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1 Introduction

Let X be a smooth projective complex curve and let Ux(r,d) be the moduli
space of semi-stable vector bundles of rank r and degree d on X (see [Se]). It
contains an open Zariski subset Ux (r,d)® which is the coarse moduli space of
stable bundles, i.e. vector bundles satisfying inequality
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The complement Ux (r, d) \ Ux (r, d)® parametrizes certain equivalence classes of
strictly semi-stable vector bundles which satisfy the equality
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Each equivalence class contains a unique representative isomorphic to the direct
sum of stable bundles. Furthermore one considers subvarieties SUx (r, L) C
Ux(r,d) of vector bundle of rank r with determinant isomorphic to a fixed
line bundle L of degree d. In this work we study the variety of strictly semi-
stable bundles in SUx (3, 0x), where X is a genus 2 curve. We call this variety
the generalized Kummer variety of X and denote it by Kums(X). Recall that
the classical Kummer variety of X is defined as the quotient of the Jacobian
variety Jac(X) = Ux(1,0) by the involution L — L. Tt turns out that our
Kumg3(X) has a similar description as a quotient of Jac(X) x Jac(X) which
justifies the name. We will see that the first definition allows one to define a
natural embedding of Kums(X) in a projective space (see section 4). The second
approach is useful in order to give local description of Kumg(X) by following
the theory developed in [Be] (section 3).

We point out the use of [CoCoA] for local computations.

We want to thank Professor Dolgachev for his patient guidance and his generous
suggestions and also Professor Ragusa for the good organization of Pragmatic
summer school.
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2 Generalized Kummer variety

Let A be an s—dimensional abelian variety, A" the r-Cartesian product of A,
and A" = A" /X, be the r-symmetric power of A. We can define the usual
map a, : A") — A such that a,({z1,...2,}) =21 +--- + x, '. This surjective
map is just a morphism of varieties since there is no group structure on A™).
However, all fibers of a, are naturally isomorphic.

Definition 2.1. The generalized Kummer, variety associated to an abelian
variety A is
Kum,(A) := a,;(0).

T

It is easy to see that
dim(Kum,(a)) = s(r — 1).

When dim A > 1, A" is singular. If dim A = 2, A" admits a natural desingu-
larization isomorphic to the Hilbert scheme Al"l := Hilb(A)I"! of 0-dimensional
subschemes of A of length r (see [Go]). Let pr : Al — A" be the usual
projection. It is known that the restriction of pr over Kum,(A) is a resolution
of singularities. Also mT(A) admits a structure a holomorphic symplectic
manifold (see [Be]).

2.1 The Kummer variety of Jacobians

Let X be a smooth connected projective curve of genus g and SUx(r, L) be
the set of semi-stable vector bundles on X of rank r and determinant which is
isomorphic to a fixed line bundle L. Let Jac(X) be the Jacobian variety of X
which parametrizes isomorphism classes of line bundles on X of degree 0, or,
equivalently the divisor classes of degree 0. We have a natural embedding;:

Kum, (Jac(X)) — SUx(r,0x)

{a1,...;ar} — (Lo, ® - D La,)

where L,, := Ox(a;). Obviously, the condition a; + --- + a, = 0 means that
det(Ly, ® -+ B Ly, ) = 0 and deg(La,) = 0 for all i = 1,...,7. Consequently
the Kummer variety Kum,(Jac(X)) describes exactly the completely decom-
posable bundles in SUx(r) (from now on we’ll write only SUx (r) instead of
SUX (7‘, Ox))

In this paper we restrict ourselves with the case ¢ = 2 and rank r» = 3. In
this case Kumg(Jac(X)) is a 4-fold.

here {z1,...2r} mean an unordered set of r elements.
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3 Singular locus of Kumj(Jac(X))

From now we let A denote Jac(X). Let us define the following map:

T: A® Kumjs(A)
{a7 b} — Lo®Ly®L_,_p.

This map is well defined and it is a (3 : 1) — covering of Kumsz(A). Let now
p: A2 — A® be the (2 : 1)—map which sends (z,y) € A% to {z,y} € A®. If
we consider the map:

pi=(mop): A2 - A® — Kums(A) c A®) (1)
we get a (6 : 1)—covering of Kumg(A).

