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Abstract 

It is quite common that tests or exams are being used for more then one purpose. 

First of all, they are used to measure the ability of the students in a reliable manner. 

Besides, they can be used for pass/fail decisions or to predict future behavior of the 

candidate, like future job behavior or academic performance. The question remains how 

to assemble a test that can be used for all these different purposes, that is, how to 

assemble a multi-objective test. Besides, multiple objectives can result from different 

purposes, but also from the way test specifications have been implemented. For the 

WDM-model, for multidimensional IRT, for Cognitive Diagnostic CAT, but also for 

infeasibility analysis, multiple objective test assembly problems have to be solved. 

In this paper, a 2-stage method is presented for dealing with multiple objectives in 

test assembly. In the normalization stage, all objectives are brought on a common scale. 

In the valorization stage, the different objectives are being compared and related to each 

other. The method is applied to a Guidance Test developed at the University of Bologna, 

and a comparison is made with more traditional single objective test assembly methods. 

The results clearly demonstrate the importance and relevance of multi-objective test 

assembly. 

 

Keywords: automated test assembly, multiple criteria, multiple objectives, simulated 

annealing, guidance test. 
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Introduction 

 

More and more often, it happens that a single test is used for several purposes. For 

example, in the Netherlands, the final examination at the end of High school is used to 

make pass/fail decisions for individual examinees, to evaluate the performance of the 

school, and to predict future performance of the examinee. Using a test for multiple 

purposes might seem rather efficient, but the question remains whether it is a valid 

approach to apply grades that have been obtained for making, for example, pass/fail 

decisions in an entirely different setting like evaluating school performance. From a 

psychometric point of view, several objections can be formulated, but psychometrics 

might also provide the answers.  

In test assembly, items are assigned to a test from an item pool. The pool contains 

many items with different characteristics or attributes, for example, content specification, 

gender orientation, average response time, or word counts, but also psychometric features 

like item information, item difficulty, or discriminating power. In the early days of 

testing, items were assigned to tests by hand. They were picked from the item pool until 

an initial test was assembled. Then, the lengthy and boring process of improving the 

composition of the test by interchanging items in the test with items in the pool began, 

until the test assembler was convinced that the test performed well enough with respect to 

its specifications. Nowadays, items are often assigned by computer programs that are 

based on mathematical programming techniques (Armstrong, Jones, and Wang, 1995, 

Belov, & Armstrong, 2005, Luecht, & Hirsch, 1992, Stocking, & Swanson, 1993, van der 

Linden, 2005, van der Linden, & Boekkooi-Timminga, 1989). In large testing programs, 
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the pools typically consist of several thousands of items, and tests are specified by 

hundreds of constraints, so it is hard to find a test that matches all the specifications and 

practically impossible to find the test that matches them best. 

Characteristic for mathematical programming is the formulation of a single 

objective function that is maximized over a set of admissible tests, where the test 

specifications determine whether a test is admissible or not. In practice, a wide variety of 

objective functions is used, and many different kinds of test specifications are imposed on 

tests. However, for several applications, the format of a single objective function turns 

out to be too restrictive. 

When a test is designed to be used for several purposes, several objective 

functions have to be taken into account. Besides, several objectives might also be 

necessary for technical reasons. For example, for applications of the Weighted Deviation 

Model (Stocking & Swanson, 1993), for Multidimensional IRT (Veldkamp & van der 

Linden, 2002), for Cognitive Diagnostic CAT (Cheng & Chang, 2007) or for infeasibility 

analysis (Huitzing, 2004, Huitzing, Veldkamp, & Verschoor, 2005) several objectives 

have to be combined.  

The aim of this study is to develop and compare methods for combining the 

different, sometimes conflicting, goals of testing. The methods are applied to the 

Guidance Test where the following objectives interact. The test has to be short, 

measurement precision has to be optimized for different content areas, and classification 

decisions about which faculties suit the students best, have to be made. Finally, 

conclusions about how to deal with multiple objectives in automated test assembly are 

formulated. 
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Dealing with test specifications 

 

The input of any model for test assembly is a set of specifications that describes 

the features of the test. A general taxonomy of test specifications can be found in van der 

Linden (2005), where specifications are classified both according to the nature and to the 

level of the constraint. In this taxonomy, fifteen different categories are distinguished. 

