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1 Introduction

Let X be a smooth projective complex curve and let UX(r, d) be the moduli
space of semi-stable vector bundles of rank r and degree d on X (see [Se]). It
contains an open Zariski subset UX(r, d)s which is the coarse moduli space of
stable bundles, i.e. vector bundles satisfying inequality

dF

rF
<
dE

rE
.

The complement UX(r, d)\UX(r, d)s parametrizes certain equivalence classes of
strictly semi-stable vector bundles which satisfy the equality

dF

rF
=
dE

rE
.

Each equivalence class contains a unique representative isomorphic to the direct
sum of stable bundles. Furthermore one considers subvarieties SUX(r, L) ⊂
UX(r, d) of vector bundle of rank r with determinant isomorphic to a fixed
line bundle L of degree d. In this work we study the variety of strictly semi-
stable bundles in SUX(3,OX), where X is a genus 2 curve. We call this variety
the generalized Kummer variety of X and denote it by Kum3(X). Recall that
the classical Kummer variety of X is defined as the quotient of the Jacobian
variety Jac(X) = UX(1, 0) by the involution L 7→ L−1. It turns out that our
Kum3(X) has a similar description as a quotient of Jac(X) × Jac(X) which
justifies the name. We will see that the first definition allows one to define a
natural embedding of Kum3(X) in a projective space (see section 4). The second
approach is useful in order to give local description of Kum3(X) by following
the theory developed in [Be] (section 3).
We point out the use of [CoCoA] for local computations.
We want to thank Professor Dolgachev for his patient guidance and his generous
suggestions and also Professor Ragusa for the good organization of Pragmatic
summer school.
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2 Generalized Kummer variety

Let A be an s−dimensional abelian variety, Ar the r-Cartesian product of A,
and A(r) := Ar/Σr be the r-symmetric power of A. We can define the usual
map ar : A(r) → A such that ar({x1, . . . xr}) = x1 + · · ·+ xr

1. This surjective
map is just a morphism of varieties since there is no group structure on A(r).
However, all fibers of ar are naturally isomorphic.

Definition 2.1. The generalized Kummerr variety associated to an abelian
variety A is

Kumr(A) := a−1
r (0).

It is easy to see that

dim(Kumr(a)) = s(r − 1).

When dimA > 1, A(r) is singular. If dimA = 2, A(r) admits a natural desingu-
larization isomorphic to the Hilbert scheme A[r] := Hilb(A)[r] of 0-dimensional
subschemes of A of length r (see [Go]). Let pr : A[r] → A(r) be the usual
projection. It is known that the restriction of pr over Kumr(A) is a resolution
of singularities. Also K̃umr(A) admits a structure a holomorphic symplectic
manifold (see [Be]).

2.1 The Kummer variety of Jacobians

Let X be a smooth connected projective curve of genus g and SUX(r, L) be
the set of semi-stable vector bundles on X of rank r and determinant which is
isomorphic to a fixed line bundle L. Let Jac(X) be the Jacobian variety of X
which parametrizes isomorphism classes of line bundles on X of degree 0, or,
equivalently the divisor classes of degree 0. We have a natural embedding:

Kumr(Jac(X)) ↪→ SUX(r,OX)

{a1, . . . , ar} 7→ (La1 ⊕ · · · ⊕ Lar
)

where Lai
:= OX(ai). Obviously, the condition a1 + · · · + ar = 0 means that

det(La1 ⊕ · · · ⊕ Lar
) = 0 and deg(LAi

) = 0 for all i = 1, . . . , r. Consequently
the Kummer variety Kumr(Jac(X)) describes exactly the completely decom-
posable bundles in SUX(r) (from now on we’ll write only SUX(r) instead of
SUX(r,OX)).

In this paper we restrict ourselves with the case g = 2 and rank r = 3. In
this case Kum3(Jac(X)) is a 4-fold.

1here {x1, . . . xr} mean an unordered set of r elements.

2



Singular locus of Kum3(Jac(X))

3 Singular locus of Kum3(Jac(X))

From now we let A denote Jac(X). Let us define the following map:

π : A(2) → Kum3(A)
{a, b} 7→ La ⊕ Lb ⊕ L−a−b.

This map is well defined and it is a (3 : 1) − covering of Kum3(A). Let now
ρ : A2 → A(2) be the (2 : 1)−map which sends (x, y) ∈ A2 to {x, y} ∈ A(2). If
we consider the map:

p := (π ◦ ρ) : A2 → A(2) → Kum3(A) ⊂ A(3) (1)

we get a (6 : 1)−covering of Kum3(A).

Notations: Let X and Y be two varieties and f : X → Y be a finite morphism.
We let Sing(X) denote the singular locus of X, Bf ⊆ Y the branch locus of f
and Rf ⊆ X the ramification locus of f .

Observation: Bπ = π(Bρ).

