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Abstract

It is quite common that tests or exams are beieg @er more then one purpose.
First of all, they are used to measure the aldlitthe students in a reliable manner.
Besides, they can be used for pass/fail decisiots predict future behavior of the
candidate, like future job behavior or academidqrerance. The question remains how
to assemble a test that can be used for all thfeeetit purposes, that is, how to
assemble a multi-objective test. Besides, multjligctives can result from different
purposes, but also from the way test specificatiang been implemented. For the
WDM-model, for multidimensional IRT, for Cognitiv@iagnostic CAT, but also for
infeasibility analysis, multiple objective test aswly problems have to be solved.

In this paper, a 2-stage method is presented faimdewith multiple objectives in
test assembly. In the normalization stage, all@hjes are brought on a common scale.
In the valorization stage, the different objectiaes being compared and related to each
other. The method is applied to a Guidance Testldped at the University of Bologna,
and a comparison is made with more traditionallsingjective test assembly methods.
The results clearly demonstrate the importancereledance of multi-objective test

assembly.

Keywords: automated test assembly, multiple catemultiple objectives, simulated

annealing, guidance test.



Introduction

More and more often, it happens that a singleisassed for several purposes. For
example, in the Netherlands, the final examinaéibtihe end of High school is used to
make pass/fail decisions for individual examinéegvaluate the performance of the
school, and to predict future performance of thenexee. Using a test for multiple
purposes might seem rather efficient, but the gueseémains whether it is a valid
approach to apply grades that have been obtaimeddhking, for example, pass/fail
decisions in an entirely different setting like kxading school performance. From a
psychometric point of view, several objections barformulated, but psychometrics
might also provide the answers.

In test assembly, items are assigned to a testd@roitem pool. The pool contains
many items with different characteristics or atités, for example, content specification,
gender orientation, average response time, or woudts, but also psychometric features
like item information, item difficulty, or discrimating power. In the early days of
testing, items were assigned to tests by hand. Weeg picked from the item pool until
an initial test was assembled. Then, the lengthiyjamming process of improving the
composition of the test by interchanging itemshia test with items in the pool began,
until the test assembler was convinced that thegpersormed well enough with respect to
its specifications. Nowadays, items are often aesidoy computer programs that are
based on mathematical programming techniques (Aomgt Jones, and Wang, 1995,
Belov, & Armstrong, 2005, Luecht, & Hirsch, 1992p&king, & Swanson, 1993, van der

Linden, 2005, van der Linden, & Boekkooi-Timmind@89). In large testing programs,



the pools typically consist of several thousandierhs, and tests are specified by
hundreds of constraints, so it is hard to findsh teat matches all the specifications and
practically impossible to find the test that mathigem best.

Characteristic for mathematical programming isfrenulation of a single
objective function that is maximized over a seadmissible tests, where the test
specifications determine whether a test is adniessibnot. In practice, a wide variety of
objective functions is used, and many differentkiof test specifications are imposed on
tests. However, for several applications, the farafia single objective function turns
out to be too restrictive.

When a test is designed to be used for severabpasp several objective
functions have to be taken into account. Besidaseral objectives might also be
necessary for technical reasons. For example piglications of the Weighted Deviation
Model (Stocking & Swanson, 1993), for Multidimensab IRT (Veldkamp & van der
Linden, 2002), for Cognitive Diagnostic CAT (Che&g hang, 2007) or for infeasibility
analysis (Huitzing, 2004, Huitzing, Veldkamp, & ¥ehoor, 2005) several objectives
have to be combined.

The aim of this study is to develop and comparehous for combining the
different, sometimes conflicting, goals of testiipe methods are applied to the
Guidance Test where the following objectives inter&he test has to be short,
measurement precision has to be optimized forrdiffiecontent areas, and classification
decisions about which faculties suit the studeet,thave to be made. Finally,
conclusions about how to deal with multiple objeesi in automated test assembly are

formulated.



