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Abstract

In meteorology, the traditional approach to forecasting em-
ploys deterministic models mimicking atmospheric dynamics.
Forecast uncertainty due to the partial knowledge of initial
conditions is tackled by Ensemble Predictions Systems (EPS).
Probabilistic forecasting is a relatively new approach which
may properly account for all sources of uncertainty. In this
work we propose a hierarchical Bayesian model which devel-
ops this idea and makes it possible to deal with an EPS with
non-identifiable members using a suitable definition of the sec-
ond level of the model. An application to Italian small-scale
temperature data is shown.

Keywords. Ensemble Prediction System, hierarchical Bayesian mo-
del, predictive distribution, probabilistic forecast, verification rank
histogram.
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1 Introduction

In meteorology, the typical approach to forecasting employs deter-
ministic models mimicking atmospheric dynamics. Probabilistic fore-
casting is a relatively new approach attracting growing interest (see
Gneiting et al., 2007). One technique currently used to tackle the
problem of weather predictability is Ensemble Weather Forecasting.
A prediction system based on this technique is called an Ensemble
Prediction System (EPS). An EPS produces multiple weather fore-
casts by iterating forward random perturbations of a best estimate
of initial conditions (Leith, 1974; Toth et al., 2001).

Weather forecasts obtained using an EPS can be synthesised to
give one single value. Such a value may derive from an average, as in
Raftery et al. 2005, or from a selection procedure, as in Roulston and
Smith 2003, where the Best Member Dressing method is proposed.
One important distinguishing feature of an EPS is the identifiabil-
ity of its outputs. The competing models of Raftery et al. 2005 are
indeed different forecasting models which may, however, agree upon
a common evaluation. The model used in Roulston and Smith 2003
is completely different: in fact, this uses the EPS from the Euro-
pean Center for Medium-Range Weather Forecasts (ECMWF; Mon-
tani et al., 1996), where model outputs cannot be identified since
they are replicas under perturbation of initial conditions. A number
of different ways of treating EPS meteorological forecasts have been
suggested.

The Bayesian Model Averaging (BMA; as in Hoeting et al., 1999)
approach adopted by Raftery et al. 2005 focuses on one application to
the University of Washington’s multi-model EPS. It treats forecasts
from deterministic models as inputs for a statistical model and can be
extended to dynamical models. Of the forecasts fk, each computed
according to model k, there is a ‘best’ forecast, while the K models are
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different and identifiable. Uncertainty about which model is the best
one is naturally quantified by BMA. Denote as y the observed value,
and each deterministic forecast as f̂k. Each deterministic forecast can
be corrected for possible bias, for example by a linear transformation,
thus giving the corrected forecast fk = ak + bkf̂k. A conditional
predictive distribution function gk(y|fk, θ) is associated to fk and this
function can be interpreted as the distribution of y conditional on fk,
given that fk is the best forecast in the ensemble. The predictive
distribution function as given by BMA is (cfr. Raftery et al., 2005,
eq. (2)):

p(y|f1, f2, . . . , fK) =
K∑

k=1

wkgk(y|fk, θ) (1)

where wk is the probability that fk is the best forecast, and is based on
the predictive performance of the k-th dynamic model in a training set
of deterministic forecasts and observed values. Weights wk are model
probabilities, and sum to 1. Estimation of parameter θ is performed
by ML, with the EM algorithm. Expression (1) is referred to as
Bayesian since it weighs likelihoods by evaluating the appropriateness
of each model, which in this context can be seen as a ‘state of the
world’.