Notations: Let X and Y be two varieties and f : X — Y be a finite morphism.
We let Sing(X) denote the singular locus of X, By C Y the branch locus of f
and Ry C X the ramification locus of f.

Observation: B, = 7(B)).

Proof. Since B, = {{z,y} € A®|x = y} and 7({z,z}) = {z, v, —22} € B, we
obviously get that m(B,) C By.

Conversely, for any point {z, y, z} of B, at least two of the three elements x, y, 2
are equal to some t. Therefore m({t,t}) = {x,y, 2}, and hence B, C n(B,). O

Since A? is smooth, we have Sing(A®)) ¢ B,. Obviously B, C R,, hence
Sing(Kums(A)) C B;. As a consequence we obtain that Sing(Kumgs(A)) C Bi.
Therefore we have to study the (3 : 1)—covering 7 : A®) — Kums(A).

Since 7 is not a Galois covering, in order to give the local description at every
point @ € Kums(A), we have to consider the following three cases separately:

1. Q@ € Kumz(A) s.t. 7
(

) s. (Q) is just a point;
2. @Q € Kumgs(A) s.t
) s.

7~ HQ) is a set of two different points;

-1
-l
3. Q € Kumgs(A) s.t. 771(Q) is a set of exactly three points.

Let us begin studying these cases.

Case 3. When @ € Kumgz(A4) s.t. §(7~1(Q)) = 3 we have that Q ¢ B,. Since
7(B,) = B, any point of 771(Q) is smooth in A®). Then @ is a smooth
points of the Kummer variety.

Case 2. When @ € Kumgs(A) s.t. $(7~1(Q)) = 2 we fix the two points Py, P; €
A® st w(P)) = n(P) = Q. In this case Q = {x,x, -2z} with © # —2u;
let us fix Py = {z,z}, P, = {z,—2z}. Let U C Kumgs(A) be a sufficiently
small analytic neighborhood of @ such that 7#=1(U) = U; U Uy where Uy
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and Uy are respectively analytic neighborhoods of P, and P, and also
UiNU; = 0. Let Q a generic point of U, so Q = {z+¢€,2+0, -2z —€e—3};
the preimage of Q by mis 71(Q) = {{z + e,z + 6}, {z + ¢, —22 — e —
b {z+9, -2z —ec— 0}, but {x +e,x+0} € Uy and {z+¢€, 20 — ¢ —
0y, {x +6,—2x — e — §} € Us, it means that P; has ramification order
equal to 1 and P, has ramification order equal to 2. Therefore there is
an analytic neighborhood of P; which is isomorphic by 7 to an analytic
neighborhood of (). This allows us to study a generic point of B, instead
of a generic point of B;.

Case 1. When Q € Kumgs(A) s.t. #(7~*(Q)) = 3 we consider a point P € A(?)
st. 7HQ) =P = Q= {z,x,7} s.t. 3z =0 = 7 is a 3—torsion point of
A. Now our abelian variety is a complex torus of dimension 2, so we have
exactly 329 = 3* = 81 such points.

Proposition 3.1. The singular locus of Kumgs(A) is a surface which coincides
with the branch locus By of the projection m: A — Kumg(A) and it is locally
isomorphic at a generic point to (C2xQ,Cx o) where Q is a cone over a rational
normal curve and o is the verter of such a cone (see [Be]). Moreover there are
exactly 81 points of Sing(Kums (X)) whose local tangent cone is isomorphic to
the spectrum of:

(C[[ul, cee ,u7]]
1
where I is the ideal generated by the following polynomials :
u? — ugug
UqU7 — UsUG
u% — Usury

Uy + UUs + U1 Ug
U3U5 + UgUg + UL UT.

Proof. According to what we saw in Case 2, an analytic neighborhood of @ €
Kumg(A) such that #(7=(Q)) = 2 is isomorphic to a generic element of B,,.
We have to study the (2 : 1)—covering A2 — A().