Dealing with test specifications

The input of any model for test assembly is a §gpecifications that describes
the features of the test. A general taxonomy dfdpscifications can be found in van der
Linden (2005), where specifications are classifieth according to theature and to the
level of the constraint. In this taxonomy, fifteen drifat categories are distinguished.
The 2-dimensional classification table has beemddfas {categorical, quantitative,
logical}x{item level, item set level, testlet leveest level, multiple test level}. Test
specifications can be modeled, either as conssrainas objectives (van der Linden,
2005).

When a specification is modeled as a constrainmpties that this specification
must be met during the test assembly process (Tigenil998). The specification is said

to be ‘mandatory’. Constraints can be defined as

>Vx <t, (1)

i0G
wherex denotes whether the item is selected(1) or not x; = 0), the summation
ranges over those items contained in the objectpy®t is some target value to be met.
Vi is determined by the type of the specificationasgd. For example, for test
composition specification¥/ is the identity vector, and the constraint jusirds how
many items irG are selected for the test. For statistical spstifons,V denotes the
contribution of each item. Target values can bentdated for different applications. It
could either be a lower boundary, the target ofsieecifications, or an upper boundary

(see Table 1).



Test specifications can also be modeled as obgtivhese objectives can be
used for two different purposes. The first purpissier specifications related to the goals
of testing. When a goal is to maximize test infaioraor to minimize test length, these

specifications can be formulated as

max) VX, or min V,x )

i0G i0G
whereV relates to the attribute being optimized.

The second purpose is to handle specificationgsisedi properties. The
optimization process results in a test with thecgwation as close to the pre-defined
target as possible. Goal programming techniqueklRdenp, 1999) can be applied to
account for this purpose. When specifications aen®s desired properties, the objective
for specificationj can be defined as

mind, 3)

S.t.

DVi% -t

i0G

<d,. (4)

whered; is the deviation from the desired targett depends on preference of the
user what kind of distance metric should be favokanhattan distanc@%£1), Euclidean
distance [f=2) or Chebyshev distancp{«) are generally applied. Manhattan distance
minimizes the sum of the deviations, and is apghehost test assembly models
(Stocking, & Swanson, 1993). Euclidian distanceiltssn a quadratic optimization

problem, with is rather complicated to solve wheis combined with a set of mandatory



constraints. Chebyshev distance minimizes the maxirdeviation. The Chebyshev
distance emphasizes justice and balance rathesthaghtforward optimization, by
focusing on the specification with largest deviati®@his metric is successfully applied in
van der Linden & Boekkooi-Timminga (1989), for mimizing the maximum deviation
from a target information function. For the majpmitf test assembly problems,
application of the Chebyshev distance seems lgssdble. These models typically
consist of large numbers of specifications, andi$oty on the largest deviation implies

that deviations of the remaining objectives arertolma from above, instead of optimized.

How to deal with different objectives?

It is important to recognize that deviations meadun different units cannot be
summed directly due to the phenomenon of incommrabdity. Weight factors have to
be added to bring the objectives on a common sBaledes, weight factors can also be
used because users might assign different pristitielifferent specifications. In other
words, weight factors are composed of two companédestined to represent two
different roles.

The first one is "normalization” meaning to bringdeviations to a common
scale based on the degree of proximity to the gdad.second is "valorization" reflecting
the decision-maker's priority structure. The noipaion should be carried out first.
Once all the objectives are on a common scalegreifit priorities can be assigned to the

normalized objectives.



Normalization

In order to bring different specifications on a coon scale, each unwanted deviation
can be multiplied by a normalization constant towaldirect comparison. Many
normalization procedures have been proposed iliténature (Romero, 1991). Popular
choices for normalization constants are the targkte of the corresponding objective or
the range of the corresponding objective.