Roulston and Smith 2003 propose the Best Member Dressing
method, and analyse the ECMWF EPS. Given an ensemble fore-
cast, it is unlikely that any of the ensemble members will equal the
observation. The lack of correspondence can be accounted for by
assigning an error distribution to each ensemble member. In order
to do so, one needs to know the appropriate degree of uncertainty.
Roulston and Smith’s proposal associates uncertainty with the en-
semble’s best member, where the best member is defined as the one
nearest to the observed data in the weather system state space. One
application to European ECMWF EPS is shown regarding 4 sta-
tions: Tromso, London Heathrow, Frankfurt and Warsaw. Statistical
ensembles showed a significant edge in performance over determinis-
tic ensembles. However, substantial residual variability remains, and
this cannot be explained by EPS.
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The present study starts from the premise that observed data
and EPS outputs may be perceived as the components of a statistical
model in which observed meteorological values are explained by EPS
outputs considered as exogenous variables, as in Raftery et al. 2005.
Our model completes the idea of the BMA in two ways. Firstly, it
is conceived as a genuinely Bayesian model, and secondly, it deals
with non-identifiable EPS outputs such as those present in the Euro-
pean ECMWF EPS, by modelling the second level of the hierarchy
in an appropriate manner. In meteorology, observed values do not
constitute current inputs for meteorological models and the compar-
ison between observed and predicted values is not as crucial as it
can be in other contexts (Gneiting et al., 2007). After integrating
out all parameters, our model can be used to obtain the distribution
of an as yet unobserved value, conditional on previous observations
and forecasts. Our model is not a tool for improving forecasts, but
associates probability distributions to EPS outputs, and can explain
the residual variability which is not taken into account by an EPS. It
obtains truly probabilistic weather predictions which are sharp, cal-
ibrated and reliable both for central values and dispersion (see also
Hagedorn et al., 2007; Hamill et al., 2007).

The paper is organized as follows. Section 2 illustrates the hier-
archical model linking observed data and deterministic forecasts and
points the way to obtaining the predictive distribution. Details of the
model specification are put off until certain preliminary descriptive
analyses of data have been completed at the beginning of Section 3:
Section 3.4 completes the model. Section 4 illustrates the results
and compares them with the performance of EPS models. Section 5
presents our conclusions.

2 Statistical modelling of EPS: a hierarchical

approach

We propose the full Bayesian modelling of EPS output by means of
a hierarchical model. For each day t we have (possibly multivari-
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ate) observed data yt, together with K distinct forecast ensemble
members Xtk. Observed data and EPS outputs can be seen as the
components of a statistical model where observed meteorological val-
ues are explained by EPS outputs considered as exogenous variables.
The principal definitions are summarised in table 1.

We consider forecast scenarios for a particular day as random
replications of a single data-generating process. In order to link the
ensemble of replicated scenarios to a single observation, we introduce
a latent process which randomly selects one scenario from the ensem-
ble. In this way, we model the observed data conditionally on the
selection process.

This situation is then translated into a hierarchical model, where
the first level concerns observed values as a function of the selected
deterministic forecast, while the second level governs the selection of
this element.

2.1 Model construction

As we have already said, the EPS output on day t consists of K
forecast scenarios:

Xt = {Xtk; k = 1, . . . , K}

These scenarios are unlabelled and for each day there are K new
replications, each independent of the previous ones, characterised by
a situation of exchangeability.

The first level of the model, i.e. the observation level, where the
measurement error occurs, is written as:

p(yt|Zt, Xt, θ) = f(Xt,Zt
; θ) (2)

where the variable Zt selects the deterministic forecast for day t.
This means that the distribution f(Xt,Zt

; θ) is not a function of all
the weather scenarios, but only of the selected ensemble member. In
(2) the observed data yt is a function of just one of the K scenarios
on day t.
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The scenario selection process is modelled by a latent stochastic
process {Zt} which selects, from one day to the next, one scenario
from among the K available scenarios, such that the observation
on day t is considered as a random fluctuation around the selected
weather scenario. As a result of the way in which weather scenarios
are generated, there is no correlation in time. We propose to model
the latent selection process {Zt} in the second level of the model, i.e.
the process level, as i.i.d. with discrete uniform distribution:

p(Zt = k) =
1

K
k = 1, 2, . . . , K (3)

such that, for any N -dimensional sequence of times t1, t2, . . . , tN , the
following relationship holds:

p(Zt1 = k1, Zt2 = k2, . . . , ZtN = kN ) =

N∏
j=1

p(Ztj = kj)