Since A = Jac(X), A is a smooth abelian variety, this means that A is a complex
torus (C9/Z%9) where g is the genus of X; in our case X is a genus 2 curve,
A ~ (C?/7%). Thus, in local coordinates at P € A, Op ~ C[z1, 22], so we
consider Up (a neighborhood of P € A) isomorphic to C2. Therefore we obtain
that locally at Q € A2, 6Q ~0p®0p~ Clz1, 22; 23, 24] -

We fix a coordinate system (21, 22;23,24) in A% such that A2 D Up > P =
(0,0;0,0). Let @ be a point in Up, in the fixed coordinate system @Q =
(21, 22; 23, 24). Since P is such that p(P) € B,, by definition of p, we have:
A®) = A%/ < i >, where i is the following involution of Up:

i:Up—>Up (2)

i (21,20;23,24) — (23,243 21, 22).
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The involution 7 is obviously linear and its associated matrix is M = e 3+e31+
€24+ €42 (where e;,; is the matrix with 1 in the 4, j position and 0 otherwhere).

Its eigenvalues Ay = —1 and Ay = 1 have both multiplicity 2, so its diagonal
form is:

M=(1,1,-1,-1)

which in a new coordinate system:

x = 21§23
To = 22224
T3 = Z1—23
T4 = 22524

corresponds to the linear transformation:
(xla T2,X3, 1'4) — (xla T2, —I3, 71’4)'

The algebra of invariant polynomials with respect to this actions is generated
by the homogeneous forms (z1, s, 3,23, 2374). Let us now consider these
forms as local coordinates (s1, s2, S3, 4, $5) around p(P), here we have that the
completion of the local ring is isomorphic to the following one:

((C[[Sh N 85]]>

(s1 —s2s3) )~

Therefore B, at a generic point is locally isomorphic to (C? x @, C x o) where
@ is a cone over a rational normal curve (we can see this rational normal curve
as the image of P! in P? by the Veronese map vy : (P*)* — (P3)*,15(L) = L?)
and o the vertex of this cone. (What we have just proved in our particular case
of Kums(A) can be found in a more general form in [Be].) Therefore we have
the same local description of singularity of Kums(A) out of the correspondent
points of the 81 three-torsion points of A.

Now we have to study what happens at those 3-torsion. Let Q¢ be one of
them, we already know that p~1(Qo) = (x,z) := Py is such that 3z = 0. Let
us fix (21, 22; 23, 24) € C2 x C? a local coordinate system around Py in order to
describe locally the (6 : 1)—covering p : A2 — Kumgs(A). We observe that for a
generic P in that neighborhood, the pre-image of p(P) is the set of the following
6 points:

Py = (21, 22; 23, 24),

PQ = (2’3,24; 21, ZQ),

P3 := (23,245 (=21 — 23), (—22 — 24)),
Py=((- 21—23) (=22 — 24); 23, 24),
P5 = ((—21 — 23), (—22 — 24); 21, 22),
P = (21,225 (=21 — 23), (—22 — 24)).
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Observe that i(Py) = Pa, i(P3) = Py, i(Ps) = Ps where ¢ is the involution
defined in (2).
We now define a trivolution 7 of C? x C? as follows:

7:C?*x C? - C? x C? (3)

(217 223 23, 24) — (23, 24; (—21 - 23), (—22 - 24))-
It is easy to see that:
P 5Py 5 PSPy
P, 5P 5P D Py

The matrices that represent ¢ and 7 are respectively:

0 010 0 0 1 0
= 0 0 01 o 0 0 0 1
10 0 0 -1 0 -1 0
01 00 0o -1 0 -1

furthermore < 7,4 >~ Y3, then the local description of Kumg(X) around Qg is
isomorphic to A%/33.

In what follows we have used [CoCoA] program in order to do computations.
First we recall Noether’s theorem ([CLO] pag. 331)

Theorem 3.2. Let G C GL(n,C) be a given finite matriz group, we have:
Clex, .., 2n]€ = ClRG(:") : |8] < |G,
where Rg is the Reynolds operator.