The 2-dimensional classification table has been defined as {categorical, quantitative, 

logical}×{item level, item set level, testlet level, test level, multiple test level}. Test 

specifications can be modeled, either as constraints or as objectives (van der Linden, 

2005).  

When a specification is modeled as a constraint, it implies that this specification 

must be met during the test assembly process (Timminga, 1998). The specification is said 

to be ‘mandatory’. Constraints can be defined as 

 ,i i
i G

V x t
∈

≤∑  (1) 

where xi denotes whether the item is selected (xi = 1) or not (xi = 0), the summation 

ranges over those items contained in the object group G, t is some target value to be met. 

Vi is determined by the type of the specification imposed. For example, for test 

composition specifications, V is the identity vector, and the constraint just counts how 

many items in G are selected for the test. For statistical specifications, V denotes the 

contribution of each item. Target values can be formulated for different applications. It 

could either be a lower boundary, the target of the specifications, or an upper boundary 

(see Table 1). 
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--------------------------------- 

Insert Table 1 at about here 

--------------------------------- 

Test specifications can also be modeled as objectives. These objectives can be 

used for two different purposes. The first purpose is for specifications related to the goals 

of testing. When a goal is to maximize test information or to minimize test length, these 

specifications can be formulated as  

 max ,  or   min ,i i i i
i G i G

V x V x
∈ ∈
∑ ∑  (2) 

where V relates to the attribute being optimized.  

The second purpose is to handle specifications as desired properties. The 

optimization process results in a test with the specification as close to the pre-defined 

target as possible. Goal programming techniques (Veldkamp, 1999) can be applied to 

account for this purpose. When specifications are seen as desired properties, the objective 

for specification j can be defined as 

 min jd  (3) 

s.t. 

 i i j j
i G

V x t d
∈

− ≤∑ . (4) 

where dj is the deviation from the desired target tj. It depends on preference of the 

user what kind of distance metric should be favored. Manhattan distance (p=1), Euclidean 

distance (p=2) or Chebyshev distance (p→∞) are generally applied. Manhattan distance 

minimizes the sum of the deviations, and is applied in most test assembly models 

(Stocking, & Swanson, 1993). Euclidian distance results in a quadratic optimization 

problem, with is rather complicated to solve when it is combined with a set of mandatory 
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constraints. Chebyshev distance minimizes the maximum deviation. The Chebyshev 

distance emphasizes justice and balance rather than straightforward optimization, by 

focusing on the specification with largest deviation. This metric is successfully applied in 

van der Linden & Boekkooi-Timminga (1989), for minimizing the maximum deviation 

from a target information function. For the majority of test assembly problems, 

application of the Chebyshev distance seems less favorable. These models typically 

consist of large numbers of specifications, and focusing on the largest deviation implies 

that deviations of the remaining objectives are bounded from above, instead of optimized.  

 

How to deal with different objectives? 

 

It is important to recognize that deviations measured in different units cannot be 

summed directly due to the phenomenon of incommensurability. Weight factors have to 

be added to bring the objectives on a common scale. Besides, weight factors can also be 

used because users might assign different priorities to different specifications. In other 

words, weight factors are composed of two components destined to represent two 

different roles.  

The first one is "normalization" meaning to bring all deviations to a common 

scale based on the degree of proximity to the goal. The second is "valorization" reflecting 

the decision-maker's priority structure. The normalization should be carried out first. 

Once all the objectives are on a common scale, different priorities can be assigned to the 

normalized objectives.  
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Normalization 

In order to bring different specifications on a common scale, each unwanted deviation 

can be multiplied by a normalization constant to allow direct comparison. Many 

normalization procedures have been proposed in the literature (Romero, 1991). Popular 

choices for normalization constants are the target value of the corresponding objective or 

the range of the corresponding objective. 