The selected weather scenario can be compactly indicated as a
function of Zt and Xt:

xt = h(Zt, Xt) =

K∑
k=1

1{Zt=k}Xtk (4)

Conditional on the selection of the weather scenario xt, data
(yt, Xt) is reduced to the (multivariate) pairs (yt, xt). Equation (2)
can thus be rewritten with the help of (4) as:

p(yt|Zt, Xt, θ) = f(h(Zt, Xt), θ) = f(xt; θ) (5)

In practice, the form of model (5) will depend on the available
data set. The details of model specification are therefore deferred to
the following Section. A standard choice would be Gaussian regres-
sion, with a data-driven specification of the regression function and of
variance. Furthermore, if one wants to model a one-dimensional vari-
able in multiple locations, yt and xt shall be S−variate vectors, and
θ shall contain, among other things, variance/covariance parameters
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of the distribution of the S−variate vector of residuals. Statistical
modelling according to (5) has calibration as a natural by-product, a
required element which is absent from deterministic models.

We propose a Bayesian solution for model (5)-(3) whereby, after
specifying a prior for θ, one finds the posterior distribution p(θ|yobs),
where yobs are the observed data from the training set.

In the following, conditioning on regressor Xt will not be explicitly
specified.

2.2 Predictive probability distribution

In the problem in question, we are particularly interested in the pos-
terior predictive probability distribution of the target variable y at a
future point in time T + 1, after observing yobs = {yt; t = 1, . . . , T}.

By standard Bayesian arguments, we can write:

p(yT+1|y
obs) =

∫
Θ

p(yT+1|θ)p(θ|yobs)dθ (6)

A suitable expression for p(yT+1|θ) can be obtained from (6) by
conditioning w.r.t. ZT+1 and applying the total probability law:

p(yT+1|θ) =

K∑
k=1

p(yT+1|ZT+1 = k; θ) · p(ZT+1 = k)

=
1

K

K∑
k=1

p(yT+1|ZT+1 = k; θ)

(7)

where the role of the first level of the model written according to (5)
is explicitly expressed.

By substituting (7) in (6) we finally get:

p(yT+1|y
obs) =

1

K

K∑
k=1

∫
Θ

p(yT+1|ZT+1 = k; θ)p(θ|yobs)dθ (8)

where the resulting distribution is a mixture of K components with
equal weights 1/K. The integration in (8) may be hard to solve in an-
alytical terms, but can be easily computed using numerical stochastic
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Table 1: Notation
variable description

yt observed data on day t
Xtk k-th weather scenario on day t, k = 1, . . . ,K
xt selected weather scenario on day t

methods. Note that in (8) the parameters vector θ is integrated out
from the measurement error model (5), unlike in the BMA solution
(1) which replaces θ with a point estimate θ̂ according to an empirical
Bayesian approach.

3 Data-driven model completion

3.1 Forecast data: the COSMO-LEPS system

On the global scale, EPS is a technique commonly used to deal with
forecast uncertainty, whereas small-scale use of EPS is still rare. Lo-
cal meteorological centres generally compute point forecasts exclu-
sively through high resolution Limited Area Models (LAM) applied
to global forecasts given by international centres or use multimodel
EPS for mimicking global EPS outputs (Krishnamurti et al., 1999;
Kharin and Zwiers, 2002).

In 2001, the Emilia Romagna ARPA-SMR (Azienda Regionale
Prevenzione e Ambiente - Servizio Meteorologico Regionale) devel-
oped LEPS (Local Scale Ensemble Prediction System) which, af-
ter an initial experimentation phase, lead to the implementation of
COSMO-LEPS (Montani et al., 2001, 2003). The LEPS method em-
ploys global-scale ECMWF ensemble forecasts to obtain local-scale,
high-resolution ensemble forecasts with relatively low computational
costs (Marsigli et al., 2005).