In other words, the algebra of invariant polynomials with respect to the
action of GG is generated by the invariant polynomials whose degree is at most
the order of the group. In our case the order of G is 6, so it is not hard to
compute C[z1, 2o, 23, 24]%. Then, after reducing the generators, we obtain that
Clz1, 22, 23, 24)¢ is generated by:

f1 =23 + 2024 + 23, Jo := 22120 + 2023 + 2124 + 22324,
2 2 o 2 2
f3 =21 + 2123 + 23, fa 1= —32524 — 3207},
f5 1= 2323 + 2212024 + 2202324 + 2123,  fo 1= —2212023 — 2225 — 2224 — 2212324,

f7 = 32%23 + 3212%
Let us now write C[zy, ..., 24]% = C[f1,. .., f7] as:
(C[Ul, ey uﬂ/Ig,

where I is the syzygy ideal. It is easy to obtain that I is generated by the
following polynomials:

uy (ud — duquz) + 3(u2 — ugug)

ug(ud — duquz) + 3(uqur — usug)
us(u3 — duguz) + 3(ud — usur)
U3Ug + U2Us + ULUG

Uusus + U2ug + U1U7
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and so we have the completion of the local ring at P:

~ C
Op ~ 7[[1“’[6: ’u7]].

Let now calculate the tangent cone in @)y in order to understand which kind
of singularity occurs in Q. With [CoCoA] aid we find that this local cone is:

Spec ((C[[ul, I . ,u7ﬂ>

where [ is the ideal generated by the following polynomials:

u% — UglUg
UqgU7 — UsUE
u% — UsUy
UzUyg + U2Us5 + UL UG
U3U5 + UUg + UL U7T.

The degree of the variety V(I) C P° is 5, this means that Qg is a singular
point of multiplicity 5.

What we want to do now is to describe the singular locus of the local de-
scription. Let us start to calculate the Jacobian of V(I¢), what we find is the
following 5 x 7 matrix:

2 2
uy — 8ujus 2u1 U2 —4ug —3us  bus —3ug4 0
—4uous 3u§ — 4uqus —4uqus 3ur —3ug —3us 3uy
2 2
Jo = —4us 2uous uy — 8uius 0 —3u7r  bug —3us
Ug Uus U4 u3 U2 U1 0
uy Up us 0 us u Ul

Local equations define a fourfold, so we have to find the locus where the
dimension of Ker(Jg) is at least 5. In order to do it we calculate the minimal
system of generators of all 3 x 3 minors of Jg, we intersect the corresponding
variety with V' (Ig), we find a minimal base of generators of the ideal corre-
sponding to this intersection and we compute its radical; the polynomials we
find define, after suitable change of coordinates, the (reduced) variety of singular
locus V (Ig), where Is = (u2 — usur, usug — ugtiy, uf — usup, Ugtie — UgUz, U3Us —
UL U7, U2UE—ULUT, U3U4L —UT UG, U2U5 — UL U, U2U4 — UL U5, u% —Uuius, ug—ug, Ung —
UeU7, ulug —UsU7, U1U2U3 — U4UT, u%ug —U4Ug, U%UQ —U4qUs, u? — UZ) We verified
that the only one singular point of V(Ig) is the origin. Now, let us consider the
map from C? to C7 such that:

(t,s) = (t2,ts, 82,13, 125,152, %). (4)

This is the parametrization of V(Ig); as we have already done we can find
relations between these polynomials and verify that the ideal we get is equal to
Is. Now we can consider the following smooth parametrization from C? to CY:
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(t,8) > (t,5,1% s, 5% 13,15, 5%, 5%)

(which is nothing but the graph of (4)) whose projective closure is the Veronese
surface v3(P?) = Va3 where vg : (P?)* — (P)*,v3(L) = L5.

What we want to find now is the tangent cone in Qo seen inside the singular
locus. Using [CoCoA| we find that its corresponding ideal I is generated by
following polynomials:

u% UgU7 usuy Uquy UqUe
U4U5 ui u% UsUg ’U,g

Uzl — U2U7  UIU5 — U1UT  U2Us — UIUT  UZU4 — ULUE  U2U5 — U1Ug

U2Ugq4 — UTUSF u% — uius.
The ideal fc has multiplicity 4 (the corresponding variety has degree four) and
its radical is the following ideal:

2
Ic = (uy — usuy, ua, us, ug, uz).

Then V(I¢) is a cone and V (I¢) is a double cone.
This gives the description of the singularity at one of the 81 3-torsion points.
O

4 Degree of Kumj(A)

To find the degree of Kums(A), we have to recall some general facts about theta
divisors.

4.1 The Riemann theta divisor

Let X be a curve of genus g and Oy, (x) is the Riemann theta divisor. 1t is
known that it is an ample divisor and

dim [rO© jae(xy| = 19 — 1

(see [GH] Theorem p.317). Recall that for any fixed point gg € X there exists
an isomorphism:

Yg—1,0: Pic? 7 H(X) — Jac(X) = Pic’(X).

