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Abstract

Subdivision is a powerful mechanism for generating curves and surfaces from discrete sets of control points. So far,
the main advantage of subdivision methods with respect to other free-form representations, such as splines, has been
acknowledged in their ability to generate smooth surfaces of arbitrary topology. In this paper we propose a method
to generate non uniform subdivision surfaces interpolating regular quadrilateral meshes. We show that, choosing a
suitable parameterization and properly setting edge and face point rules, these surfaces favorable compare both with
their uniform counterpart and with non uniform tensor product splines.
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1. Introduction

In this paper we consider the problem of interpolating a regular grid of points, i.e. a quadrilateral net where each
vertex has four incident edges. The easiest approach relies on parametric tensor-product surfaces and, since the ability
to control the final shape is fundamental in a variety of applications, a crucial issue is how to suitably choose the
parameter values corresponding to the interpolation points. The parameterization, in fact, significantly affects the
visual appearance of the interpolant. While in the surface case investigations on this topic are still very limited, in
the curve case several results have already been collected. In particular, it is well known that, when interpolating
unequally spaced data, the uniform parameterization corresponds to the most unsatisfactory choice since it tends to
create artifacts such as cusps and self-intersections; oppositely, the centripetal parameterization leads to curves that
favorably compare with their uniform counterpart, as they stay closer to the assigned polyline. An example of the
different behavior of the same interpolant with respect to uniform and centripetal parameterization is given in Figure
1, exploiting the class of locally supported spline functions proposed in [5].
For many years, the reasoning behind the conjecture that the centripetal parameterization be optimal in the context
of interpolation has been limited to informal explanations based on intuition. Only recently the work in [10] has
provided a formal mathematical explanation of the fact that, for cubic splines, the centripetal parameterization signifi-
cantly bounds the global and local deviation of the resulting curve from its data polygon. In a similar way, in [18], it is
proven that, for cubic Catmull-Rom curves, the centripetal parameterization is the only one that guarantees no cusps
and self-intersections within curve segments. As concerns interpolating subdivision curves, a result confirming the
advantage of the centripetal parameterization was proven in [7] where, for the 4-point scheme, the uniform, chordal
and centripetal parameterizations are compared, showing that the centripetal one minimizes the distance between data
polygon and limit curve.
For all these reasons, it is natural to consider the centripetal parameterization the best choice within the family of
non-uniform parameterizations also in the surface case, when using a tensor-product spline to interpolate the vertices
of a quadrilateral mesh.
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Figure 1: Comparison between quadratic spline curves interpolating highly non-uniform data through uniform (left) and centripetal (right) para-
meterization.

This work originates from the observation that, even if based on the centripetal parameterization, a tensor-product
spline interpolant may not offer an optimal solution to the considered interpolation problem. To understand why,
let us denote by P = {pi, j}i, j∈Z the vertices of the given regular quadrilateral mesh and by X = {xi, j} the associated
non-uniform parameter values. In order to compute the tensor-product surface interpolating the vertices pi, j in cor-
respondence to the parameters xi, j, it is necessary to work out only two parameter sets corresponding to the axial
directions. The solving strategy is to compute the average of the parameter values xi, j, previously defined along the
two directions, thus loosing information that turn out to be crucial to the quality of the interpolant. In particular each
section curve of the mesh is not allowed to maintain its own non-uniform parameterization, as would be especially de-
sirable in the interpolation context, but it is parameterized by the average of the parameterizations of all section curves
in the related axial direction. The strict structure of the tensor product is thus acknowledged as the main obstacle to a
good interpolant, as discussed e.g. in [9], §7.5.1.
In the remainder of the paper we introduce a novel method to get a good quality surface interpolating the vertices of a
regular quadrilateral mesh, by defining a non-uniform interpolatory subdivision algorithm that exploits the advantages
of a whole set of parameters xi, j.
For approximation purposes, similar methods were firstly studied in [14] and most recently in [3, 13], where the au-
thors propose non-uniform subdivision algorithms based on biquadratic and bicubic B-splines. In this paper we will
focus our attention on the problem of interpolating quadrilateral nets through non-uniform refinement rules based on
a class of univariate interpolatory 4-point schemes. In the context of interpolatory subdivision, univariate refinement
algorithms with non-uniform parameters were firstly introduced by Daubechies et al. [6]. Dyn et al. [7] successively
proposed to apply iterated centripetal parameterizations to the 4-point scheme of this family derived by up-sampling
from the cubic non-uniform Lagrange interpolant. Since this approach requires recomputing the underlying parame-
terization at each subdivision step, the resulting refinement process is non-linear and, by using an ad hoc analysis, the
authors prove that it generates C0 limit curves.
In this paper we provide the general refinement rules of a non-uniform 4-point based subdivision algorithm that, be-
sides exploiting the advantages of the centripetal parameterization, is linear and capable of generating continuous
surfaces of good quality. Due to the acknowledged difficulty of the problem, G1 continuity is only conjectured and
empirically shown by a wide range of experiments.