Target value. One way to bring all the objectives unto a common scale is to divide 

the deviation by its target. In fact, this transformation turns all deviations into 

percentages. The transformation formula is given by 

 ' .j
j

j

d
d

t
=  (5) 

Range of the objective. The other way is to normalize deviations based on their 

range. In this case, all deviations are transformed into the same interval [Lmin , Lmax] based 

on the difference between their maximum deviation dj,max and minimum deviation dj,min. 

The transformation formula is given by 

 
( ),min max min

min
,max ,min

( )
' .

( )
j j

j
j j

d d L L
d L

d d

− −
= +

−
 (6) 

This transformation looks pretty complicated, but when all objectives are 

transformed to the interval [0,1], and it is taken into account that the minimum deviation 

is zero by definition, the formula boils down to  

 
( )

( ),max

' .
j

j

j

d
d

d
=  (7) 

About this transformation, some remarks can to be made. Since dj,max is the worst 

possible performance with respect to target j of any test that meets the mandatory 
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specifications, application of this transformation implies that the worst possible test sets 

the standards. Although this results from a straightforward application of this rule, it does 

not sound very appealing, and it will probably not convince many future applicants. An 

alternative would be to replace the maximum deviation by the deviation observed in a 

reference test. 

 

Valorization 

Once all objectives have been transformed to a common scale, different weights 

can be assigned to reflect the priorities of the user. For every test specification a lower 

bound, a target value, and an upper bound can be defined. But not all of them have to be 

equally important. It might be very important that examinees finish a test within three 

hours (upper bound), while it would be just nice when they finish it in about two hours 

(target value). Besides, priority can be different for different specifications. Constraints 

related to average p-values, might be more important than those about word count, or 

answer keys. 

To rate objectives as very important, just nice, important, or utterly unimportant, 

etc., is a complicated task. The Analytic Hierarchy Process (Saaty, 1990) has been 

proposed to deal with this kind of problems. In the AHP, a matrix of pair wise 

comparisons is composed. The eigenvector of this comparison matrix can be applied 

successfully for ranking the priorities. Imagine a specification dealing with the number of 

algebra items in a test. For example, let the number of algebra items be at least two 

(t1=2), at most 7 (t3=7), and the preferred number of algebra items in a test is six (t2=6). 

The results of the pair wise comparison might be that the target value is twice as 
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important as the lower bound, and four times as important as the upper bound. The lower 

bound is three times as important as the upper bound. For the comparison matrix (see 

Table 2), the eigenvector can be calculated to be (0,3196; 0,5584; 0,1220). These eigen 

values can be applied as valorization weights in the goal programming model. 

--------------------------------- 

Insert Table 2 at about here 

--------------------------------- 

A different method is described in van der Linden & Boekkooi-Timminga (1989), 

where a finite set of marbles has to be distributed over the different objectives to rate 

their importance. Imagine that ten marbles are available for prioritizing the objectives 

related to the specification about the number of algebra items in a test. After distributing 

the marbles over the different objectives, a possible outcome is shown in Figure 2. 

--------------------------------- 

Insert Figure 2 at about here 

--------------------------------- 

When models consist of hundreds of constraints, both of these valorization 

methods become intractable, and less demanding ranking or rating methods are needed. 

In practical settings it might be usefull just to assign a high, a medium, or a low priority 

to every constraint. These priorities might be translated into double, normal of one-half 

valorization weights for every objective. 

Different valorization methods can be applied at different levels. At test 

specification level, the high/medium/low method seems to be the only reasonable choice 

due to the large number of specifications in most test assembly models. Within each 
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specification, either one of the AHP, Marbles or high/medium/low methods might be 

applied to assign valorization weights vjk.  

 

Multilevel structure 

One of the important features of test assembly models is that for any test 

specification, three different targets can be set; tj1 for the lower bound, tj2 for the target 

value, and tj3 for the upper bound. These three objectives are nested within the test 

specification, because they already are on the same scale. In this way, a multilevel 

structure of test specifications can be defined. At the first level, the lower bound, target 

value, and upper bound are defined. At the second level, different test specifications are 

distinguished.  

When test specifications deal with, for example, test information, even a third 

level might be added. Test information is a function of the ability level of the examinee. 