The set W,_; of effective line bundles of degree g — 1 is a divisor in Pic?/™!(X)
denoted by ©pj.s-1(x). By Riemann’s Theorem there exists a divisor k of degree
0 such that:

Yg-1,0(Opics-1(x)) = OJac(x) — k-
In a similar way we can define the generalized theta divisor as follows:

O ) = 1E € Pic/ }(X): h°(E ® L) > 0}.

It is known that

Pic(SUx(r, L)) = ZOL', (r,L)
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and there exists a canonical isomorphism:
~ gen *
[rOpico—1(x)| = (O3 (1]

(see [BNR)).

4.2 Degree of Kum;(A)
Let us consider the (2 : 1)—map

¢3 2 SU3(X) — [3Opic1 (x)| = |@§%nx(3)|*

E+—— Dp = {L € Pic"(X): h°(E® L) > 0}.

Definition 4.1. ©,, := {E € SUx(3) : h%(E ®n) > 0} C SUx(3) where n is a
fized divisor in Pic*(X).

Observation: ¢3(0,) = H, C [3Op;.1(x)| and H,, is a hyperplane.

Since ¢3|Kum3(A) : Kums(A) — ¢3(Kums(A)) is a (1 : 1)—map (it is a
well known fact but we will see it in the next section), we have that ©, N
Kum3(X) ~ H, N ¢3(Kumz(X)). In order to study the degree of Kumgs(A)
we have to take four generic divisors 7y,...,74 € Pic'(X) and consider the
respective ©,,,...,0,, C SUx(3). The intersection ©,, N Kums(A) is equal
to {La ® Ly ® L_qp € Kumz(X) : 2 Lo @ Ly DLy p, ®@1;) > 0} = {L, ®
Ly®L_,p € Kum3(A) : hO(La X 777;) > 0} U {La SLy,dL o p € Kumg(A) :
RO(Ly ®n;) >0} U{Ly® Ly ® L_o_p, € Kums(A) : h(L_,_, ® ;) > 0} for all
i=1,...,4. If L, ® Ly ® L_,_ is a generic element of Kums(A) and p is the
(6 — 1)-covering of Kums(A) defined as in (1), then p~ (L, ® Ly & L,_p) C A?
is a set of 6 points. It’s easy to see that p((a,b)) € ©,, N Kumgs(X) if and only
if or hO(Ly ®m;) > 0 or h%(Ly®@n;) > 0 or h°(L_,_p @1;) > 0 where (a,b) € A2
and Lg, Ly, L_,_;, € Pic’(X) are three line bundles respectively associated to
a,b,—a—0be A

Let us recall Jacobi’s Theorem ([GH] page: 235):

Jacobi’s Theorem: Let X be a curve of genus g, go € X and wn,...,wy
a basis for HO(X, Q). For any A € Jac(X) there exist g points p1,...,py € X

such that .

p(> (pi —q0)) = A,

i=1
where

p: Div®(X) — Jac(X)

S (i — i) = (Z/wlz/w>

i qi
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Since Jac(X) is isomorphic to Pic’(X), this theorem has the following two
corollaries:

1. if qo is a fixed point of C, then for all L, € Pic’(X), there are two points
Py, Py in X such that L, ~ Ox (P, + P> — 2qp);

2. Consider the isomorphism
Y10 : Pic'(X) =5 Pic(X)

n—n® 0x(—q)-
For every i = 1,...,4 there are ¢;,,¢;, € C such that n; ~ Ox(¢;, + ¢, —
q0)-
Now these two facts imply that h°(L, ®n;) > 0 if and only if h°(Ox (P, + P, —
2q0) ® Ox (i1 + @2 — qo)) > 0, and this happens if and only if h°(Ox (P +
Py +qi1 + qi2 — 3q0)) > 0.

Notations: ©_ is a translate of theta divisor by k € Pic”(X).

By Riemann’s Singularity Theorem (see [GH], p. 348) the dimension h°(O x (P +
Py+¢;1+qi2—3q0)) is equal to the multiplicity of ¢ o(P1+P2+¢i1+¢i2—3q0)
in ©_; (by a suitable k& € Pic’(X)), i.e. it is equal to the multiplicity of
(Pi+Py+qi1+qi2—4qo) in ©_y. It follows from this fact that RO (Ox (Py+ P+
¢i,1+4i2—3q0)) is greater than zero if and only if (Py+P2+4¢i,1+¢i2—4q0) € O_.