The remainder of the paper is organized as follows. In Section 2 we recall the refinement rules of the class of
non-uniform interpolatory 4-point schemes we start with. In Section 3 we describe the key ideas at the basis of our
non-uniform interpolatory subdivision scheme for regular quadrilateral meshes and we explain in detail the edge and
face point rules it relies upon. Then, in Section 4 we perform the continuity analysis of the proposed surface scheme
and in Section 5 we show some numerical examples confirming the effectiveness of our proposal and its advantages
with respect to its uniform counterpart and to tensor-product splines. A summary of the main contributions of this
paper and the outline of our future work are described in Section 6.
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2. A class of non-uniform interpolatory 4-point schemes

The novel surface scheme we are going to present is conceived as a generalization of a non-uniform interpolatory
4-point scheme, that we will call reference scheme. Thus, before defining the surface refinement rules, we briefly
overview the related univariate method.
Denoted by P0

= {p0
i } the vertices of the initial polyline and by X0

= {x0
i } the associated parameterization, for all

k ≥ 0 the general form of the refinement equations of a non-uniform interpolatory 4-point scheme is

pk+1
2i = pk

i
pk+1

2i+1 = ak
0,i p

k
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1,i p
k
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2,i p
k
i+1 + ak

3,i p
k
i+2

where the coefficients ak
h,i, h = 0, ..., 3 strictly depend on the parameterization of the k-level polyline Pk. It is

natural to assume that these coefficients depend on the length of the three consecutive knot intervals dk
j := xk

j+1 − xk
j ,

j = i − 1, i, i + 1 and thus we can conveniently denote them as ak
h,i or

ah(dk
i−1, d

k
i , d

k
i+1), h = 0, ..., 3.

Notice that the two notations are equivalent when we have a sequence of parameters - as it is in this section - that are
indexed by subsequent integers. In general a subsequent labeling of parameters is not always possible or convenient
on a mesh (as we will see in the following section), thus we will use the second notation where it will be necessary to
explicitly specify the three knot intervals involved in the definition of the refinement coefficients.
The quadruple of coefficients that defines the reference scheme can be easily obtained by fitting a local function,
supported on three intervals, through the points (xk

h, p
k
h), h = 0, ..., 3 and evaluating it at an arbitrary parameter value

inside the central interval [xk
i , x

k
i+1]. As a consequence any possible choice of local interpolant gives rise to a different

coefficients set, so that a large number of subdivision schemes fitting into the considered framework is available.
From this point onward we will restrict our attention to the category of the so called semi-regularinsertion rules,
where the coefficients ak

h,i, h = 0, ..., 3, are obtained by evaluating the locally fitted interpolant at the parameter value
(xk

i + xk
i+1)/2. In this way, if we use non-uniform cubic Lagrange interpolation, the derived coefficients are
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while if we interpolate through the non-uniform quadratic cardinal splines in [5] we obtain
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The above schemes provide a couple of examples of coefficients that have been proved to generate C1 continuous
limit curves (see [7] and [1], respectively).
Before moving to the description of the surface method, it is important to point out that the reader may assume as a
starting point for the surface subdivision algorithm described in the next section any suitable univariate non-uniform
4-point scheme. There are only two requirements that the chosen scheme should fulfill, namely

• The coefficients ak
h,i depend on the parameters of the three edges involved in the insertion process, i.e. they can

be written as ah(dk
i−1, d

k
i , d

k
i+1);

• The scheme guarantees at least C0 continuous limit curves.

3. The Non-Uniform Local Interpolatory Subdivision Scheme (NULISS) for regular quadrilateral meshes

The existing literature has always considered subdivision schemes as advantageous alternatives to tensor-product
constructions due to their ability to deal with extraordinary points and model surfaces of arbitrary topology. Con-
versely, in this paper, we want to point out that subdivision can perform significantly better than tensor-product splines
also in the context of interpolation of regular quadrilateral meshes. The goal of this section is to provide a general
formulation of a 4-point based interpolatory subdivision scheme for regular (i.e. valence 4) quadrilateral meshes that
offers a very efficient tool for interpolating a given net of points taking into account the associated parameter values.
Hereinafter this scheme will be called NULISS (Non-Uniform Local Interpolatory Subdivision Scheme). Its insertion
rules are conceived as a natural extension to the regular quadrilateral mesh of a non-uniform interpolatory 4-point
scheme with the requirements stated in Section 2.
Let M0 denote the initial mesh, i.e. the initial polyhedron-like configuration of faces, edges and vertices such that
each vertex corresponds to a point in 3D space, each edge is a line segment bounded by two vertices, and each face is
bounded by a loop of four edges. We also require that each edge is shared exactly by two faces (except for boundary
edges which belong to one face only) and in each loop adjacent edges share a vertex. Denoted by P = {pi, j}i, j∈Z the
vertices of the mesh and byX = {xi, j} the related non-uniform parameter values, we associate with each edge along the