Target value. One way to bring all the objectives unto a commecale is to divide
the deviation by its target. In fact, this transfiation turns all deviations into

percentages. The transformation formula is given by
d'=—L (5)

Range of the objective. The other way is to normalize deviations basetheir
range. In this case, all deviations are transformtathe same interval fin, Lrax] based
on the difference between their maximum deviatigRx and minimum deviatiod; yin.

The transformation formula is given by

d-d )L -L_
d. ,:( j j,mm)( max mln)+me- (6)
j d _ -d

j,max - j ,min)
This transformation looks pretty complicated, binew all objectives are
transformed to the interval [0,1], and it is taketo account that the minimum deviation

is zero by definition, the formula boils down to

d.
d,.'=((5.1)). (7)

About this transformation, some remarks can to bdenSince; .y is the worst

possible performance with respect to tajggtany test that meets the mandatory



specifications, application of this transformatiomplies that the worst possible test sets
the standards. Although this results from a sttéagivard application of this rule, it does
not sound very appealing, and it will probably notivince many future applicants. An
alternative would be to replace the maximum desrably the deviation observed in a

reference test.

Valorization

Once all objectives have been transformed to a camsuale, different weights
can be assigned to reflect the priorities of ther.uBor every test specification a lower
bound, a target value, and an upper bound canfireedeBut not all of them have to be
equally important. It might be very important tleataminees finish a test within three
hours (upper bound), while it would be just niceswhhey finish it in about two hours
(target value). Besides, priority can be differfemtdifferent specifications. Constraints
related to average p-values, might be more impbtteam those about word count, or
answer keys.

To rate objectives as very important, just nicegantant, or utterly unimportant,
etc., is a complicated task. The Analytic HierarEtmgcess (Saaty, 1990) has been
proposed to deal with this kind of problems. In t¢P, a matrix of pair wise
comparisons is composed. The eigenvector of thigpemison matrix can be applied
successfully for ranking the priorities. Imaginspeecification dealing with the number of
algebra items in a test. For example, let the nurabalgebra items be at least two
(t1=2), at most 7t§=7), and the preferred number of algebra itemstastis six {;=6).

The results of the pair wise comparison might la¢ the target value is twice as



important as the lower bound, and four times aomant as the upper bound. The lower
bound is three times as important as the upperddtor the comparison matrix (see
Table 2), the eigenvector can be calculated t®{8496; 0,5584; 0,1220). These eigen

values can be applied as valorization weights éngibal programming model.

A different method is described in van der Linde®&ekkooi-Timminga (1989),
where a finite set of marbles has to be distribatest the different objectives to rate
their importance. Imagine that ten marbles arelalig for prioritizing the objectives
related to the specification about the number gélata items in a test. After distributing

the marbles over the different objectives, a pdsshtcome is shown in Figure 2.

When models consist of hundreds of constraint$) bbthese valorization
methods become intractable, and less demandinggaok rating methods are needed.
In practical settings it might be usefull just &s&n a high, a medium, or a low priority
to every constraint. These priorities might be stated into double, normal of one-half
valorization weights for every objective.

Different valorization methods can be applied #edent levels. At test
specification level, the high/medium/low methodrasdo be the only reasonable choice

due to the large number of specifications in mest &ssembly models. Within each



specification, either one of the AHP, Marbles agttimedium/low methods might be

applied to assign valorization weigvg

Multilevel structure

One of the important features of test assembly tsddehat for any test
specification, three different targets can betgsefior the lower bound;, for the target
value, and;s for the upper bound. These three objectives sstedavithin the test
specification, because they already are on the saaie. In this way, a multilevel
structure of test specifications can be definedhatfirst level, the lower bound, target
value, and upper bound are defined. At the secewel,|different test specifications are
distinguished.

When test specifications deal with, for examplet teformation, even a third
level might be added. Test information is a funciod the ability level of the examinee.
Typically, the test information function is suppdge be within a certain bandwidth of
the target information function (See Figure 1). Whtas constraint is implemented in a
test assembly model (van der Linden & Boekkooi-Tinga, 1989), targets have to be
set for a finite number of abilities. So, for a renof theta values, a lower bound, a

target value, and an upper bound might be imposed.

