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Abstract. The concept of natural pseudo-distance has proven to be a pow-

erful tool for measuring the dissimilarity between shape properties of topolog-

ical spaces, modeled as continuous real-valued functions defined on the spaces

themselves. Roughly speaking, the natural pseudo-distance is defined as the

infimum of the change of the functions’ values, when moving from one space
to the other through homeomorphisms, if possible. In this paper, we prove the

first available result about the existence of optimal homeomorphisms between

closed curves, i.e. inducing a change of the function that equals the natural

pseudo-distance.

Introduction

Formalizing the concept of shape for topological spaces and manifolds, as well as
providing an efficient comparison of shapes, has been a widely researched topic in
the last decade. As such, a class of methods has been developed with the purpose
of performing a topological exploration of shapes, according to some quantitative
geometric properties provided by a real function chosen to extract shape features
[1, 3, 18, 21, 27].

In this context, Size Theory was introduced at the beginning of the 1990s [13,
14, 15], supported by the adoption of a suitable mathematical tool: the natural
pseudo-distance [9, 10, 11].

In the formalism of Size Theory, a shape is modeled as a pair (X,ϕ), where X
is a topological space and ϕ : X → R is a continuous function [1, 15]. Such a
pair is called a size pair and ϕ is called a measuring function. The role of ϕ is to
take into account only the properties considered relevant for the shape comparison
problem at hand, while disregarding the irrelevant ones, as well as to impose the
desired invariance properties (e.g., invariance with respect to isometries, or affine,
or projective transformations).

The natural pseudo-distance δ measures the dissimilarity between two size pairs
(X,ϕ), (Y, ψ). Roughly speaking, it is defined as the infimum of the variation of
the values of ϕ and ψ, when we move from X to Y through homeomorphisms,
if possible (see Definition 1.2). Therefore, two size pairs “have the same shape” if
they share the same shape properties, expressed by the measuring functions’ values,
that is, their natural pseudo-distance vanishes.
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2 A. CERRI AND B. DI FABIO

Earlier results about the natural pseudo-distance can be divided into two classes.
One class gives information on the possible values assumed by the natural pseudo-
distance δ between two size pairs (X,ϕ), (Y, ψ). For example, if the considered
topological spaces X and Y are smooth closed manifolds and the measuring func-
tions are also smooth, then it holds that δ((X,ϕ), (Y, ψ)) = C

k
, with C the distance

between two critical values of the functions ϕ and ψ, and k a suitable positive in-
teger number [9]. In particular, the value of k can only be either 1 or 2 in the case
of curves [11], while it cannot be greater than 3 in the case of surfaces [10].

The other class of results provides an estimation of the natural pseudo-distance
[8, 17], with particular reference to the use of the so-called size functions [5, 8].
Size functions are shape descriptors containing information about the considered
size pairs, and admitting a discrete and complete representation by means of certain
countable sets of points in the real plane [12, 16, 22]. Comparing these sets of points
induces a distance between the associated size functions, which has proven to be a
lower bound for the natural pseudo-distance between the considered size pairs [5].
In this way, it is possible to obtain information about the natural pseudo-distance
without actually computing it. The research on size functions has led to a formal
setting, which has turned out to be useful, not only from a theoretical point of
view, but also on the application side (see, e.g., [2, 4, 7, 25, 26]).

The contribution of this paper. Besides being a useful theoretical tool for ap-
plications in shape comparison, the natural pseudo-distance is challenging from the
mathematical point of view, and several questions about its properties need further
investigation. One among them consists in establishing the conditions ensuring the
existence of optimal homeomorphisms between size pairs, i.e. homeomorphisms re-
alizing the natural pseudo-distance (cf. Definition 1.3). It is possible to show that,
in general, such homeomorphisms do not exist (see, e.g., Section 2).