horizontal axial direction a knot interval d0
i, j = ||p

0
i+1, j − p0

i, j ||
1
2
2 , according to the centripetal parameterization. Analo-

gously, along the other direction, we will define knot intervals e0
i, j = ||p

0
i, j+1 − p0

i, j ||
1
2

2 . Reasoning in terms of parameters
or of the associated knot intervals is clearly equivalent, however, for the sake of computational simplicity, it turns out
to be more convenient to express the insertion rules depending on the knot intervals d0

i, j and e0
i, j . Thus, the subdivision

algorithm we are going to propose takes as input the mesh M0 with the associated initial knot intervals and generates
a smooth surface as the limit of the process of recursive refinement. At each iteration, the process follows the steps
outlined below.

Algorithm 1. For each k≥ 1, it

1. retains each vertex point (Figure 2-left, green bullets);

2. computes a new edge point for each edge (Figure 2-left, magenta bullets);

3. computes a new face point for each face (Figure 2-left, blue bullets);

4. creates new edges by connecting each new face point to the new edge points of the edges surrounding the face,
and connecting each vertex point to the new edge points of theedges incident on that vertex;

5. creates new faces that have a loop of four new edges;

6. computes the knot interval values for the refined mesh and assigns them to the new edges.

The above steps 1.,2.,3. define the new geometry and steps 4., 5. define the connectivity. When this process step
continues, it yields a sequence of refined meshes which converges to a limit surface.
Vertex, edge and face points are determined by the equations
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βk
j
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bk2,j
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Figure 2: Left: One step of the proposed interpolatory subdivision algorithm, the initial mesh is in black, while the refined mesh in red. Green,
magenta and blue bullets represent respectively vertex, edge and face points. Right: Parameters configuration and related coefficients for the tensor
product scheme.

• vertex points pk+1
2i,2 j = pk

i, j ;

• edge points pk+1
2i+1,2 j =

∑3
h=0 ak

h,i pk
i+h−1, j and pk+1

2i,2 j+1 =
∑3
ℓ=0 bk

ℓ, j pk
i, j+ℓ−1;

• face points pk+1
2i+1,2 j+1 =

∑3
h=0

∑3
ℓ=0 ak

h,i bk
ℓ, j pk

i+h−1, j+ℓ−1.

As previously mentioned, in the tensor-product case we need to define an average parameterization where

αk
i =

∑

j∈Z

dk
i, j

♯{dk
i, j | j ∈ Z}

and βk
j =

∑

i∈Z

ek
i, j

♯{ek
i, j | i ∈ Z}

,

so that {αk
i }i∈Z and {βk

j } j∈Z are the knot intervals associated with the two axial directions (see Figure 2-right for a

graphical interpretation). Thus, in the notation introduced in Section 2, the coefficients ak
h,i and bk

ℓ, j can be written

as ak
h,i = ah(αk

i−1, α
k
i , α

k
i+1) and bk

ℓ, j = aℓ(βk
j−1, β

k
j , β

k
j+1), h, ℓ = 0, ..., 3 and are determined by the chosen univariate

subdivision scheme.
As previously discussed, the requirement for averaging the parameterization may determine a significant loss of
quality in the limit surface. Our goal is thus to generalize the above edge and face point formulas so as to consider a
whole set of parameters surrounding the location of insertion.
If we focus our attention on the neighborhood of a vertex pk

i, j of the mesh Mk (produced after k refinements), it is
evident that the configuration of faces and vertices around this point has rotational symmetry and remains topologically
invariant through refinement. Thus, from this point onward, we will use the indexing scheme illustrated in Figure 3,
where points and parameters are partitioned into 4 sectors, that reflect the local structure of the mesh. In particular,
to write the refinement equations of the scheme in the non tensor-product case, 12 vertices and 6 parameters per each
sector are needed. As it will be clear in the following section, this labeling strategy turns out to be the most convenient
when analyzing the continuity of the limit surface.