Proof. Since Bρ = {{x, y} ∈ A(2)|x = y} and π({x, x}) = {x, x,−2x} ∈ Bπ we
obviously get that π(Bρ) ⊂ Bπ.
Conversely, for any point {x, y, z} of Bπ, at least two of the three elements x, y, z
are equal to some t. Therefore π({t, t}) = {x, y, z}, and hence Bπ ⊂ π(Bρ).

Since A2 is smooth, we have Sing(A(2)) ⊂ Bρ. Obviously Bρ ⊂ Rπ, hence
Sing(Kum3(A)) ⊂ Bπ. As a consequence we obtain that Sing(Kum3(A)) ⊆ Bπ.
Therefore we have to study the (3 : 1)−covering π : A(2) → Kum3(A).

Since π is not a Galois covering, in order to give the local description at every
point Q ∈ Kum3(A), we have to consider the following three cases separately:

1. Q ∈ Kum3(A) s.t. π−1(Q) is just a point;

2. Q ∈ Kum3(A) s.t. π−1(Q) is a set of two different points;

3. Q ∈ Kum3(A) s.t. π−1(Q) is a set of exactly three points.

Let us begin studying these cases.

Case 3. When Q ∈ Kum3(A) s.t. ](π−1(Q)) = 3 we have that Q /∈ Bπ. Since
π(Bρ) = Bπ any point of π−1(Q) is smooth in A(2). Then Q is a smooth
points of the Kummer variety.

Case 2. When Q ∈ Kum3(A) s.t. ](π−1(Q)) = 2 we fix the two points P1, P2 ∈
A(2) s.t π(P1) = π(P2) = Q. In this case Q = {x, x,−2x} with x 6= −2x;
let us fix P1 = {x, x}, P2 = {x,−2x}. Let U ⊂ Kum3(A) be a sufficiently
small analytic neighborhood of Q such that π−1(U) = U1 t U2 where U1
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and U2 are respectively analytic neighborhoods of P1 and P2 and also
U1∩U2 = ∅. Let Q̃ a generic point of U , so Q̃ = {x+ ε, x+δ,−2x− ε−δ};
the preimage of Q̃ by π is π−1(Q̃) = {{x + ε, x + δ}, {x + ε,−2x − ε −
δ}, {x + δ,−2x − ε − δ}}, but {x + ε, x + δ} ∈ U1 and {x + ε,−2x − ε −
δ}, {x + δ,−2x − ε − δ} ∈ U2, it means that P1 has ramification order
equal to 1 and P2 has ramification order equal to 2. Therefore there is
an analytic neighborhood of P1 which is isomorphic by π to an analytic
neighborhood of Q. This allows us to study a generic point of Bρ instead
of a generic point of Bπ.

Case 1. When Q ∈ Kum3(A) s.t. ](π−1(Q)) = 3 we consider a point P ∈ A(2)

s.t. π−1(Q) = P ⇒ Q = {x, x, x} s.t. 3x = 0 ⇒ x is a 3−torsion point of
A. Now our abelian variety is a complex torus of dimension 2, so we have
exactly 32g = 34 = 81 such points.

Proposition 3.1. The singular locus of Kum3(A) is a surface which coincides
with the branch locus Bπ of the projection π : A(2) → Kum3(A) and it is locally
isomorphic at a generic point to (C2×Q,C×o) where Q is a cone over a rational
normal curve and o is the vertex of such a cone (see [Be]). Moreover there are
exactly 81 points of Sing(Kum3(X)) whose local tangent cone is isomorphic to
the spectrum of:

CJu1, . . . , u7K
I

where I is the ideal generated by the following polynomials :
u2

5 − u4u6

u4u7 − u5u6

u2
6 − u5u7

u3u4 + u2u5 + u1u6

u3u5 + u2u6 + u1u7.

Proof. According to what we saw in Case 2, an analytic neighborhood of Q ∈
Kum3(A) such that ](π−1(Q)) = 2 is isomorphic to a generic element of Bρ.
We have to study the (2 : 1)−covering A2 → A(2).
Since A = Jac(X), A is a smooth abelian variety, this means that A is a complex
torus (Cg/Z2g) where g is the genus of X; in our case X is a genus 2 curve,
A ' (C2/Z4). Thus, in local coordinates at P ∈ A, ÔP ' CJz1, z2K, so we
consider UP (a neighborhood of P ∈ A) isomorphic to C2. Therefore we obtain
that locally at Q ∈ A2, ÔQ ' ÔP ⊗ ÔP ' CJz1, z2; z3, z4K.
We fix a coordinate system (z1, z2; z3, z4) in A2 such that A2 ⊃ UP 3 P =
(0, 0; 0, 0). Let Q be a point in UP , in the fixed coordinate system Q =
(z1, z2; z3, z4). Since P is such that ρ(P ) ∈ Bρ, by definition of ρ, we have:
A(2) = A2/ < i >, where i is the following involution of UP :

i : UP → UP (2)

i : (z1, z2; z3, z4) 7→ (z3, z4; z1, z2).
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The involution i is obviously linear and its associated matrix is M = e1,3+e3,1+
e2,4 +e4,2 (where ei,j is the matrix with 1 in the i, j position and 0 otherwhere).