In this paper, we provide the first available result about the existence of optimal
homeomorphisms (Theorem 3.4). To be more precise, our result shows that, if
the considered spaces are closed curves (i.e. compact and without boundary 1-
manifolds) endowed with Morse measuring functions such that the natural pseudo-
distance is zero, it is possible to construct a point-to-point match between such
curves, that is optimal in the sense that it does not change the measuring functions’
values. In the language of Size Theory, this means that the considered curves
share the same shape properties with respect to the chosen measuring functions.
Moreover, from a topological point of view, this means that it is possible to quotient
the space of Morse functions on the circle S1 in such a way that the equivalence
classes are closed (see Section 3.1).

The subject of our work fits in the current mathematical research and interest
in simple closed curves, motivated by problems concerning shape comparison and
matching in Computer Vision. For example, in [23] and [24] the authors anal-
yse (from a mathematical point of view) the (dis)similarity judgement induced by
human perception in comparing 2-dimensional shapes. Modeling such shapes as
compact, simply connected planar regions bounded by simple closed curves, they
are led to study Riemannian metrics on the space of closed curves. In [19] and
[20] the author, inspired by problems coming from applied sciences, studies certain
correspondences (the so-called bimorphisms) between simple closed planar curves,
in order to model in a rigorous way the concept of “optimal match” between these



ON CERTAIN OPTIMAL HOMEOMORPHISMS BETWEEN CLOSED CURVES 3

objects. Indeed, the problem of curve matching is a lively research topic in dis-
ciplines such as Image Analysis, Image Comparison and Pattern Recognition. In
such contexts, matching two closed curves allows, for example, the comparison of
two planar images by taking into account their silhouettes or contour curves, with
applications, e.g., in medicine, cognitive science, and information technology.

Before going on, let us add that our result appears to be useful in proving the sta-
bility of Reeb graphs of close curves under function perturbations [6]. Reeb graphs
are bodies of 1-dimensional simplicial complexes that can be used for studying the
shape of a manifold. Indeed, they encode the evolution and arrangement of level
sets of a simple Morse function defined on the manifold. Since their introduction in
computer graphics, Reeb graphs have been gaining popularity as an effective tool
for shape analysis and matching.

Outline. The paper is divided into three sections. Section 1 deals with some of the
standard facts on the comparison of size pairs via the natural pseudo-distance. In
particular, the definition of the natural pseudo-distance δ and its main properties
are recalled, focusing on the concepts of optimal matching and d-approximating
sequence. Section 2 is devoted to the description of some simple and clarifying
examples showing that all the conditions we require in stating our main result are
necessary. In Section 3 we prove our main result concerning the existence and
the construction of an optimal homeomorphism between two smooth closed curves
endowed with Morse measuring functions (Theorem 3.4).

1. Preliminaries

In Size Theory, a size pair is a pair (X,ϕ), where X is a non-empty, compact,
locally connected Hausdorff space and ϕ : X → R is a continuous function called
a measuring function. Let Size be the collection of all the size pairs, and let
(X,ϕ), (Y, ψ) be two size pairs. We denote by H(X,Y ) the set of all homeomor-
phisms from X to Y .

Definition 1.1. If H(X,Y ) 6= ∅, the function Θ : H(X,Y ) → R given by

Θ(f) = max
x∈X

|ϕ(x)− ψ(f(x))|

is called the natural size measure with respect to the measuring functions ϕ and ψ.

Roughly speaking, Θ(f) measures how much f changes the values taken by the
measuring functions, at corresponding points.

Definition 1.2. We shall call natural pseudo-distance the (extended) pseudo-
distance δ : Size× Size→ R ∪ {+∞} defined as

δ ((X,ϕ), (Y, ψ)) =

{
inf

f∈H(X,Y )
Θ(f), if H(X,Y ) 6= ∅

+∞, otherwise.

Note that δ is not a distance, since two different size pairs (X,ϕ), (Y, ψ) can
have a vanishing pseudo-distance. In that case, X and Y are only sharing the same
shape properties with respect to the chosen functions ϕ and ψ, respectively.