Typically, the test information function is supposed to be within a certain bandwidth of 

the target information function (See Figure 1). When this constraint is implemented in a 

test assembly model (van der Linden & Boekkooi-Timminga, 1989), targets have to be 

set for a finite number of abilities. So, for a number of theta values, a lower bound, a 

target value, and an upper bound might be imposed.  

--------------------------------- 

Insert Figure 1 at about here 

--------------------------------- 

As a consequence, normalization and valorization procedures have to be applied 

in a multilevel context with nested sets of constraints. 
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Modifications of normalization procedure. Both the target value procedure and 

the procedure don’t take the nested nature of test assembly objectives into account. For 

every test specification, the nested objectives deal with the same object group G and are 

on the same scale. Because of this, they need a common scaling factor.  

When the target value procedure is applied, a rather straightforward way would be 

to average the values of the related targets, when more than one target is set related for a 

specification. The resulting transformation function can be defined as 

 

3

1
3

1

'
jk jk

k
jk

jk jk
k

d I
d

I t

=

=

=
∑

∑
 (8) 

where Ijk indicates whether a target is set for the lower bound (k=1), the target value (k=2) 

or the upper bound (k=3) of specification j.  

For the range normalization procedure, the specific nature of test assembly 

objectives provides the possibilities for a different implementation, since the targets for 

the upper and lower bound can be applied to define a common scaling factor. A natural 

range for the deviations is defined by the interval between the upper and lower bound of 

the objective.  The resulting transformation function for the range procedure can be 

defined as 

 
( )

( )3 1

' .
jk

jk

j j

d
d

t t
=

−
 (9) 

This procedure assumes the definition of targets for both the lower and the upper 

bound of an objective. Whenever a test specialist only defines one of them, the range 

could be defined by two times the difference between either the lower or the upper bound 

and the target value of the objective. 
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When the normalization and validation procedures are combined, for every 

deviation djk belonging to specification j a weight factor wjk can be formulated, either via 

a combination of the target value normalization and a valorization procedure or via the 

range normalization procedure and a valorization procedure. The resulting weight factors 

can therefore be formulated as 

 

3

1
3

, ,

1

 , for all ( , ).
max{ }

jk jk
jkk

jk
j ref k

kji jk
k

v I
v

w j k
dI t

=

=

 
  ∈ 
 
  

∑

∑
 (10) 

 

Numerical Example 

Data in this study come from a Guidance Test developed at the University of 

Bologna (Matteucci, 2007). This test was developed to help students in their choice of a 

adequate faculty at the University of Bologna, and to prevent them from dropping out 

early due to lack of competence. A few years ago, students of the 4th and 5th year of high 

secondary school (about 17-19 years old) could only fill in a psychological test to verify 

their competences to enroll certain faculties, but they could not get deep information 

about their current knowledge. Now they can visit the Guidance Service web site 

(http://orientaonline.unibo.it/) fill out a faculty-specific online test that consists 

of a general part, measuring general culture, and a faculty specific part.  

Items. The guidance test consists of 30 items in the general part and 20 items for 

each faculty specific part. For the purpose of this study, the 2-PLM (Lord,1980) was 

fitted to the items in the general part, and to the items in each faculty specific part 
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separately. Besides, for the items of the general part, the variance 2
iσ , the item-test 

correlation iXρ , and the item-faculty correlations iJρ  are known for all items i and scores 

on the faculty specific parts J. For the items in the general part, also a content 

classification is provided (current news, civic culture, general humanistic, geography, and 

technical/scientific). For all items, the answer keys are known. 

 

Test assembly problem. A short form of a Guidance test developed within the 

University of Bologna has to be assembled. The length of the general part has to be 

reduced to only 10 items. In this problem, two objectives have to be taken into account. 

First of all, measurement precision of the general part has to be maximized. The second 

objective is to maximize predictive validity, where the score on the faculty specific part is 

the criterion to be predicted. Moreover, for every content classification the number of 

items in the test is fixed.  

 

Design of the study. First, a short form with maximum information is assembled. 