As a consequence, normalization and valorizatiocgntures have to be applied

in a multilevel context with nested sets of coriatma
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Modifications of normalization procedure. Both the target value procedure and
the procedure don’t take the nested nature ofgesstmbly objectives into account. For
every test specification, the nested objective$ wih the same object group G and are
on the same scale. Because of this, they need mmooracaling factor.

When the target value procedure is applied, a ratin@ghtforward way would be
to average the values of the related targets, wime than one target is set related for a

specification. The resulting transformation funotman be defined as

d,'= 5t ®)
2 Vi

=]
wherelj, indicates whether a target is set for the lowemgbk=1), the target value£2)
or the upper bound£3) of specificatior.

For the range normalization procedure, the spegdicre of test assembly
objectives provides the possibilities for a diffgranplementation, since the targets for
the upper and lower bound can be applied to defiocemmon scaling factor. A natural
range for the deviations is defined by the intebetiveen the upper and lower bound of

the objective. The resulting transformation fuotfor the range procedure can be

defined as

{9
e (tjs _til). ©)

This procedure assumes the definition of targaetddth the lower and the upper
bound of an objective. Whenever a test speciatist defines one of them, the range

could be defined by two times the difference betwei¢her the lower or the upper bound

and the target value of the objective.

11



When the normalization and validation procedurescambined, for every
deviation gl belonging to specificatiopa weight factow;, can be formulated, either via
a combination of the target value normalization anglorization procedure or via the
range normalization procedure and a valorizatimt@dure. The resulting weight factors
can therefore be formulated as

3
Vi D L v

D k=1

W 3
| .t

jk

, X for all (j k). (10)
) mkax{dj,ref o
1)

k=1

Numerical Example

Data in this study come from a Guidance Test d@ezlat the University of
Bologna (Matteucci, 2007). This test was develdpdaelp students in their choice of a
adequate faculty at the University of Bologna, emgrevent them from dropping out
early due to lack of competence. A few years afgments of the 4th and 5th year of high
secondary school (about 17-19 years old) could bihin a psychological test to verify
their competences to enroll certain faculties,thay could not get deep information
about their current knowledge. Now they can vis# Guidance Service web site

(http://orientaonline.unibo.it/) fill outa faculty-specific online test that costs

of a general part, measuring general culture, aadwty specific part.

Items. The guidance test consists of 30 items in the gépart and 20 items for
each faculty specific part. For the purpose of ¢tigly, the 2-PLM (Lord,1980) was

fitted to the items in the general part, and toitbms in each faculty specific part

12



separately. Besides, for the items of the genend) the variances’, the item-test
correlation p,, , and the item-faculty correlations, are known for all itemsand scores

on the faculty specific parts For the items in the general part, also a content
classification is provided (current news, civictaug, general humanistic, geography, and

technical/scientific). For all items, the answeykare known.

Test assembly problem. A short form of a Guidance test developed withia t
University of Bologna has to be assembled. Thetlenfithe general part has to be
reduced to only 10 items. In this problem, two chjees have to be taken into account.
First of all, measurement precision of the gengaat has to be maximized. The second
objective is to maximize predictive validity, whete score on the faculty specific part is
the criterion to be predicted. Moreover, for eveontent classification the number of

items in the test is fixed.