A simple example shows this fact. Let us consider the circle X = {(u, v) ∈
R

2 : u2 + v2 = 1} and the ellipse Y = {(u, v) ∈ R
2 : au2 + v2 = 1} for a fixed

real number a > 0, a 6= 1. Moreover, let us endow X and Y with the measuring
functions ϕ = ξ|X and ψξ|Y , respectively, where ξ : R

2 → R is the continuous
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function taking each (u, v) ∈ R
2 to its ordinate v. In this case, it can be proved

that δ ((X,ϕ), (Y, ψ)) = 0. Indeed, it is easy to check that a homeomorphism exists
deforming X into Y in such a way that each point of X is mapped into a point of
Y having the same ordinate.

On the other hand, if we endowX and Y with the functions ϕ̂ = ξ̂|X and ψ̂ = ξ̂|Y ,

respectively, where ξ̂ : R2 → R is the continuous function taking each (u, v) ∈ R
2

to its Euclidean distance from the axis origin, it follows that δ
(
(X, ϕ̂), (Y, ψ̂)

)
=

∣∣∣ 1√
a
− 1

∣∣∣ > 0.

Therefore, in our framework, we can say that X and Y have the same “shape”
if compared with respect to their height, while they have a different “shape” when
considered in terms of the distance from their center of mass.

Definition 1.3. Let (X,ϕ), (Y, ψ) be two size pairs with H(X,Y ) 6= ∅. We shall
say that f ∈ H(X,Y ) is an optimal homeomorphism if Θ(f) = δ ((X,ϕ), (Y, ψ)).

Let us observe that such a homeomorphism may not exist, and even when it
exists, it is not straightforward to define it. On the other hand, Definition 1.2
implies that, ifH(X,Y ) 6= ∅, we can always find a sequence (fk) of homeomorphisms
from X to Y such that lim

k→∞
Θ(fk) = δ ((X,ϕ), (Y, ψ)).

Definition 1.4. Let (X,ϕ), (Y, ψ) be two size pairs with δ ((X,ϕ), (Y, ψ)) = d <∞.
Every sequence (fk) of homeomorphisms fk : X → Y such that lim

k→∞
Θ(fk) = d is

said to be a d-approximating sequence from (X,ϕ) to (Y, ψ).

Remark 1.5. We observe that (fk) is a d-approximating sequence from (X,ϕ) to
(Y, ψ) if and only if (f−1

k ) is a d-approximating sequence from (Y, ψ) to (X,ϕ).

The main goal of this paper is to show that an optimal homeomorphism exists
between two size pairs (X,ϕ) and (Y, ψ), under the following conditions:

(a) δ((X,ϕ), (Y, ψ)) = 0;
(b) X and Y are two curves;
(c) ϕ and ψ are Morse (i.e., of class C2 with invertible Hessian at each critical

point) measuring functions.

This result will be formally given and proved later (Theorem 3.4), in the case of
closed curves. However, we remark that the closedness requirement will be made
only for the sake of simplicity. Indeed, it can be weakened to compact 1-manifolds
having non-empty boundary, without much affecting the following reasonings.

Remark 1.6. The reader may wonder why we are defining the natural pseudo-
distance δ in terms of homeomorphisms instead of diffeomorphisms, since the above
assumption (c) states that the measuring functions are Morse. The answer is that,
under our assumptions, Definition 1.2 is invariant with respect to such a choice.
Indeed, it is well known that each homeomorphism between compact differentiable
1-manifolds can be approximated arbitrarily well by diffeomorphisms (we recall that
the concepts of topological and differentiable manifold coincide in dimension 1). On
the other hand, dealing with homeomorphisms allows us to slim down examples and
proofs from useless technical steps.



ON CERTAIN OPTIMAL HOMEOMORPHISMS BETWEEN CLOSED CURVES 5

2. Some explanatory examples

We provide here three meaningful examples showing that assumptions (a), (b),
(c) introduced in Section 1 are necessary to ensure the existence of an optimal
homeomorphism between two size pairs (X,ϕ) and (Y, ψ). Indeed, if one among
them is dropped, then Theorem 3.4 does not hold.

Without loss of generality, in the examples and figures we describe here, we shall
always assume that the spaces X and Y are embedded in R

3 and both ϕ and ψ
are the z-coordinate functions, i.e. ϕ = z|X , ψ = z|Y . In the sequel, by abuse of
notation, we will simply write ϕ = ψ = z.