Notations:

Gi = G—k—’m-‘rqo;

Ry = {(a,b) € A2 : (a+b) € {~O:}};

== ((“)Z X A) @] (A x 0;) U R;.
Now (P14 Py +qi1+¢i2 —4qo) € O_y, iff P+ P, —2¢p € ©, which is equivalent
to say that L, belongs to ©;, but this implies that p((a,b)) € ©,, NKums(A) if
and only if L, € ©; or L, € ©; or L_,_;, € O, (or equivalently L, belongs to
{=6;}), i.e. (a,b) € =Z;.

Therefore we can conclude:
(a,b) € A? is such that p((a,b)) € Kumz(4) N O,,, i =1,...,4 if
and only if (a,b) € =;.

The last conclusion together with the observation that #(pr=1(L, ® L, ®
L_,_p)) = 6 gives the following proposition:
Proposition 4.2. deg(Kums(A)) = (#(21 NE2 NE5 N Ey)).

Proof. ﬂ(El NZs NZE3N 54) =6 - ]i(Kumg(A) N @7)1 n 6”72 N @773 N @7,4) =
6 - deg(Kumgs(A)). O

Notations:

10
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RZ’? = {(a,b) € A2 :a € 0; and (a +b) € {—0;}},
R} ={(a,b) € A?:b€ O, and (a+b) € {-O;,}} and
Ris={(a,b) € A% : (a+b) € {—01} N {-O3}}.
Instead of computing directly Z1 NEs NE3NEy, we will compute (23 NE2)N
(E3NEy):
Z1NEy = ((01NO) x A)U(A X (0:N62))U(O; x O2) U (O3 x O1)U(RIMU
(R3) U (RY?) U (RY?) U (R o).
H3NZEy = ((03N04) x A)U(AX (O3N0O4))U (O3 x O4)U (04 x O3)U (RZ’?’) U
(Ry*)U (R U (R5™M) U (Rs.a).
At the end we will obtain that §(E; N 23 NE3 N Ey) = 216 (see also tables 1.
and 2.) and so:

Proposition 4.3. deg(Kums(A4)) = 36.

Proof. In the following two tables we write at place (,7) the cardinality of in-
tersection of the subset of 21 N Zy which we write at the place (0, 7), with the
subset of =3 N Z4 which we write at the place (4,0).

’ M H (@1ﬂ@2)XA‘A><(@1ﬂ@2)‘@1X@2‘@2X@1‘
(03NO4) x A 0 4 0 0
A x (03N 06y) 4 0 0 0

O3 X O4 0 0 4 4
@4 X @3 0 O 4 4
R} 0 4 4 4
Ry" 0 4 4 4
R3S 4 0 4 4
RY? 4 0 4 4
R34 4 4 4 4

Table 1.

| n [ Re” | RY” [ By [ RY” | Ris |
(@3 N @4) x A 0 0 4 4 4
A x (@3 N @4) 4 4 O O 4

O3 x O4 4 4 4 4 4
©4 x O3 4 4 4 4 4
R} 4 4 4 4 0
R$? 4 4 4 4 0
R 4 4 4 4 0
RY? 4 4 4 4 0
R34 0 0 0 0 0
Table 2.

In order to be more clear we show some cases:

11
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R NRE® . RIY'NRY® = {(a,b) € A2:a €O and b e Oz and (a+b) €
{=02} N {—0O4}}. Recall that ©; - ©; = 2. So (a + b) € {ki,k2} where
{k1,k2} = {—62}N{—064}. Fix for a moment (a+b) = k1. If we translate
O; and O3 by —k; we get that a € (01)_,, b € (O3)_k, and a +b = 0,
then b must be equal to —a and a € ((©1)—%,) N ((—O3)+k, ). Then for
fixed a + b the couple (a,b) has to belong to {(hi, —h1), (he, —hs2)} where
((01)4£,) N ((=O3) k) = {1, ha}.