After that, short forms are assembled that maximize predictive validity for each faculty. 

In this study, we focus on the Language, Politics and Arts faculties. Finally, both 

objectives are combined and for every faculty a short form of the general part is 

assembled that optimizes both measurement precision and predictive validity. Since the 

predictive validity of a test is non-linear in the items, Simulated Annealing (Veldkamp, 

1999, van der Linden, Veldkamp, & Carlson, 2004) was applied for test assembly. The 

presence of content constraints forced us to modify the standard implementation of the 

heuristic to prevent problems due to infeasibility (see e.g. Huitzing, Veldkamp, & 
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Verschoor, 2005) of the resulting tests. In the standard implementation of Simulated 

Annealing the following iterative procedure is applied. A group of items is selected from 

the pool that meets the constraints. For this test the value of the objective function, e.g. 

the predictive validity or the information, is calculated. Then a random swap from one 

item in the incumbent test with one item in the pool is applied. The performance of the 

new test is calculated. If this performance is better, the new test becomes the incumbent 

test. If the performance is worse, the new test becomes the incumbent test with a certain 

probability. This probability decreases during the process, and the heuristic terminates 

when the probability that a worse test is accepted has decreased below a pre-specified 

number. In our modified version of the heuristic, we did not perform a random swap of 

items. Instead, we restricted the items to be swapped to those having the same content 

classification. In this way, infeasibility problems were prevented.  

First, a short form will be assembled that maximizes Fisher Information. Then, a 

short form will be assembled that maximizes predictive validity. Finally, a short form 

will be assembled that combines both objectives. 

 

Results 

 

Model 1: short form with maximum information 

Following van der Linden (2005; p. 114), the following test assembly problem has 

to be solved: 

 ymax  (11) 

subject to 
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Where (11) and (12) maximize the information in the test, (13) defines the test 

length, (14) accounts for an equal distribution of items over the content classes c, and 

(15) is a technical constraint that defines that either an item is selected ( 1=ix ) or not 

selected ( 0=ix ).  

Items 2, 3, 4, 5, 7, 10, 12, 20, 21, and 29 were selected, and the resulting values 

for the test information function (Itest = 1,94) and the predictive validities (ρt,language= 0,05; 

ρt,politics=0,23 ; ρt,arts=0,09 ) are shown in Figure 3. 

 

Model 2: short form with maximum predictive validity 

Following van der Linden (2005; p. 118), the following test assembly problem has 

to be solved for each faculty J: 
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where (16) and maximizes the predictive validity of the test. For Language, items 

2, 4, 8, 10, 12, 15, 19, 21, 25, and 29 were selected. For Politics, items 1, 3, 4, 9, 10, 18, 

21, 23, 26, and 27 were selected. For Arts, items 5, 7, 11, 12, 13, 19, 21, 25, 28, and 29 

were selected. The resulting values for the test information functions (Ilanguage = 1,52; 

Ipolitics = 1,40; Iarts = 1,23) and the predictive validity (ρt,language= 0,13; ρt,politics=0,27 ; 

ρt,arts=0,18 ) for the different faculties are also shown in Figure 3. 

 

Model 3: combined objectives 

The range approach, Equation 6, was applied to normalize both objectives. The 

test information function I falls in the interval [0,Ipool], whereas the predictive validity 

was falls in the interval [-1,1]. Both were transformed to the interval [0,1]. To valorize 

both objectives, content experts valued the test information twice as important as the 

predictive validity. Following Veldkamp (1999), the following test assembly problem has 

to be solved for each faculty J: 
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where the weighting factor wpv accounts for the valorization. For Language, items 

2, 4, 5, 8, 10, 12, 19, 21, 25, and 29 were selected. For Politics, items 4, 5, 7, 10, 11, 12, 

13, 19, 21, and 29 were selected. For Arts, items 1, 3, 4, 9, 10, 21, 23, 26, 27, and 29 

were selected. The resulting values for the test information function (Ilanguage = 1,82; 

Ipolitics = 1,72; Iarts = 1,54) and the predictive validities for the different faculties 

(ρt,language= 0,17; ρt,politics=0,27 ; ρt,arts=0,18 ) are also shown in Figure 3. 