Its eigenvalues λ1 = −1 and λ2 = 1 have both multiplicity 2, so its diagonal
form is:

M̃ = (1, 1,−1,−1)

which in a new coordinate system:
x1 = z1+z3

2
x2 = z2+z4

2
x3 = z1−z3

2
x4 = z2−z4

2

corresponds to the linear transformation:

(x1, x2, x3, x4) 7→ (x1, x2,−x3,−x4).

The algebra of invariant polynomials with respect to this actions is generated
by the homogeneous forms (x1, x2, x

2
3, x

2
4, x3x4). Let us now consider these

forms as local coordinates (s1, s2, s3, s4, s5) around ρ(P ), here we have that the
completion of the local ring is isomorphic to the following one:(

CJs1, . . . s5K
(s21 − s2s3)

)
.

Therefore Bρ at a generic point is locally isomorphic to (C2 ×Q,C× o) where
Q is a cone over a rational normal curve (we can see this rational normal curve
as the image of P1 in P3 by the Veronese map ν2 : (P1)∗ → (P3)∗, ν2(L) = L2)
and o the vertex of this cone. (What we have just proved in our particular case
of Kum3(A) can be found in a more general form in [Be].) Therefore we have
the same local description of singularity of Kum3(A) out of the correspondent
points of the 81 three-torsion points of A.

Now we have to study what happens at those 3-torsion. Let Q0 be one of
them, we already know that p−1(Q0) = (x, x) := P0 is such that 3x = 0. Let
us fix (z1, z2; z3, z4) ∈ C2 × C2 a local coordinate system around P0 in order to
describe locally the (6 : 1)−covering p : A2 → Kum3(A). We observe that for a
generic P in that neighborhood, the pre-image of p(P ) is the set of the following
6 points:

P1 := (z1, z2; z3, z4),

P2 := (z3, z4; z1, z2),

P3 := (z3, z4; (−z1 − z3), (−z2 − z4)),

P4 := ((−z1 − z3), (−z2 − z4); z3, z4),

P5 := ((−z1 − z3), (−z2 − z4); z1, z2),

P6 := (z1, z2; (−z1 − z3), (−z2 − z4)).
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Observe that i(P1) = P2, i(P3) = P4, i(P5) = P6 where i is the involution
defined in (2).
We now define a trivolution τ of C2 × C2 as follows:

τ : C2 × C2 → C2 × C2 (3)

(z1, z2; z3, z4) 7→ (z3, z4; (−z1 − z3), (−z2 − z4)).

It is easy to see that:
P1

τ→ P3
τ→ P5

τ→ P1,

P2
τ→ P6

τ→ P4
τ→ P2

The matrices that represent i and τ are respectively:

i =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 τ =


0 0 1 0
0 0 0 1
−1 0 −1 0
0 −1 0 −1


furthermore < τ, i >' Σ3, then the local description of Kum3(X) around Q0 is
isomorphic to A2/Σ3.

In what follows we have used [CoCoA] program in order to do computations.
First we recall Noether’s theorem ([CLO] pag. 331)

Theorem 3.2. Let G ⊂ GL(n,C) be a given finite matrix group, we have:

C[z1, . . . , zn]G = C[RG(zβ) : |β| ≤ |G|].

where RG is the Reynolds operator.

In other words, the algebra of invariant polynomials with respect to the
action of G is generated by the invariant polynomials whose degree is at most
the order of the group. In our case the order of G is 6, so it is not hard to
compute C[z1, z2, z3, z4]G. Then, after reducing the generators, we obtain that
C[z1, z2, z3, z4]G is generated by:

f1 := z2
2 + z2z4 + z2

4 , f2 := 2z1z2 + z2z3 + z1z4 + 2z3z4,
f3 := z2

1 + z1z3 + z2
3 , f4 := −3z2

2z4 − 3z2z2
4 ,

f5 := z2
2z3 + 2z1z2z4 + 2z2z3z4 + z1z

2
4 , f6 := −2z1z2z3 − z2z

2
3 − z2

1z4 − 2z1z3z4,
f7 := 3z2

1z3 + 3z1z2
3 .

Let us now write C[z1, . . . , z4]G = C[f1, . . . , f7] as:

C[u1, . . . , u7]/IG,

where IG is the syzygy ideal. It is easy to obtain that IG is generated by the
following polynomials:

u1(u2
2 − 4u1u3) + 3(u2

5 − u4u6)
u2(u2

2 − 4u1u3) + 3(u4u7 − u5u6)
u3(u2

2 − 4u1u3) + 3(u2
6 − u5u7)

u3u4 + u2u5 + u1u6

u3u5 + u2u6 + u1u7
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and so we have the completion of the local ring at P :

ÔP ' CJu1, . . . , u7K
IG

.