Example 1 (Hypothesis (a) fails). We report an example introduced in [9]. It
shows that, if two size pairs satisfy hypotheses (b) and (c), but have a non-vanishing
natural pseudo-distance, then an optimal homeomorphism may not exist.
PSfrag replacements

xA

xB

xC
x ε
D

x ε
E

y ε
E

yC

y ε
D

gε

z

2ε

X Y

max z

min z

Figure 1. An example of two closed curves X, Y endowed with the Morse

function z. No optimal homeomorphism exists between (X, z), (Y, z) because
their natural pseudo-distance is non-zero.

Let us consider the two size pairs (X, z), (Y, z) depicted in Figure 1, where X
and Y are smooth closed curves in R

3, embedded in the real plane, endowed with
the Morse function z.

As can be seen in Figure 1, the points xA, xB ∈ X are critical points of the
function z and z(xC) = 1

2 (z(xA) + z(xB)) = z(yC). In [11] it has been proved
that the natural pseudo-distance between homeomorphic smooth closed curves,
endowed with Morse measuring functions, is always obtainable in terms of some
critical values of the measuring functions. Actually, in this example it is possible
to show that the natural pseudo-distance between (X, z) and (Y, z) takes the value
d = 1

2 (z(xA) − z(xB)). On the other hand, it will also be proved that no optimal
homeomorphism exists. Indeed, we can construct a sequence of homeomorphisms
(fk), such that lim

k→∞
Θ(fk) =

1
2 (z(xA) − z(xB)), and show that Θ(f) > 1

2 (z(xA) −

z(xB)) for every homeomorphism f ∈ H(X,Y ). The first step consists in proving
that, for every ε > 0, a homeomorphism gε : X → Y exists, such that Θ(gε) ≤
1
2 (z(xA) − z(xB)) + 2ε. Accordingly, consider the points x ε

D, x ε
E , y

ε
D and y ε

E in
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Figure 1, verifying z(x ε
D) = z(y ε

D) = z(xC) + ε and z(x ε
E) = z(y ε

E) = z(xC) − ε.
We can choose a homeomorphism gε, taking the arc x ε

D xCx
ε
E to the arc y ε

D yCy
ε
E

in such a way that gε(x
ε
D) = y ε

D and gε(x
ε
E) = y ε

E . Outside the arc x ε
DxCx

ε
E in X

define gε by mapping, in the unique possible way, every point x to a point gε(x)
satisfying z(x) = z(gε(x)). For every k ∈ N \ {0} set fk = g 1

k

. It can be easily

verified that lim
k→∞

Θ(fk) =
1
2 (z(xA)− z(xB)).

It only remains to prove that Θ(f) ≤ 1
2 (z(xA)− z(xB)) for no homeomorphism

f ∈ H(X,Y ). Indeed, if such a homeomorphism existed, then, for every x ∈ X, we
would have |z(x)− z(f(x))| ≤ 1

2 (z(xA)− z(xB)). By replacing x with xA and xB ,

respectively, we obtain that 1
2 (3z(xA)−z(xB)) ≥ z(f(xA)) ≥

1
2 (z(xA)+z(xB)) and

1
2 (z(xA)+z(xB)) ≥ z(f(xB)) ≥

1
2 (3z(xB)−z(xA)), respectively. Hence, z(f(xA)) ≥

z(yC) ≥ z(f(xB)). As a consequence, by extending such f to the whole curve, at
least one point x ∈ X could be found such that |z(x)−z(f(x))| > 1

2 (z(xA)−z(xB)),
contradicting our assumption.

Example 2 (Hypothesis (b) fails). This example, introduced in [9], shows that
there may not exist an optimal homeomorphism between two size pairs satisfying
hypotheses (a) and (c), but missing hypothesis (b).

PSfrag replacements
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xB f ◦ γ

y ε
D

γ

f

z

X Y

Figure 2. An example of two size pairs (X, z) and (Y, z), whose natural

pseudo-distance is zero. No optimal homeomorphism exists between (X, z),

(Y, z) because X and Y are not curves.