Design of the study. First, a short form with maximum information ssambled.
After that, short forms are assembled that maximreelictive validity for each faculty.
In this study, we focus on the Language, Politiod Arts faculties. Finally, both
objectives are combined and for every faculty atstoom of the general part is
assembled that optimizes both measurement preasidpredictive validity. Since the
predictive validity of a test is non-linear in tihems, Simulated Annealing (Veldkamp,
1999, van der Linden, Veldkamp, & Carlson, 2004%applied for test assembly. The
presence of content constraints forced us to mabdystandard implementation of the

heuristic to prevent problems due to infeasibilgge e.g. Huitzing, Veldkamp, &

13



Verschoor, 2005) of the resulting tests. In thedéad implementation of Simulated
Annealing the following iterative procedure is dpgl A group of items is selected from
the pool that meets the constraints. For thisttestalue of the objective function, e.qg.
the predictive validity or the information, is calated. Then a random swap from one
item in the incumbent test with one item in thelge@pplied. The performance of the
new test is calculated. If this performance isdyethe new test becomes the incumbent
test. If the performance is worse, the new tesbimes the incumbent test with a certain
probability. This probability decreases during ghecess, and the heuristic terminates
when the probability that a worse test is acceptexidecreased below a pre-specified
number. In our modified version of the heuristie @id not perform a random swap of
items. Instead, we restricted the items to be seapp those having the same content
classification. In this way, infeasibility problemsre prevented.

First, a short form will be assembled that maximiEesher Information. Then, a
short form will be assembled that maximizes predéctalidity. Finally, a short form

will be assembled that combines both objectives.

Results

Model 1: short form with maximum information
Following van der Linden (2005; p. 114), the foliag test assembly problem has

to be solved:
maxy (11)

subject to
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30
DY 1L(B)x =2y 6 0{-101} (12)
i=1

ixi =10 (13)
in >n, [c (14)
¥ {01} (15)

Where (11) and (12) maximize the information in tb&t, (13) defines the test
length, (14) accounts for an equal distributiornteis over the content classesnd

(15) is a technical constraint that defines thettezian item is selectec(= ) @r not

selected & =0).
Items 2, 3, 4, 5, 7, 10, 12, 20, 21, and 29 welectsd, and the resulting values
for the test information functions = 1,94) and the predictive validities jnguage= 0,05;

Ppolitics=0,23 ;prars=0,09 ) are shown in Figure 3.

Model 2: short form with maximum predictive validity
Following van der Linden (2005; p. 118), the foliag test assembly problem has

to be solved for each faculdy

30
Zai Piv%;
max-o——— (16)
Zai Pix %;
i=1
subject to

30

> x =10

i=1 (17)
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Y x=zn, o (18)

iV
x, 0{o1} (19)
where (16) and maximizes the predictive validityhe# test. For Language, items
2,4,8, 10, 12, 15, 19, 21, 25, and 29 were sade¢ior Politics, items 1, 3, 4, 9, 10, 18,
21, 23, 26, and 27 were selected. For Arts, iten®s 51, 12, 13, 19, 21, 25, 28, and 29
were selected. The resulting values for the tdstamation functionsl(anguage = 1,52;
[ patitics = 1,40;lars = 1,23) and the predictive validity:(anguage= 0,13;ptpalitics=0,27 ;

prarts—0,18 ) for the different faculties are also shawiigure 3.

Model 3: combined objectives
The range approach, Equation 6, was applied to ala@enboth objectives. The
test information functiot falls in the interval [Qy00], Whereas the predictive validity
was falls in the interval [-1,1]. Both were transfeed to the interval [0,1]. To valorize
both objectives, content experts valued the téstnmation twice as important as the
predictive validity. Following Veldkamp (1999), tii@lowing test assembly problem has
to be solved for each faculdy
30
zai Piv X

W .
max—Y— + ¥ B (20)
I pool 2
zai Pix %
i=1

subject to

ili(gk)xi 2y 6, 0{-101} (22)
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i=1 ! (22)

2% =zn, [c (23)
x; {01} , (24)

where the weighting factaw,, accounts for the valorization. For Language, items
2,4,5, 8,10, 12, 19, 21, 25, and 29 were saleéter Politics, items 4, 5, 7, 10, 11, 12,
13, 19, 21, and 29 were selected. For Arts, iten® 4, 9, 10, 21, 23, 26, 27, and 29
were selected. The resulting values for the tdstamation function Kanguage = 1,82;
Ipatiics = 1,72;larts = 1,54) and the predictive validities for the driént faculties

(Pt1anguage= 0,17;ptpalitics=0,27 ;prarts=0,18 ) are also shown in Figure 3.