Let now calculate the tangent cone in Q0 in order to understand which kind
of singularity occurs in Q0. With [CoCoA] aid we find that this local cone is:

Spec

(
CJu1, . . . , u7K

I

)
where I is the ideal generated by the following polynomials:

u2
5 − u4u6

u4u7 − u5u6

u2
6 − u5u7

u3u4 + u2u5 + u1u6

u3u5 + u2u6 + u1u7.

The degree of the variety V (I) ⊂ P6 is 5, this means that Q0 is a singular
point of multiplicity 5.

What we want to do now is to describe the singular locus of the local de-
scription. Let us start to calculate the Jacobian of V (IG), what we find is the
following 5× 7 matrix:

JG :=


u2

2 − 8u1u3 2u1u2 −4u2
1 −3u6 6u5 −3u4 0

−4u2u3 3u2
2 − 4u1u3 −4u1u2 3u7 −3u6 −3u5 3u4

−4u2
3 2u2u3 u2

2 − 8u1u3 0 −3u7 6u6 −3u5

u6 u5 u4 u3 u2 u1 0
u7 u6 u5 0 u3 u2 u1


Local equations define a fourfold, so we have to find the locus where the

dimension of Ker(JG) is at least 5. In order to do it we calculate the minimal
system of generators of all 3 × 3 minors of JG, we intersect the corresponding
variety with V (IG), we find a minimal base of generators of the ideal corre-
sponding to this intersection and we compute its radical; the polynomials we
find define, after suitable change of coordinates, the (reduced) variety of singular
locus V (IS), where IS = (u2

6−u5u7, u5u6−u4u7, u
2
5−u4u6, u3u6−u2u7, u3u5−

u1u7, u2u6−u1u7, u3u4−u1u6, u2u5−u1u6, u2u4−u1u5, u
2
2−u1u3, u

3
3−u2

7, u2u
2
3−

u6u7, u1u
2
3−u5u7, u1u2u3−u4u7, u

2
1u3−u4u6, u

2
1u2−u4u5, u

3
1−u2

4). We verified
that the only one singular point of V (IS) is the origin. Now, let us consider the
map from C2 to C7 such that:

(t, s) 7→ (t2, ts, s2, t3, t2s, ts2, s3). (4)

This is the parametrization of V (IS); as we have already done we can find
relations between these polynomials and verify that the ideal we get is equal to
IS . Now we can consider the following smooth parametrization from C2 to C9:
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(t, s) 7→ (t, s, t2, ts, s2, t3, t2s, ts2, s3)

(which is nothing but the graph of (4)) whose projective closure is the Veronese
surface ν3(P2) = V2,3 where ν3 : (P2)∗ → (P9)∗, ν3(L) = L3.
What we want to find now is the tangent cone in Q0 seen inside the singular
locus. Using [CoCoA] we find that its corresponding ideal ĨC is generated by
following polynomials:

u2
7 u6u7 u5u7 u4u7 u4u6

u4u5 u2
4 u2

6 u5u6 u2
5

u3u6 − u2u7 u3u5 − u1u7 u2u6 − u1u7 u3u4 − u1u6 u2u5 − u1u6

u2u4 − u1u5 u2
2 − u1u3.

The ideal ĨC has multiplicity 4 (the corresponding variety has degree four) and
its radical is the following ideal:

IC = (u2
2 − u3u1, u4, u5, u6, u7).

Then V (IC) is a cone and V (ĨC) is a double cone.
This gives the description of the singularity at one of the 81 3-torsion points.

4 Degree of Kum3(A)

To find the degree of Kum3(A), we have to recall some general facts about theta
divisors.

4.1 The Riemann theta divisor

Let X be a curve of genus g and ΘJac(X) is the Riemann theta divisor. It is
known that it is an ample divisor and

dim |rΘJac(X)| = rg − 1

(see [GH] Theorem p.317). Recall that for any fixed point q0 ∈ X there exists
an isomorphism:

ψg−1,0 : Picg−1(X) → Jac(X) = Pic0(X).

The set Wg−1 of effective line bundles of degree g − 1 is a divisor in Picg−1(X)
denoted by ΘPicg−1(X). By Riemann’s Theorem there exists a divisor k of degree
0 such that:

ψg−1,0(ΘPicg−1(X)) = ΘJac(X) − k.

In a similar way we can define the generalized theta divisor as follows:

Θgen
SUX(r,L) = {E ∈ Picg−1(X) : h0(E ⊗ L) > 0}.

It is known that
Pic(SUX(r, L)) = ZΘgen

SUX(r,L),
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and there exists a canonical isomorphism:

|rΘPicg−1(X)| ' |Θgen
SUX(r)|

∗

(see [BNR]).

4.2 Degree of Kum3(A)

Let us consider the (2 : 1)−map

φ3 : SU3(X) −→ |3ΘPic1(X)| ' |Θgen
SUX(3)|

∗

E 7−→ DE = {L ∈ Pic1(X) : h0(E ⊗ L) > 0}.