LEPS uses ECMWF ensemble forecasts to obtain a reduced set
of local forecasts. In other words, 10 representative members (RM)
are selected from the set of 51 ECMWF forecasts by means of an
unsupervised cluster analysis. Each RM gives starting and bound
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Figure 1: Locations of meteorological stations
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conditions for the integration of a high-resolution LAM. So, a corre-
sponding local ensemble member is obtained from each RM.

We consider temperature data at an altitude of 2m at 12:00, based
on deterministic COSMO-LEPS forecasts with a forecast horizon of
24h.

3.2 Observed data

Observed data covers the period from 1/06/2005 to 30/11/2005, and
comes from 12 meteorological stations belonging to the Italian Syn-
optic Network.

The positioning of the selected stations is reported in Fig. 1, while
in table 2 geographic details are summarised. In table 3 some descrip-
tive statistics of the observed data are synthesised. From geographic
data as well as descriptive statistics, it can be seen how the selected
stations are homogeneous w.r.t. orography, distance from sea and
overall mean temperature. There are however some differences in the
levels of variability, as indicated by the computed standard deviation
(sd) and inter-quartile range (IQR) in Gela and Lampedusa, where
they are noticeably smaller than in the other stations.
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Table 2: Details of the meteorological stations
label name lon. lat. alt. (m) missings

Cvt Civitavecchia 11.83 42.03 3 7
PDM Pratica Di Mare 12.43 41.65 6 6
Grz Grazzanise 14.07 41.06 9 6
Pnz Ponza 12.95 40.92 184 7
Cpr Capri 14.20 40.55 160 6
CpP Capo Palinuro 15.28 40.03 184 5
MDG Marina Di Ginosa 16.88 40.44 2 6
Ust Ustica 13.18 38.71 250 6
TrB Trapani Birgi 12.50 37.92 7 5
Gel Gela 14.22 37.08 11 6
Lmp Lampedusa 12.60 35.50 16 11
CpC Capo Carbonara 9.517 39.10 116 11

Table 3: Summary of observed temperature data
station mean median sd IQR

Cvt 23.12 24.00 4.662 6.00
PDM 23.18 24.60 5.139 6.40
Grz 24.44 26.00 5.913 7.60
Pnz 22.12 24.00 4.791 6.60
Cpr 23.77 25.00 5.655 8.20
CpP 24.27 26.00 5.608 7.65
MDG 24.69 26.00 5.649 7.80
Ust 24.37 24.60 4.71 6.20
TrB 25.74 26.10 4.677 5.60
Gel 24.65 25.00 3.62 3.90
Lmp 25.80 26.20 2.738 2.60
CpC 25.18 26.40 4.618 5.60
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Figure 2: Boxplots of mean deterministic forecast errors, by station.
The central line is the median.
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3.3 Explorative data analysis

Explorative evaluations are useful for suggesting the final details of
model building. The differences between observed data and mean
ensemble forecasts:

ēts = yts −
1

10

10∑
k=1

Xtsk

have been considered and reported in Fig. 2 for each meteorological
station. Such distributions are roughly symmetric, with comparable
ranges. However, there is a positive bias of varying amplitude for
all stations, except perhaps for Grazzanise. Further parameters will
be introduced during model building in order to account for these
differences between stations.

A more detailed view of the relationship between observed data
and mean deterministic forecasts is given in Fig. 3. This plot would
seem to indicate a linear relationship. On the basis of figure 2, a
station-specific intercept should be added, while the slope can be
considered approximately constant among stations.