Insert Figure 3 at about here

In Figure 3 it can be seen how the different mogel$orm with respect to the
different objectives. The test resulting from Modglerforms good with respect to the
objective of high measurement precision, but tiselteng predictive validity of the test
w.r.t. the different faculty specific tests is pydbw. In Model 2, the focus is entirely on
maximizing predicitive validity. For all facultiethe predictive validity increased

considerably. Finally, in Model 3 both objectivesre taken into account. For all three
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faculties, the amount of information increasechat¢osts of a small decrease in

predictive validity.

Discussion

Tests are often used for several purposes. Irptpsr, a method was developed
that facilitates handling of multiple objectivestest assembly. Besides, the method can
also be applied to deal with multiple objectiveg do the way test specifications are
being handled. The clear distinction between namaabn and valorization emphasizes
the control that test committees or test assemhkers over the test assembly process.

In the numerical example, application of the mettsoitlustrated (Model 3).
Besides, the impact of differences in objectiveshisgwn. The overlap between the tests
resulting from models that maximizes informationo@él 1), and models that maximize
predictive validity (Model 2) is 50% or less, everthis case, where the item pool
consists of only 30 items. The tests that maxirpiaslictive validity for the different
faculties (Model 2) overlap even less. The numéagample therefore not only
illustrates the use of the methods, but also detraes the need. Only a well elaborated
valorization process enables a test assembleedesiting committee to account for the
results of the test assembly process. The technadapere, the next step is to implement
it.

Besides, this paper also illustrates why one shbeldareful with the use of

results of existing tests for new purposes. Theltesome from tests that have been
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developed for a given purpose, under a numbersvsfeecifications. The validity of the
results is related to this purpose. In the emdiggample, it can be seen what happens
when the results of a test that was assembled xomze information, is used to predict
future performance. For all three faculties, theditive validity of the test resulting

from model 1 is very low. Even thought the shortrs resulting from model 1 provide
maximum information about the students, i.e. thetably measure general knowledge,
these tests are hardly useful for predicting futesailts. So when results from final
examinations in the Netherlands are used for ecgrdecisions of universities, one has to
be sure these examination results have enoughcpixedpower, otherwise a selection
test might be a more valid instrument for thesesilecs.

Finally, from a methodological point of view, seakchoices were made in this
paper. The simulated annealing heuristic was usedsembly tests, even though in van
der Linden (2005, p. 119) an iterative approadatescribed to handle predictive validity
in a 0-1 linear programming context. The simulaadealing heuristic is a very general
method for dealing with non-linear objectives, buits general form it might result in
tests that do not meet the specifications. On therdvand, Veldkamp (2002)
demonstrated that transforming a non-linear probfeenlinear problem might not
always be very successful. Other heuristical metlumdild be applied in case of non-
linearity. Recently, Genetic Algorithms (Verschod@07, Finkelman, Kim, & Roussos,

2009) have been applied successfully in variousatesembly problems.
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Table 1

Overview of constraints and objectives belonginggecification

Constraint Objective
lower bound SV 2|, max{l, - > V,x,0<d,
i0G i0G
target value VX =t
%;: %= ZV|X| —t]- S diz
i0G
upper bound >V <u, max{d>_Vx -u,,0}<d,

i0G i0G
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Table 2

Pair wise comparison matrix

Lower bound Target value Upper bound
Lower bound 1/1 1/2 3/1
Target value 2/1 1/1 4/1
Upper bound 1/3 1/4 1/1

25



20

Target Information Function

15

Irf 10

-3

Ability

Figure 1. Example of a Target Information function.
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Figure 2. Application of marble valorization procedure
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