Consider the smooth surfaces X and Y displayed in Figure 2 and the corre-
sponding measuring function z. It is easy to show that the natural pseudo-distance
between the two size pairs is zero. Indeed, it is possible to isotopically deform
the left surface to the right one by “torsion”, exchanging the positions of the two
smallest humps. This deformation can be performed by an arbitrarily small change
in the values of the z-coordinate. Therefore, a sequence of homeomorphisms (fk)
from X to Y can be constructed, such that lim

k→∞
Θ(fk) = 0. However, no optimal

homeomorphism exists between the two size pairs. Suppose indeed there exists a
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homeomorphism f such that Θ(f) = 0. Consider a path γ as in Figure 2, chosen
in such a way that, in the image of the path, z(x) = z(xA) for no point x ∈ X
different from xA. It can be easily verified that the image of the path f ◦ γ has to
contain more than one point at which z takes the value z(xA). This contradicts our
assumptions, since Θ(f) = 0 implies z(f(x)) = z(x) for every x in the image of γ.

Example 3 (Hypothesis (c) fails). This last example shows that there may not
exist an optimal homeomorphism between two closed curves having vanishing nat-
ural pseudo-distance if such curves are endowed with measuring functions missing
hypothesis (c).

PSfrag replacements

xA xB yC

x ε
A x ε

B y ε
A y ε

B

gε

z

ε

X Y

Figure 3. An example of two size pairs (X, z) and (Y, z), whose natural
pseudo-distance is zero. No optimal homeomorphism exists between (X, z),
(Y, z) because z|X is not Morse.

Let us consider the two size pairs (X, z) and (Y, z) in Figure 3, where X and Y
are smooth closed curves. As can be seen, the measuring function z is not Morse
on X.

We see that the natural pseudo-distance between (X, z) and (Y, z) is vanishing,
but an optimal homeomorphism does not exist. Indeed, such a map should verify
max
x∈X

|z(x) − z(f(x))| = 0, and therefore it should take each point of the segment

xAxB to the point yC , against the injectivity.

Let us observe that the above Example 3 can be seen as a particular case of the
following more general fact.

Remark 2.1. It can be easily shown that taking a Morse function ϕ on a m-
dimensional closed manifold X, it is always possible to find a continuous real-valued
function ψ on the same manifold such that the natural pseudo-distance between
(X,ϕ) and (X,ψ) is zero, but no optimal homeomorphism on X exists.

3. Main theorem

In this section we prove the main theorem of this paper which states that an
optimal homeomorphism exists between two closed curves, endowed with Morse
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measuring functions, and whose natural pseudo-distance is zero (see Theorem 3.4).
Roughly speaking, the proof involves the idea to construct such a homeomorphism
between the two curves as a continuous extension of a bijective map existing between
measuring functions’ critical points. The optimality is finally showed in the proof
of Theorem 3.4.

Let us now introduce some notations and assumptions we shall adopt in the rest
of this section.

Let (X,ϕ), (Y, ψ) be two size pairs, with X, Y two closed curves, and ϕ, ψ Morse
measuring functions, and suppose that δ ((X,ϕ), (Y, ψ)) = 0.

For the sake of simplicity, from now on we shall assume that the considered
curves are connected. However, note that this last hypothesis can be weakened to
any finite number of connected components, without much affecting the following
reasonings.

Let us now consider two parameterizations hX : S1 → X, hY : S1 → Y . Con-
sidering the clockwise orientation on S1 ⊂ R

2, the homeomorphisms hX , hY allow
us to induce an orientation on X and Y , respectively. Accordingly, for every two
distinct points x, x′ ∈ X (respectively y, y′ ∈ Y ), we shall denote by x y x′ (resp.
y y y′) the oriented path on X (resp. Y ), induced by hX (resp. hY ), from the
point x (resp. y) to the point x′ (resp. y′), going clockwise along S1, and including
both x and x′ (resp. y and y′).