Therefore #(Ry' N RY?) =2.2 =4

(@1 X @2) ﬂR374 : (@1 X @2) ﬂR3,4 = {(a,b) S A2 . q € @1, b € Oy and
(a +b) € {=03} N {—O64}}. Then, as in the previous case, we have
ﬁ((@l X @2) N R314) =4.

Rg’l N ((@3 n @4) X A) : Rg’lﬁ((@gﬁ@4) XA) = {(a,b) cA?:q¢€ ©:N63N
Oy, (a +b) € {—0O2}}, but since O, are generic curves on a surface, their
intersection two by two is the empty set, then #(R3')N((03NO4)x A) = 0.

O

4.3 The degree of Sing(Kumjs(A))

As we have already seen, the singular locus of Kumgs(A) is a surface. What we
want to do now is to compute its degree. We use the notation from the previous
section.

Let us fix two divisors Z; and Z5 in A2. We denote by A the diagonal of
A x A.

Proposition 4.4. deg(Sing(Kums(A))) = $(E1 N2y N A).

Proof. Tt is sufficient to consider the restriction to A of the map p defined as in
(1) and get out the (1 : 1)-map p|a : A — Sing(Kums(A)). O

Proposition 4.5. deg(Sing(Kums(A))) = 42.

Proof. The following table is used in the same way as we used Table 1. and
Table 2. in the previous section:

|

] N
(@1 n @2) x A
A x (@1 n @2)
@1 X 62
@2 X @1
Ry'
R}’
Ry'
R}?
Ry

DI o | o | | || >
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Table 3.

The following list describes Table 3.:

ANA x(©1N02) : we have not considered the intersection points between
A and A x (01N 0O3), ©1 X Oy, Oz X O1 because we have already counted
them in ((©; N BO2) x A) NA.

AN Rg’l : the previous argument can be used for AN Rg’l and AN Rl{’zz we

have already counted these intersection points respectively in Rg’l and in
R}2.

R3'NA : we have now to show that #(Ry"' N A) = 4. The set Ry N A is
{(a,a) e Ax A|a€ O, 2a € (—O2)} which is equal to {(a,a) € Ax A:
2a € ((-602)N(2-01)) and a € ©1}. Let now Ly be the line bundle on
A associated to ©;. The line bundle L? is associated to (2 - ©) and its
divisor is linearly equivalent to 20;. As a consequence of this fact we have
that 2a € (201 N (—BO2)) then #{20; N (—O2)} = 4. Now, since the map
from ©1 to (2-0©7) is 1: 1 we get the conclusion.

Ri2 N A : finally we have that (R; 2NA) is equivalent to the set {a € A | 2a €
((—©61) N (—O2))} whose cardinality is 32.

O

5 On action of the hyperelliptic involution and
Kum;(A)

Let X be a curve of genus 2. Consider the degree 2 map:

2:1

b3 : SUX(S) L P8 = |3@Pic1(X)|

E+— Dp = {L € Pic"(X)/h°(E® L) > 0}
(see [Laz]). Let 7' be the involution on SUx(3) acting by the duality:

7(E) = E*
and 7 the hyperelliptic involution on Pic'(X):
(L) =wx ® L
We will use the following well known relation:
To¢3(F)=¢30 T/(E).
On SUx(3) there is also the hyperelliptic involution h*:

E — h*(E)

13
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induced by the hyperelliptic involution h of the curve X.

We define o := 7’ o h*. Tt is the involution which gives the double covering of
SUx(3) on P8.

The fixed locus of ¢ is obviously contained in SUx (3) and we recall:

¢3(Fix(0)) = Coble sextic hypersurface (5)

(see [Laz]). By definition, the strictly semi-stable locus SUx (3)%* of SUx(3)
consists of isomorphism classes of split rank 3 semi-stable vector bundles of
determinant Ox. Its points can be represented by the vector bundles of the
form F® L or L, ® Ly ® L. with trivial determinant where L, L, Ly, L. are line
bundles and F' is a rank 2 vector bundle. We want to consider the elements of
the form L, ® Ly, ® L. (those belonging to Kums(A)) and actions of previous
involutions on them:

¢ (Lo DLy ®L)= Lo DLy ® L) =L_oDL_p & L_;
o 7'(hW* (Lo ® Ly ® L)) = Ly © Ly @ Le..