To sum up, our explorative plots suggest:

• the need for a correction for a station-specific positive bias
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Figure 3: Mean deterministic forecasts vs observed data, by station
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(Fig. 2)

• a linear relationship, with nearly constant slope, between de-
terministic forecasts and observed data (Fig. 2 and 3)

• approximately constant variance (box-plot width in Fig. 2)

3.4 Statistical model completion

Now we are able to specify model (2) by assuming that xt and yt are
S-variate vectors:

xt = (xt1, xt2, . . . , xts, . . . , xtS)

yt = (yt1, yt2, . . . , yts, . . . , ytS)

and complete the specification of the regression function guided by
the exploratory analyses in Section 3.3.

We assume for yts, conditional on xts and θ, a Gaussian distri-
bution with expected value constituted by a linear function of the
deterministic forecast xts:

yts|xts, θ ∼ N(αs + βxts, σ
2
y) (9)

where β is a common slope, αs are station-specific intercepts such
that α = (α1, . . . , αS), and σ2

y is a common measurement error vari-
ance. Here θ1 = (α, β, σ2

y), while the yts scalars are modelled as
independent, both in time and space, conditionally on model param-
eters. In order to complete the model we give a hierarchical structure
to the station-specific intercepts:

αs|α0, σ
2
α ∼ N(α0, σ

2
α) (10)

and assign vague priors to β, α0, σ2
y and σ2

α.
The model parameters consist of the vector θ = (θ1, θ2), composed

of 12 intercepts, 1 common slope, 1 common variance of the measure-
ment error and 2 hyperparameters θ2 = (α0, σ

2
α) for the distribution

of intercepts.
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4 Results

In order to enable a comparison with COSMO-LEPS ensembles, mod-
els have been fitted on a moving window of 30 days, and out-of-sample
forecasts simulated for 1 day ahead. This procedure estimates 153
models, corresponding to about 5 months.

For each day, model estimation gives:

• the full joint posterior probability distribution of the parame-
ter vector p(θ|yobs), from which we can obtain all lower-order
marginals

• the predictive distribution function p(yT+1|y
obs) computed in

(6)

Since we estimate the model for 153 different training sets, the
previous estimates are replicated for each target day. This proce-
dure is in keeping with the current work of meteorologists, who look
for daily evaluations of forecasts. Unless otherwise stated, for ex-
ploratory purposes we have focused on inferences made for the 1st

July 2005, which are thus conditional on the 1 − 30 June 2005.

4.1 The posterior distribution of parameters

One of the results of model estimation is the multivariate poste-
rior probability distribution p(θ|yobs). Among parameters, 12 are
the station-specific intercepts αi, and we do not discuss them since
they are less interesting for the problem under study. In Fig. 4 the
marginal and bivariate densities (as isodensity contours in the out-
of-diagonal elements) for the remaining 4 parameters are reported.

Bivariate distributions show no pathological posterior dependency
between parameters. In fact, pairwise independence holds for almost
all parameters, according to the mild shape of the contours, the only
exception being the (α0, σα) distribution, which shows a form of scale-
location dependency.

Parameters β, σy and α0 display (see the diagonal) a symmetric
distribution: in the case of β and α0 this was to be expected, since
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Figure 4: Univariate and bivariate parameter densities. Univariate
density on the diagonal, bivariate contours out of diagonal.
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Table 4: Summaries of estimated marginal posterior distributions

parameter mean sd IQR

β 0.916 0.033 0.048
σy 1.504 0.063 0.087
α0 -0.032 0.291 0.348
σα 0.971 0.222 0.301

they are location parameters; in the case of σy such a shape is likely
due to the large amount of independent data that contributed to the
estimation (12×30 observed-deterministically forecasted data pairs).
The distribution of σα is skewed, which is characteristic of dispersion
parameters. As regards posterior precision, both β and σy display
a very sharp marginal distribution, with β roughly ranging from 0.8
to 1.0 and σy from 1.3 to 1.7. Note that the distribution of slope
β is positioned well below 1. In a certain sense, it is significantly
smaller than 1, thus confirming the need for the contraction of the
deterministic forecasts in order to obtain improved calibration. The
marginal distributions of α0 and σα are much more dispersed than
the others, but this is to be expected given that they are second-level
parameters.