Definition 4.1. Θη := {E ∈ SUX(3) : h0(E ⊗ η) > 0} ⊂ SUX(3) where η is a
fixed divisor in Pic1(X).

Observation: φ3(Θη) = Hη ⊂ |3ΘPic1(X)| and Hη is a hyperplane.
Since φ3

∣∣
Kum3(A)

: Kum3(A) → φ3(Kum3(A)) is a (1 : 1)−map (it is a
well known fact but we will see it in the next section), we have that Θη ∩
Kum3(X) ' Hη ∩ φ3(Kum3(X)). In order to study the degree of Kum3(A)
we have to take four generic divisors η1, . . . , η4 ∈ Pic1(X) and consider the
respective Θη1 , . . . ,Θη4 ⊂ SUX(3). The intersection Θηi

∩ Kum3(A) is equal
to {La ⊕ Lb ⊕ L−a−b ∈ Kum3(X) : h0(La ⊕ Lb ⊕ L−a−b ⊗ ηi) > 0} = {La ⊕
Lb ⊕ L−a−b ∈ Kum3(A) : h0(La ⊗ ηi) > 0} ∪ {La ⊕ Lb ⊕ L−a−b ∈ Kum3(A) :
h0(Lb ⊗ ηi) > 0} ∪ {La ⊕ Lb ⊕ L−a−b ∈ Kum3(A) : h0(L−a−b ⊗ ηi) > 0} for all
i = 1, . . . , 4. If La ⊕ Lb ⊕ L−a−b is a generic element of Kum3(A) and p is the
(6− 1)-covering of Kum3(A) defined as in (1), then p−1(La ⊕ Lb ⊕ La−b) ⊂ A2

is a set of 6 points. It’s easy to see that p((a, b)) ∈ Θηi
∩Kum3(X) if and only

if or h0(La⊗ ηi) > 0 or h0(Lb⊗ ηi) > 0 or h0(L−a−b⊗ ηi) > 0 where (a, b) ∈ A2

and La, Lb, L−a−b ∈ Pic0(X) are three line bundles respectively associated to
a, b,−a− b ∈ A.

Let us recall Jacobi’s Theorem ([GH] page: 235):

Jacobi’s Theorem: Let X be a curve of genus g, q0 ∈ X and ω1, . . . , ωg

a basis for H0(X,Ω1). For any λ ∈ Jac(X) there exist g points p1, . . . , pg ∈ X
such that

µ(
g∑

i=1

(pi − q0)) = λ,

where
µ : Div0(X) → Jac(X)∑

i

(pi − qi) 7→

(∑
i

∫ pi

qi

ω1, . . . ,
∑

i

∫ pi

qi

ωg

)
.
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Since Jac(X) is isomorphic to Pic0(X), this theorem has the following two
corollaries:

1. if q0 is a fixed point of C, then for all La ∈ Pic0(X), there are two points
P1, P2 in X such that La ' OX(P1 + P2 − 2q0);

2. Consider the isomorphism

ψ1,0 : Pic1(X) ∼−→ Pic0(X)

η 7→ η ⊗ OX(−q0).

For every i = 1, . . . , 4 there are qi1 , qi2 ∈ C such that ηi ' OX(qi1 + qi2 −
q0).

Now these two facts imply that h0(La ⊗ ηi) > 0 if and only if h0(OX(P1 +P2 −
2q0) ⊗ OX(qi,1 + qi,2 − q0)) > 0, and this happens if and only if h0(OX(P1 +
P2 + qi,1 + qi,2 − 3q0)) > 0.

Notations: Θ−k is a translate of theta divisor by k ∈ Pic0(X).

By Riemann’s Singularity Theorem (see [GH], p. 348) the dimension h0(OX(P1+
P2+qi,1+qi,2−3q0)) is equal to the multiplicity of ψ1,0(P1+P2+qi,1+qi,2−3q0)
in Θ−k (by a suitable k ∈ Pic0(X)), i.e. it is equal to the multiplicity of
(P1+P2+qi,1+qi,2−4q0) in Θ−k. It follows from this fact that h0(OX(P1+P2+
qi,1+qi,2−3q0)) is greater than zero if and only if (P1+P2+qi,1+qi,2−4q0) ∈ Θ−k.

Notations:

Θi := Θ−k−ηi+q0 ;
Ri := {(a, b) ∈ A2 : (a+ b) ∈ {−Θi}};
Ξi := (Θi ×A) ∪ (A×Θi) ∪Ri.

Now (P1 +P2 +qi,1 +qi,2−4q0) ∈ Θ−k iff P1 +P2−2q0 ∈ Θi which is equivalent
to say that La belongs to Θi, but this implies that p((a, b)) ∈ Θηi

∩Kum3(A) if
and only if La ∈ Θi or Lb ∈ Θi or L−a−b ∈ Θi (or equivalently La+b belongs to
{−Θi}), i.e. (a, b) ∈ Ξi.

Therefore we can conclude:

(a, b) ∈ A2 is such that p((a, b)) ∈ Kum3(A) ∩ Θηi , i = 1, . . . , 4 if
and only if (a, b) ∈ Ξi.