This implies that o(Kums(A)) = Kumg(A4) C SUx(3) which means that Kumg(A) C
Fix(o) and then ¢3(Kumgs(X)) C Coble sextic (see 5).

Let us now consider rank 2 semistable vector bundles of trivial determinant:
SUx(2). If we take its symmetric square, we obtain a semisable rank three
vector bundle with trivial determinant:

SUx(2) — SUx(3); E — Sym?*(E).

We want to study the action of involutions defined on the beginning of this
paragraph on Sym?(FE) with E € SUx(2). Since Sym?*(E)* = Sym?(E) =
h*(Sym?(E)), then o(Sym?(E)) = Sym?(E) c SUx(3), so Sym?(SUx(2)) C
Fix(c), and, again by (5), ¢3(Sym?(SUx(2))) C Coble sextic.

Now we want to see the action of 7 on [3O@p;ci(x)|. It is known that
Fix(7) = P4 U P3.

Notations: We denote by P2 and P2

4. respectively, the P? and the P* which
are fixed by action of 7.

Since the image of Sym?(SUx(2)) by ¢3 in P® has dimension 3 and also
$3(Sym?(SUx (2))) C Fix(r), we obtain

¢3(Sym*(SUx (2))) C P2

Let L, ®L_, be an element of Kumy(X) C SUx(2), then Sym?(L,®L_,) =
Loy ® L_9, ® O € Kumg(A) C SUx(3). It means that Sym?(Kumy(A)) C
Kums(A).

Observation: Since {La, ® L_o, ® O € SUx(3)} is isomorphic to S%({L, ®
L_,}), we can view { Lo ® L _2,®0 € SUx(3)} as the image of Kumsy(A) inside

14
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SUx (3) under the symmetric square map. Moreover it follows from the surjec-
tivity of the multiplication by 2 map [2] : A — A that the image of Kumy(A)
in SUx (3) is isomorphic to Kumsy(A).

We have already observed that ¢3|Kum3 (A)
fact allows us to view ¢3(Kums(A)) as the Kum3z(A) in [3Opjc1(x)|- For the same

isa (1:1)—map on the image; this

reason we can view ¢3(Sym?(SUx(2))) as Kumy(A) C |3Opic, (x)|- Using this
language we can say that Kums(A) is left fixed by the action of 7 in Kumg(A) C
30pic, (x)| because [30pic1 (x| D ¢3(Kums(A)) D ¢3(Sym*(SUx (2)) =

= Kumy(A) C P* C Fix(7) C |30, (X)].

Proposition 5.1. Fix(7) N ¢3(Kums(A4)) = (bg(Sym2 (Kums(A))).

Proof. By definition 7(L, ® Ly ® Le) = L @® L_y & L_. then L, ® Ly ® L,
belongs to Fiz(7) if and only if {a,b, c} = {—a, —b, —c}.
Let P belong to {—a,—b,—c} and a = P.

e If P is different from —a, suppose that P = —¢, then {—a,—b,—c} =
{—a,—b,a}; moreover a + b+ ¢ = 0 because L, ® L, ® L. € Kumgs(4) ,
then b = 0.

e Now, if P = —a or, equivalently a = —a, then a = 0 and b = —c.

In both cases L, ® Ly ® L. € Kums(A) such that 7(L, ® Ly ®L.) = Lo ® Ly ® L,
are of the form L, & L_, & Lg. This means that they belong to Kumsy(A) C
|36Pic1 (X) | [

The previous proposition tells us also that P2 N KumzA = . So the pro-
jection of Kumg(A) C [3Opici(x)| from P2 to P} is a morphism. It would be
interesting to find its degree.

Our final observation is the following.
Proposition 5.2. Sing(Kums(A)) N Kumsy(A) = Sing(Kums(A))

Proof. Points of Kums(A) C Kumg(A) are of the form (P,—P,0). Singular
points of Kumg(A) are those which have at least two equal components, then
Sing(Kums(A)) N Kums(A) = {(P,—P,0)} where 2P = 0 that are exactly the
15 points of 2—torsion and one more point (Qx, Ox, Ox) which are singularities
of the usual Kumz(A). This implies that f(Sing(Kums(A4)) N Kumy(A4)) = 16
and Sing(Kumg(A)) N Kumz(A) = Sing(Kums(A)).

O
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