Table 4 shows some summaries of the marginal posterior distribu-
tions. Here the above-mentioned remarks about Fig. 4 are confirmed
by the estimated standard deviations (sd) and inter-quartile ranges
(IQR).

4.2 Predictive distributions

Fig. 5 plots the predictive probability densities (PD) for the monitor-
ing stations on the 1st July 2005. The observed value (solid vertical
line) and the range of the deterministic ensemble forecast (dotted
vertical lines) are shown in each plot. The PD is estimated on data
up until the 30th June. In this way, a fair comparison can be made
with the COSMO-LEPS ranges, since we are comparing the statisti-
cal forecast with data which did not contribute to model estimation.
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Table 5: Observed and mean predicted values for the 1st July 2005

station observed EPS mean PDF mean
Cvt 27.6 26.5 28.5
PDM 28.2 26.3 28.3
Grz 28.8 28.6 28.9
Pnz 25.8 24.6 25.9
Cpr 32.0 25.3 28.3
CpP 29.0 26.6 28.5
MDG 32.0 26.2 28.2
Ust 28.4 25.0 27.7
TrB 29.0 24.8 27.3
Gel 27.6 27.2 28.2
Lmp 28.9 24.9 26.7
CpC 29.4 25.3 28.3

Table 5 compares observed data and mean predicted values.
The observed values at the various stations may or may not fall

within the COSMO-LEPS range, hence the significant contribution
made by the statistical model to deal with the weather forecasting
problem. In fact, when the observed data falls within the EPS range
(Grz and Gel), the PD mean also lies within that range. When the
observed data falls outside the said range, the PD tends to indicate
those values that fall between the deterministic COSMO-LEPS range
and the actually observed data as the most probable (Cpr, CpP, MDG,
Ust, TrB, Lmp and CpC). In some cases (Cvt, PDM and Pnz), the PD
emphasises the differences noticed between the COSMO-LEPS range
and the observed value, but with more weight given to values closer
to the observed value. In all cases, the overall tendency sees the PD
assume the highest values that are closest to the observed value (but
that have not been used for model estimation).

Note that the forecast calibration is not an explicit target of model
estimation, but is the most important by-product of the fitting pro-
cess, and one that does not require any form of human tuning.

In Fig. 6 we report the set of daily Ustica PD computed for July-
August. The darker area indicates the central 50% Highest Density
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Figure 5: Observed data, the COSMO-LEPS range and model fore-
cast for the 1st July 2005
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Figure 6: July-August HDI (coloured area), COSMO-LEPS range
(dotted lines) and observed data (continuous line) for Ustica

20
25

30
35

te
m

pe
ra

tu
re

 (
°C

)

Jul Aug

Interval (HDI), while the lighter area represents the 90% HDI. The
dotted lines indicate the EPS range, while the continuous line rep-
resents the observed data. This plot once again reveals the shift of
the model-based PD towards the observed data for the 2 months in
question, as well as the good performance of the PD in relation to
both the central value and dispersion.

4.2.1 Verification Rank Histograms

In ensemble forecasting practice, certain standard diagnostic mea-
sures are employed to evaluate the performances of EPS. These mea-
sures can be applied to the output of our statistical model, thus
enabling a direct comparison to be made with the COSMO-LEPS
result.

A common diagnostic device is the Verification Rank Histogram
(VRH; see Talagrand et al., 1997). The VRH is the histogram of
frequencies of the rank of the observed data within the forecast en-
semble. A good EPS should have a uniform distribution, meaning
exchangeability between deterministic predictions and observed data
(Buizza, 1997; Buizza et al., 2005; Gneiting et al., 2007). Other
shapes may indicate under/overdispersion and bias. In particular,
a marked U-shaped distribution means that observed values tend to
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Figure 7: Overall VRH
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be systematically outside (above or below) the extremes of the EPS
range. A concave shape indicates that the forecasting range is larger
than what is actually needed.

