a minimal element such that statement 5 fails to hold. In this case, there exists an
€ > 0, a smooth, connected compact domain W, C ¥ and a sequence of points ¢, € X
such that there do not exist smooth, connected compact domains W,(n) C ¥ with

ds:(qn, We(n)) <n and dy(W,i(W.(n)) < ¢,

for some isometry ¢ € G.

First note that the sequence of points g, € ¥ is divergent in ¥ and so, by the
properness of ¥, is divergent in N. Let i, € G be chosen so that i,(g,) = p and
let Yoo € %G(Z) be a related limit arising from the sequence of pointed surface
(in(X),4(gn) = p). Since ¥ is a minimal element of 7¢(M), the definition of minimal
7C-invariant set implies that for any ¥’ € T%(%), then 79(¥') = Z,9(%) and so
> € TF(X). If also follows by similar reasoning that X € 7,¢(X) and so ¥ € T (X.).

Since ¥ € 7,0 (3, there exists a smooth, connected compact domain We(oco0) C
Yoo and an isometry I € G with I(W.(o0)) being §-close to W.. Suppose that the
distance on X, from p to W_.(00) is dy. Since ¥, is a limit of the sequence i,,(3), for

4The intersection of any finite number of sets in {A,}aes is nonempty.
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n large, there exist smooth, connected compact domains W_.(n) C i,(X) of surface
distance at most 2dy from ¢, and such that i,(W.(n)) is 5-close to W.(c0). By the
triangle inequality, i = I o i,(W.(n)) is e-close to W, with respect to dy. Since
ds:(qn, We(n)) < 2dy, we obtain a contradiction, thereby proving statement 5 holds.
This completes the proof of Theorem 1.2.
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