Let us consider a 0-approximating sequence (fk)k∈N
of homeomorphisms from

(X,ϕ) to (Y, ψ), i.e. such that lim
k→∞

Θ(fk) = 0. Since homeomorphisms between

closed curves can be orientation-preserving or not, for the sake of simplicity we
shall assume (possibly by considering a subsequence of (fk)) that the orientation
is maintained by each fk. Indeed, if this is not the case, we can consider a new

parametrization ĥY inducing an orientation that is opposite to the one induced by
hY .

Let {x1, . . . , xn}, n ≥ 2, be the sequence of critical points of ϕ, taken in X
following the orientation induced by hX , and starting from x1 arbitrarily chosen.
Obviously, they are even in number, and correspond, alternatively, to the minima
and maxima of ϕ on X. By using the Cantor’s diagonalization argument, and from
the compactness of X and Y , we can assume (possibly by considering a subsequence
of (fk)) that there exists lim

k→∞
fk(xi) for every i = 1, . . . , n. Let us denote lim

k→∞
fk(xi)

by yi for every i = 1, . . . , n.

Remark 3.1. Note that, for every x ∈ X such that there exists lim
k→∞

fk(x), the

equality ϕ(x) = ψ( lim
k→∞

fk(x)) holds. Indeed, since (fk) is a 0-approximating se-

quence, |ϕ(x)− ψ( lim
k→∞

fk(x))| = lim
k→∞

|ϕ(x)− ψ(fk(x))| = 0.

Let us now prove that y1, . . . , yn are n distinct points of Y .

Lemma 3.2. For every i, j ∈ {1, . . . , n}, if yi = yj, then xi = xj.

Proof. Let yi = yj . By contradiction, let us assume that xi 6= xj . Then, for
every k ∈ N, fk(xi) 6= fk(xj), and lim

k→∞
fk(xi) = lim

k→∞
fk(xj). Moreover, as a

consequence of Remark 3.1, ϕ(xi) = ψ(yi) = ψ(yj) = ϕ(xj). Since ϕ is Morse, it
is necessarily non-constant on the path xi y xj . Therefore there exists at least
one point x ∈ xi y xj , such that |ϕ(x) − ϕ(xi)| > 0. Since we are assuming that
each fk is orientation-preserving, it follows that fk(x) ∈ fk(xi) y fk(xj) for every
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k ∈ N. Passing to the limit, we have therefore lim
k→∞

fk(x) = yi. Hence, once again

by Remark 3.1, 0 = |ϕ(x)− ψ(yi)| = |ϕ(x)− ϕ(xi)| > 0, giving an absurd. �

In the sequel, for i 6= 1, . . . , n, we convene that xi (resp. yi) is equal to x(i mod n)

(resp. y(i mod n)).
The result below shows that each yi is a critical point of ψ “of the same type”

of the corresponding xi.

Lemma 3.3. For every i ∈ {1, . . . , n}, the following statements hold:

(i) If xi is a local minimum point of ϕ, then yi is a local minimum point of
ψ.

(ii) If xi is a local maximum point of ϕ, then yi is a local maximum point of
ψ.

Proof. Let us prove only (i). Statement (ii) can be verified analogously.
Let xi be a local minimum point of ϕ. Then xi−1 and xi+1 are local maximum

points of ϕ, with ϕ(xi) < ϕ(xi−1), ϕ(xi+1). Since ϕ(xj) = ψ(yj) for every index
j, it follows that ψ(yi) < ψ(yi−1), ψ(yi+1). Moreover, since each fk is assumed to
be orientation-preserving, if xi ∈ xi−1 y xi+1, then fk(xi) ∈ fk(xi−1) y fk(xi+1)
for every k ∈ N. Hence, passing to the limit, it holds that yi ∈ yi−1 y yi+1, with
yi−1, yi, yi+1 distinct because of Lemma 3.2.