Fig. 7 shows the VRH for the full dataset, both for the statistical
model and for the deterministic EPS. It shows a clear lack of calibra-
tion in the case of deterministic EPS, while the results coming from
the statistical models present a rather uniform distribution, indicat-
ing a good mix of model-based out-of-sample forecasts and actually
observed data.

If we compute station-specific VRHs, we do not obtain as good
results as for the overall histogram. Less data is available for each
VRH, and the overall histogram is an average of the local evaluations.
In each station-specific VRH, the shape is however far from the U-
shape displayed by the global COSMO-LEPS VRH (see Fig. 8).

4.3 MCMC diagnostics

The model built in Sections 2 and 3 cannot be estimated analyti-
cally, but requires the use of numerical methods. MonteCarlo Markov
Chains (MCMC) are a natural choice for the estimation of hierarchi-
cal models. MCMC can be problematic with respect to chain conver-
gence and mixing (Robert and Casella, 1999). However, with regard
to the problem in question, thanks to the adoption of conjugate priors
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Figure 8: Station-specific statistical model VRH
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for all parameters, which give standard full conditional distributions,
as in Gelman 2004, genuine Gibbs sampling can be used. The Gibbs
sampler performed well in this particular case.

So, for each daily model estimation, 5000 MCMC iterations were
kept after discarding the first 1000. From each estimated model, 1000
scenarios were simulated from the predictive distribution. Chains
revealed fast convergence and good mixing properties, with no need
for ad-hoc fine tuning.

For the sake of example, we show some MCMC diagnostics for
the model fitted in the period 1-30 June 2005 and used on the 1st

July 2005. Fig. 9 shows MCMC traces, plotting sampled values vs.
iteration number. These plots show a rapid convergence towards
the target stationary distribution, with no real need to cut out any
starting transient. Chains mixing is assessed here by means of a
linear autocorrelation index. Fig. 10 plots sample autocorrelations at
36 different lags for the 4 main model parameters. Autocorrelations
are almost null at all lags for α0, σy and σα, and negligible at lags > 3
for β. This guarantees that the sampling process is highly efficient, so
that there is no need for many replicates in order to reliably estimate
parameters distribution.

5 Conclusions

EPS try to account for uncertainty due to partial knowledge of start-
ing conditions, but without explaining residual variability. This study
presents a genuinely Bayesian framework designed to deal with EPS
constituted by unidentifiable members. An explicit link between EPS
output and observed data is posited by introducing a latent selection
process. We illustrate one application to small-scale temperature
data for 12 meteorological stations. The model’s output is the full
multivariate posterior probability distribution of the set of parame-
ters characterizing the model, from which the following marginal, as
well as bivariate, syntheses can be computed: central values, stan-
dard deviations, cross-correlations, credibility intervals, probability
of falling in fixed ranges, etc. Our probabilistic model also allows us
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Figure 9: MCMC traces
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Figure 10: MCMC autocorrelations
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to compute reliable, informative predictive distributions.
Since a Bayesian model produces a wealth of information, its re-

sults can be interpreted in a variety of different ways. One way of
decoding such results is the combined use of synthetic values of the
posterior with the predictive distributions. The description of our
model’s results in fact makes use of several such syntheses, combin-
ing them in a flexible way, thus showing how a statistical model can
help understand and improve deterministic models. In more specific
terms, the predictive distribution obtained by the statistical model
tends to be nearer to the observed values than does the COSMO-
LEPS output.

Unfortunately, statistical modelling does not reduce the variabil-
ity of results. Perhaps a more sophisticated form of modelling could
represent a step in this direction. Indeed, statistical models tend to be
rather simplistic, and their added value is constituted by their ability
to bring together the various different components of the problem in
hand in a suitable, consistent manner. Among such components, ac-
count is taken of the sources of variability in the right place. Finally,
one natural by-product of statistical models is calibration, which is
often required.
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