------------------------------ 

Insert Figure 3 at about here 

------------------------------- 

In Figure 3 it can be seen how the different models perform with respect to the 

different objectives. The test resulting from Model 1 performs good with respect to the 

objective of high measurement precision, but the resulting predictive validity of the test 

w.r.t. the different faculty specific tests is pretty low. In Model 2, the focus is entirely on 

maximizing predicitive validity. For all faculties, the predictive validity increased 

considerably. Finally, in Model 3 both objectives were taken into account. For all three 
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faculties, the amount of information increased at the costs of a small decrease in 

predictive validity. 

 

Discussion 

 

Tests are often used for several purposes. In this paper, a method was developed 

that facilitates handling of multiple objectives in test assembly. Besides, the method can 

also be applied to deal with multiple objectives due to the way test specifications are 

being handled. The clear distinction between normalization and valorization emphasizes 

the control that test committees or test assemblers have over the test assembly process.  

In the numerical example, application of the method is illustrated (Model 3). 

Besides, the impact of differences in objectives is shown. The overlap between the tests 

resulting from models that maximizes information (Model 1), and models that maximize 

predictive validity (Model 2) is 50% or less, even in this case, where the item pool 

consists of only 30 items. The tests that maximize predictive validity for the different 

faculties (Model 2) overlap even less. The numerical example therefore not only 

illustrates the use of the methods, but also demonstrates the need. Only a well elaborated 

valorization process enables a test assembler or the testing committee to account for the 

results of the test assembly process. The technology is there, the next step is to implement 

it. 

Besides, this paper also illustrates why one should be careful with the use of 

results of existing tests for new purposes. The results come from tests that have been 
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developed for a given purpose, under a number of test specifications. The validity of the 

results is related to this purpose. In the empirical example, it can be seen what happens 

when the results of a test that was assembled to maximize information, is used to predict 

future performance. For all three faculties, the predictive validity of the test resulting 

from model 1 is very low. Even thought the short forms resulting from model 1 provide 

maximum information about the students, i.e. they reliably measure general knowledge, 

these tests are hardly useful for predicting future results. So when results from final 

examinations in the Netherlands are used for entrance decisions of universities, one has to 

be sure these examination results have enough predictive power, otherwise a selection 

test might be a more valid instrument for these decisions. 

Finally, from a methodological point of view, several choices were made in this 

paper. The simulated annealing heuristic was used to assembly tests, even though in van 

der Linden (2005, p. 119) an iterative approach is described to handle predictive validity 

in a 0-1 linear programming context. The simulated annealing heuristic is a very general 

method for dealing with non-linear objectives, but in its general form it might result in 

tests that do not meet the specifications. On the other hand, Veldkamp (2002) 

demonstrated that transforming a non-linear problem in a linear problem might not 

always be very successful. Other heuristical methods could be applied in case of non-

linearity. Recently, Genetic Algorithms (Verschoor, 2007, Finkelman, Kim, & Roussos, 

2009) have been applied successfully in various test assembly problems. 
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Table 1 

Overview of constraints and objectives belonging to specification j 

 Constraint Objective 

lower bound 
i i j

i G

V x l
∈

≥∑  1max{ ,0}j i i j
i G

l V x d
∈

− ≤∑  

target value 
i i j

i G

V x t
∈

=∑  
2i i j j

i G

V x t d
∈

− ≤∑  

upper bound 
i i j

i G

V x u
∈

≤∑  3max{ ,0}i i j j
i G

V x u d
∈

− ≤∑  
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Table 2 

Pair wise comparison matrix 

 Lower bound Target value Upper bound 

Lower bound 1/1 1/2 3/1 

Target value 2/1 1/1 4/1 

Upper bound 1/3 1/4 1/1 
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Figure 1. Example of a Target Information function. 
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Figure 2. Application of marble valorization procedure 
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i G

x
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≥∑
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Figure 3. Results of different test assembly models 1, 2 and 3 for  

Language (L), Politics (P) and Arts (A) 
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