Contrary to our assertion, let us now suppose that yi is not a local minimum
point of ψ. Then, we can find a point y ∈ yi−1 y yi+1 such that ψ(y) < ψ(yi) <
ψ(yi−1), ψ(yi+1). Consequently, there exists k ∈ N such that, for every k ≥ k, y ∈
fk(xi−1) y fk(xi+1), implying that, by the orientation-preservation assumption,
f−1
k (y) ∈ xi−1 y xi+1 for every k ≥ k. Possibly by considering a subsequence

of (f−1
k ), we can assume that (f−1

k (y)) converges. Let x = lim
k→∞

f−1
k (y). Then

x ∈ xi−1 y xi+1. Therefore ϕ(x) ≥ ϕ(xi) = ψ(yi) > ψ(y), leading to 0 =
lim
k→∞

|ϕ(f−1
k (y)) − ψ(y)| = |ϕ(x) − ψ(y)| > 0, thus getting a contradiction (cf.

Remarks 1.5 and 3.1). �

We observe that ψ does not admit any other critical point besides y1, . . . , yn.
Indeed, let us suppose that ψ has m critical points, m > n, and that (possibly by
extracting a subsequence of (fk)) (f

−1
k ) converges at all such points. Then we can

apply Lemmas 3.2 and 3.3 by interchanging the roles of X and Y . In this way,
we obtain that the number of critical points of ϕ is not smaller than m, giving an
absurd.

We are now ready to give the main result of this paper.

Theorem 3.4. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y closed curves, and
ϕ : X → R, ψ : Y → R Morse measuring functions such that δ ((X,ϕ), (Y, ψ)) = 0.
Then there exists an optimal homeomorphism f : X → Y .

Proof. Let us define f : X → Y as follows:

• f(xi) = yi;
• for every x ∈ xi y xi+1, f(x) = y with y ∈ yi y yi+1 and ψ(y) = ϕ(x).

Obviously the restriction of f to {x1, . . . , xn} is injective because of Lemma 3.2 and
surjective because the sets of critical points of ϕ and ψ have the same cardinality.



10 A. CERRI AND B. DI FABIO

Let us prove that f is well defined on X and bijective. It is sufficient to show
that, for every index i, if ϕ is strictly increasing (resp. decreasing) on the arc
xi y xi+1, then ψ is strictly increasing (resp. decreasing) on the arc yi y yi+1.

Let ϕ be strictly increasing on the arc xi y xi+1, and prove that ψ is strictly
increasing on the arc yi y yi+1 (the other case can be shown similarly). Un-
der our assumptions, we have ϕ(xi) < ϕ(xi+1), with xi a local minimum point
and xi+1 a local maximum point of ϕ. Therefore, by Remark 3.1, it follows that
ψ(yi) < ψ(yi+1), and by Lemma 3.3, yi is a local minimum point and yi+1 is a
local maximum point of ψ. By contradiction, let us suppose that ψ is no strictly
increasing on the arc yi y yi+1. Since ψ is Morse on the curve Y , there exists
at least one index  ∈ {1, . . . , n},  6= i, i + 1, such that the critical point y of ψ
belongs to yi y yi+1. Then, the critical point x of ϕ is such that lim

k→∞
fk(x) = y,

but x /∈ xi y xi+1. This means that there exists k ∈ N such that, for every k ≥ k,
fk(x) ∈ fk(xi) y fk(xi+1) , but x /∈ xi y xi+1. Hence, we get an absurd because
each fk is a homeomorphism.

To conclude, let us observe that, by construction, f is a homeomorphism, and it
attains the natural pseudo-distance, that is Θ(f) = 0. �

As an immediate consequence of the previous theorem, we have the following
Corollary 3.5, establishing a necessary and sufficient condition so that the natural
pseudo-distance between two size pairs vanishes.

Corollary 3.5. Let (X,ϕ), (Y, ψ) be two size pairs, with X,Y closed curves, and
ϕ : X → R, ψ : Y → R Morse measuring functions. Then δ ((X,ϕ), (Y, ψ)) = 0 if
and only if there exists an homeomorphism f : X → Y such that ϕ = ψ ◦ f .