The last conclusion together with the observation that ](pr−1(La ⊕ Lb ⊕
L−a−b)) = 6 gives the following proposition:

Proposition 4.2. deg(Kum3(A)) = 1
6 (](Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ξ4)).

Proof. ](Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ξ4) = 6 · ](Kum3(A) ∩ Θη1 ∩ Θη2 ∩ Θη3 ∩ Θη4) =
6 · deg(Kum3(A)).

Notations:
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4.2 Degree of Kum3(A) Degree of Kum3(A)

Ra,i
j = {(a, b) ∈ A2 : a ∈ Θi and (a+ b) ∈ {−Θj}},

Rb,i
j = {(a, b) ∈ A2 : b ∈ Θi and (a+ b) ∈ {−Θj}} and

R1,2 = {(a, b) ∈ A2 : (a+ b) ∈ {−Θ1} ∩ {−Θ2}}.

Instead of computing directly Ξ1∩Ξ2∩Ξ3∩Ξ4, we will compute (Ξ1∩Ξ2)∩
(Ξ3 ∩ Ξ4):

Ξ1 ∩ Ξ2 = ((Θ1 ∩Θ2)×A)∪ (A× (Θ1 ∩Θ2))∪ (Θ1×Θ2)∪ (Θ2×Θ1)∪ (Ra,1
b )∪

(Rb,1
2 ) ∪ (Ra,2

1 ) ∪ (Rb,2
1 ) ∪ (R1,2).

Ξ3 ∩ Ξ4 = ((Θ3 ∩Θ4)×A)∪ (A× (Θ3 ∩Θ4))∪ (Θ3×Θ4)∪ (Θ4×Θ3)∪ (Ra,3
b )∪

(Rb,3
4 ) ∪ (Ra,4

3 ) ∪ (Rb,4
3 ) ∪ (R3,4).

At the end we will obtain that ](Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ Ξ4) = 216 (see also tables 1.
and 2.) and so:

Proposition 4.3. deg(Kum3(A)) = 36.

Proof. In the following two tables we write at place (i, j) the cardinality of in-
tersection of the subset of Ξ1 ∩ Ξ2 which we write at the place (0, j), with the
subset of Ξ3 ∩ Ξ4 which we write at the place (i, 0).

∩ (Θ1 ∩Θ2)×A A× (Θ1 ∩Θ2) Θ1 ×Θ2 Θ2 ×Θ1

(Θ3 ∩Θ4)×A 0 4 0 0
A× (Θ3 ∩Θ4) 4 0 0 0

Θ3 ×Θ4 0 0 4 4
Θ4 ×Θ3 0 0 4 4

Ra,3
4 0 4 4 4

Ra,4
3 0 4 4 4

Rb,3
4 4 0 4 4

Rb,4
3 4 0 4 4

R3,4 4 4 4 4

Table 1.

∩ Ra,1
2 Ra,2

1 Rb,1
2 Rb,2

1 R1,2

(Θ3 ∩Θ4)×A 0 0 4 4 4
A× (Θ3 ∩Θ4) 4 4 0 0 4

Θ3 ×Θ4 4 4 4 4 4
Θ4 ×Θ3 4 4 4 4 4

Ra,3
4 4 4 4 4 0

Ra,4
3 4 4 4 4 0

Rb,3
4 4 4 4 4 0

Rb,4
3 4 4 4 4 0

R3,4 0 0 0 0 0

Table 2.

In order to be more clear we show some cases:
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4.3 The degree of Sing(Kum3(A)) Degree of Kum3(A)

Ra,1
2 ∩Rb,3

4 : Ra,1
2 ∩ Rb,3

4 = {(a, b) ∈ A2 : a ∈ Θ1 and b ∈ Θ3 and (a + b) ∈
{−Θ2} ∩ {−Θ4}}. Recall that Θi · Θj = 2. So (a + b) ∈ {k1, k2} where
{k1, k2} = {−Θ2}∩{−Θ4}. Fix for a moment (a+b) = k1. If we translate
Θ1 and Θ3 by −k1 we get that a ∈ (Θ1)−k1 , b ∈ (Θ3)−k1 and a + b = 0,
then b must be equal to −a and a ∈ ((Θ1)−k1) ∩ ((−Θ3)+k1). Then for
fixed a+ b the couple (a, b) has to belong to {(h1,−h1), (h2,−h2)} where
((Θ1)+k1) ∩ ((−Θ3)−k1) = {h1, h2}.
Therefore ](Ra,1

2 ∩Rb,3
4 ) = 2 · 2 = 4.

(Θ1 ×Θ2) ∩R3,4 : (Θ1 × Θ2) ∩ R3,4 = {(a, b) ∈ A2 : a ∈ Θ1, b ∈ Θ2 and
(a + b) ∈ {−Θ3} ∩ {−Θ4}}. Then, as in the previous case, we have
]((Θ1 ×Θ2) ∩R3,4) = 4.