Proof. The direct statement immediately follows from Theorem 3.4. Conversely,
if such a homeomorphism f exists, then, by Definition 1.1, Θ(f) = 0. Since 0 ≤
δ ((X,ϕ), (Y, ψ)) ≤ Θ(f), the claim is proved. �

Figure 4 shows an example of how Corollary 3.5 can be used to decide if different
closed curves have “the same shape” when compared with respect to a particular
property (i.e., when a particular measuring function is considered).
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Figure 4. Four size pairs (Ci, ϕi), with ϕi : Ci → R, ϕi(x) = ‖x − p‖ for

every x ∈ Ci. For each two of these pairs, there exists an optimal homeomor-

phism, defined as in the proof of Theorem 3.4.

Fore every i = 1, . . . , 4, the plane curve Ci is endowed with the Morse measuring
function ϕi, taking each point of Ci to its Euclidean distance from the fixed point
p ∈ R

2. The critical points of ϕi, i = 1, . . . , 4, are displayed in figure. The size
pairs are chosen in such a way that the natural pseudo-distance δ ((Ci, ϕi), (Cj , ϕj))
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is equal to 0 for every i, j = 1, . . . , 4. Indeed, as in the proof of Theorem 3.4, we
can easily define homeomorphisms fij : Ci → Cj by matching each critical point of
ϕi with the corresponding critical point of ϕj , and then extending linearly such a
correspondence. Obviously, fij preserves the measuring functions’ values, hence,
by Corollary 3.5, δ ((Ci, ϕi), (Cj , ϕj)) = 0.

In this way, we could say that the four closed curves share the same shape
property that is described by the chosen measuring functions and is characterized
by the presence of 4 humps.

We observe that the shape property described in this example is invariant un-
der rotations and reflections of the curves with respect to the point p, and under
non-rigid deformations preserving the local minimum and maximum values of the
associated measuring functions. This last invariance property could be particularly
useful in Computer Vision applications, since it usually happens that two shapes
can be perceived as similar even if they are non-rigidly related.

Moreover, any other size pair (closed curve, Euclidean distance from p) with
different measuring functions’ critical values, as well as with a different number,
or a different relative order, of critical points, would have a “different shape” if
compared with the previous ones.

3.1. A topological interpretation of Theorem 3.4. From a topological point
of view, our main result can be used to characterize the Morse functions on the
circle S1 up to the composition with homeomorphisms on S1 that do not change
functions’ values. Indeed, if we replace X and Y by S1 in Theorem 3.4, we can
consider the set of Morse functions on S1, M(S1,R), endowed with the uniform
convergence topology. Then, we can quotient such a space defining the following
equivalence relation: for every ϕ,ψ ∈ M(S1,R), ϕ ∼ ψ if and only if ϕ = ψ ◦ f ,
with f : S1 → S1 homeomorphism. In this way, we can rephrase Theorem 3.4 as
follows.

Theorem 3.4 (restated). The equivalence classes defined by the relation ∼ are
closed in M(S1,R).

As an immediate consequence, we have that the natural pseudo-distance induces

a distance δ̃ on the space M(S1,R)/∼, by setting δ̃([ϕ], [ψ]) = δ
(
(S1, ϕ), (S1, ψ)

)

for every ϕ,ψ ∈ M(S1,R).

4. Conclusions and future works

In this paper we have proved that there always exists an optimal homeomorphism
between two size pairs (X,ϕ), (Y, ψ) having vanishing natural pseudo-distance,
under the assumptions that X,Y are closed curves, and ϕ,ψ are Morse measuring
functions. We point out that this result is the first available one concerning the
existence of optimal homeomorphisms between size pairs. Indeed, until now the
research has been developed mainly focusing on the relations between the natural
pseudo-distance and the critical values of the measuring functions, as well as on
the estimation of the natural pseudo-distance via lower bounds provided by size
functions. Our result opens the way to further investigations, in order to obtain
a generalization to the case of m-dimensional manifolds, m > 1. To this end, as
shown in Example 2, it is clear that we should consider measuring functions either
satisfying more restrictive conditions (e.g. simple Morse functions), or taking values
in R

n, with n > 1. In the latter case, an interesting research line appears to be, for
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example, to consider measuring functions having finite preimage for each point in
the range, or characterized by a behavior analogous to that of Morse functions in
the 1-dimensional case.
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ARCES, Università di Bologna, via Toffano 2/2, I-40135 Bologna, Italia
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