Ra,1
2 ∩ ((Θ3 ∩Θ4)×A) : Ra,1

2 ∩((Θ3∩Θ4)×A) = {(a, b) ∈ A2 : a ∈ Θ1∩Θ3∩
Θ4, (a+ b) ∈ {−Θ2}}, but since Θi are generic curves on a surface, their
intersection two by two is the empty set, then ](Ra,1

2 )∩((Θ3∩Θ4)×A) = 0.

4.3 The degree of Sing(Kum3(A))

As we have already seen, the singular locus of Kum3(A) is a surface. What we
want to do now is to compute its degree. We use the notation from the previous
section.

Let us fix two divisors Ξ1 and Ξ2 in A2. We denote by ∆ the diagonal of
A×A.

Proposition 4.4. deg(Sing(Kum3(A))) = ](Ξ1 ∩ Ξ2 ∩∆).

Proof. It is sufficient to consider the restriction to ∆ of the map p defined as in
(1) and get out the (1 : 1)-map p|∆ : ∆ → Sing(Kum3(A)).

Proposition 4.5. deg(Sing(Kum3(A))) = 42.

Proof. The following table is used in the same way as we used Table 1. and
Table 2. in the previous section:

∩ ∆
(Θ1 ∩Θ2)×A 2
A× (Θ1 ∩Θ2) /

Θ1 ×Θ2 /
Θ2 ×Θ1 /
Ra,1

2 4
Ra,2

1 4
Rb,1

2 /
Rb,2

1 /
R1,2 32

12



On action of the hyperelliptic involution and Kum3(A)

Table 3.

The following list describes Table 3.:

∆ ∩A× (Θ1 ∩Θ2) : we have not considered the intersection points between
∆ and A× (Θ1 ∩Θ2), Θ1×Θ2, Θ2×Θ1 because we have already counted
them in ((Θ1 ∩Θ2)×A) ∩∆.

∆ ∩Rb,1
2 : the previous argument can be used for ∆ ∩ Rb,1

2 and ∆ ∩ Rb,2
1 : we

have already counted these intersection points respectively in Ra,1
2 and in

Ra,2
1 .

Ra,1
2 ∩∆ : we have now to show that ](Ra,1

2 ∩ ∆) = 4. The set Ra,1
2 ∩ ∆ is

{(a, a) ∈ A×A | a ∈ Θ1, 2a ∈ (−Θ2)} which is equal to {(a, a) ∈ A×A :
2a ∈ ((−Θ2) ∩ (2 · Θ1)) and a ∈ Θ1}. Let now L1 be the line bundle on
A associated to Θ1. The line bundle L2

1 is associated to (2 · Θ1) and its
divisor is linearly equivalent to 2Θ1. As a consequence of this fact we have
that 2a ∈ (2Θ1 ∩ (−Θ2)) then ]{2Θ1 ∩ (−Θ2)} = 4. Now, since the map
from Θ1 to (2 ·Θ1) is 1 : 1 we get the conclusion.

R1,2 ∩∆ : finally we have that (R1,2∩∆) is equivalent to the set {a ∈ A | 2a ∈
((−Θ1) ∩ (−Θ2))} whose cardinality is 32.

5 On action of the hyperelliptic involution and
Kum3(A)

Let X be a curve of genus 2. Consider the degree 2 map:

φ3 : SUX(3) 2:1−→ P8 = |3ΘPic1(X)|

E 7−→ DE = {L ∈ Pic1(X)/h0(E ⊗ L) > 0}

(see [Laz]). Let τ ′ be the involution on SUX(3) acting by the duality:

τ ′(E) = E∗

and τ the hyperelliptic involution on Pic1(X):

τ(L) = ωX ⊗ L−1.

We will use the following well known relation:

τ ◦ φ3(E) = φ3 ◦ τ ′(E).

On SUX(3) there is also the hyperelliptic involution h∗:

E 7→ h∗(E)

13



On action of the hyperelliptic involution and Kum3(A)

induced by the hyperelliptic involution h of the curve X.
We define σ := τ ′ ◦ h∗. It is the involution which gives the double covering of
SUX(3) on P8.
The fixed locus of σ is obviously contained in SUX(3) and we recall:

φ3(Fix(σ)) = Coble sextic hypersurface (5)

(see [Laz]). By definition, the strictly semi-stable locus SUX(3)ss of SUX(3)
consists of isomorphism classes of split rank 3 semi-stable vector bundles of
determinant OX . Its points can be represented by the vector bundles of the
form F ⊕L or La⊕Lb⊕Lc with trivial determinant where L,La, Lb, Lc are line
bundles and F is a rank 2 vector bundle. We want to consider the elements of
the form La ⊕ Lb ⊕ Lc (those belonging to Kum3(A)) and actions of previous
involutions on them:

• τ ′(La ⊕ Lb ⊕ Lc) = (La ⊕ Lb ⊕ Lc)∗ = L−a ⊕ L−b ⊕ L−c;

• τ ′(h∗(La ⊕ Lb ⊕ Lc)) = La ⊕ Lb ⊕ Lc.

This implies that σ(Kum3(A)) = Kum3(A) ⊂ SUX(3) which means that Kum3(A) ⊂
Fix(σ) and then φ3(Kum3(X)) ⊂ Coble sextic (see 5).

Let us now consider rank 2 semistable vector bundles of trivial determinant:
SUX(2). If we take its symmetric square, we obtain a semisable rank three
vector bundle with trivial determinant:

SUX(2) → SUX(3); E 7→ Sym2(E).

We want to study the action of involutions defined on the beginning of this
paragraph on Sym2(E) with E ∈ SUX(2). Since Sym2(E)∗ = Sym2(E) =
h∗(Sym2(E)), then σ(Sym2(E)) = Sym2(E) ⊂ SUX(3), so Sym2(SUX(2)) ⊂
Fix(σ), and, again by (5), φ3(Sym2(SUX(2))) ⊂ Coble sextic.

Now we want to see the action of τ on |3ΘPic1(X)|. It is known that
Fix(τ) = P4 t P3.

Notations: We denote by P3
τ and P4

τ , respectively, the P3 and the P4 which
are fixed by action of τ .

Since the image of Sym2(SUX(2)) by φ3 in P8 has dimension 3 and also
φ3(Sym2(SUX(2))) ⊂ Fix(τ), we obtain

φ3(Sym2(SUX(2))) ⊂ P4
τ .

Let La⊕L−a be an element of Kum2(X) ⊂ SUX(2), then Sym2(La⊕L−a) =
L2a ⊕ L−2a ⊕ O ∈ Kum3(A) ⊂ SUX(3). It means that Sym2(Kum2(A)) ⊂
Kum3(A).

Observation: Since {L2a ⊕ L−2a ⊕ O ∈ SUX(3)} is isomorphic to S2({La ⊕
L−a}), we can view {L2a⊕L−2a⊕O ∈ SUX(3)} as the image of Kum2(A) inside

14
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SUX(3) under the symmetric square map. Moreover it follows from the surjec-
tivity of the multiplication by 2 map [2] : A → A that the image of Kum2(A)
in SUX(3) is isomorphic to Kum2(A).
We have already observed that φ3

∣∣
Kum3(A)

is a (1 : 1)−map on the image; this
fact allows us to view φ3(Kum3(A)) as the Kum3(A) in |3ΘPic1(X)|. For the same
reason we can view φ3(Sym2(SUX(2))) as Kum2(A) ⊂ |3ΘPic1(X)|. Using this
language we can say that Kum2(A) is left fixed by the action of τ in Kum3(A) ⊂
|3ΘPic1(X)| because |3ΘPic1(X)| ⊃ φ3(Kum3(A)) ⊃ φ3(Sym2(SUX(2)) =
= Kum2(A) ⊂ P4 ⊂ Fix(τ) ⊂ |3Θ1

Pic(X)|.

Proposition 5.1. Fix(τ) ∩ φ3(Kum3(A)) = φ3(Sym2(Kum2(A))).

Proof. By definition τ(La ⊕ Lb ⊕ Lc) = L−a ⊕ L−b ⊕ L−c then La ⊕ Lb ⊕ Lc

belongs to Fix(τ) if and only if {a, b, c} = {−a,−b,−c}.
Let P belong to {−a,−b,−c} and a = P .

• If P is different from −a, suppose that P = −c, then {−a,−b,−c} =
{−a,−b, a}; moreover a + b + c = 0 because La ⊕ Lb ⊕ Lc ∈ Kum3(A) ,
then b = 0.

• Now, if P = −a or, equivalently a = −a, then a = 0 and b = −c.

In both cases La⊕Lb⊕Lc ∈ Kum3(A) such that τ(La⊕Lb⊕Lc) = La⊕Lb⊕Lc

are of the form La ⊕ L−a ⊕ L0. This means that they belong to Kum2(A) ⊂
|3ΘPic1(X)|.

The previous proposition tells us also that P3
τ ∩ Kum3A = ∅. So the pro-

jection of Kum3(A) ⊂ |3ΘPic1(X)| from P3
τ to P4

τ is a morphism. It would be
interesting to find its degree.

Our final observation is the following.

Proposition 5.2. Sing(Kum3(A)) ∩Kum2(A) = Sing(Kum2(A))

Proof. Points of Kum2(A) ⊂ Kum3(A) are of the form (P,−P, 0). Singular
points of Kum3(A) are those which have at least two equal components, then
Sing(Kum3(A)) ∩ Kum2(A) = {(P,−P, 0)} where 2P = 0 that are exactly the
15 points of 2−torsion and one more point (OX ,OX ,OX) which are singularities
of the usual Kum2(A). This implies that ](Sing(Kum3(A)) ∩ Kum2(A)) = 16
and Sing(Kum3(A)) ∩Kum2(A) = Sing(Kum2(A)).
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