In the new notation, the vertex pk
i, j is now indicated as pk

0 and it is obviously a fixed point of the refinement process,

thus p0
0 = pk

0, ∀k ≥ 1. In order to describe the refinement rules of our new proposal, it is sufficient to focus on one
of the four faces meeting at pk

0, so we can choose the face corresponding to the first sector, that is determined by
vertices pk

0, p
k
1, p

k
2 and pk

37. For this face, we need to properly define steps 2. and 3. of our algorithm. Due to rotational
symmetry, formulas for the other edge and face points can be computed analogously.
The refinement process is illustrated in Figure 4. For any s= 1, ..., 4, that identifies one of the sectors around the given
vertex, we define the triple of knot intervals

ǫks = {d
k
j+12, d

k
j , d

k
j+1}, j = 1 + 6(s− 1),

where the indices j are cyclic of period 24. A new edge point Ek+1
1 is placed in the middle of the edge pk

0, p
k
1 by the

formula
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Figure 3: Left: indexing of points and parameters at refinement level k. Right: configuration of parameters in the tensor-product case.

Ek+1
1 = a0(ǫk1) pk

25 + a1(ǫk1) pk
0 + a2(ǫk1) pk

1 + a3(ǫk1) pk
3 (3)

where coefficients ah(ǫk1), h = 0, ..., 3, are computed as described in Section 2; this means that the new edge point
is generated by applying the insertion rule of the chosen univariate reference scheme to the related edge of Mk (see
Figure 4-left). The edge points along the other edges can be determined following a similar approach.
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Figure 4: Edge point rule (left) and face point rule (right) for the first sector.

To explain the insertion of a face point we observe that the vertices of the face of insertion can be seen as the
intersection of 4 section curves, two in each direction. Since the scheme is interpolatory, the section curves whose
intersections determine the face are the limit of corresponding polylines of the current mesh. At this stage, it is
convenient to introduce some further notation. For each sector s= 1, ..., 4 we define

δks =















dk
j+12 + dk
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2
,
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2
,
dk

j+1 + dk
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2
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j+5

2















,

with j = 1 + 6(s− 1). For the sake of simplicity, if we focus on the first sector, δk1 and γk
1 are length-3 sequences

of knot intervals that refer to virtual edges (i.e. edges that do not appear in the coarse mesh) and they are computed

6



by averaging existing knot intervals on opposite edges of the considered face and of the adjacent faces. They can be
respectively seen as the parameterization of two virtual section curves, each of them located between the two section
curves that determine the face in each direction. We can now compute ah(δk1) and ah(γk

1), h = 0, ..., 3 and determine
the location of one of the face points as

Fk+1
1 = a0(γk

1)(a0(δk1)pk
26 + a1(δk1)pk

13 + a2(δk1)pk
14 + a3(δk1)pk

18)

+ a1(γk
1)(a0(δk1)pk

25 + a1(δk1)pk
0 + a2(δk1)pk

1 + a3(δk1)pk
3)

+ a2(γk
1)(a0(δk1)pk

38 + a1(δk1)pk
37 + a2(δk1)pk

2 + a3(δk1)pk
4)

+ a3(γk
1)(a0(δk1)pk

40 + a1(δk1)pk
39 + a2(δk1)pk

6 + a3(δk1)pk
5).

(4)

Figure 4-right illustrates the insertion method for such a face point.

Remark 1. Note that whenever initial knot intervals are set up compatibly with the tensor-product structure (that is
the same parameter value is assigned to each row and column ofthe mesh), the NULISS scheme exactly coincides
with the tensor-product of the univariate 4-point scheme recalled in Section 2.

Remark 2. The proposed face point insertion rule does not involve the complete set of parameters associated with
the 4× 4 grid of vertices that determines a new face point. Based on our numerical experiments, we found better
results by considering only the parameters of the vertices related to the face of insertion and to the adjacent faces. In
fact, it makes sense to require that the virtual parameterization adopted to insert a face point, does not significantly
deviate from the parameterization of the section curves that define a face. Conversely taking into account the whole 4
× 4 grid of parameters may generate undesired distortions in the parameterization.

Remark 3. Oppositely to the tensor-product construction, the edge point rules of the proposed scheme ensure that the
vertices that describe each section polyline of the mesh areinterpolated at the corresponding centripetal parameters.
In this way, each section curve of the limit surface maintains its own parameterization (instead of being parameterized
by the average of the parameterizations in the related axialdirection) and thus it has the optimal visual quality
guaranteed by the centripetal parameterization.

So far we have described steps 1.-5. in Algorithm 1. The following subsection illustrates the strategy that we
found most convenient to accomplish step 6 of the proposed subdivision algorithm.

3.1. Parameters updating

Each subdivision step generates a refined mesh, with more vertices, edges and faces, and as a consequence a
suitable parameterization should be set in correspondence to the newly created vertices. The method that we choose to
compute the values of the knot-intervals influences the linearity and stationarity of the scheme as well as the properties
of the limit shape, thus it should be carefully devised. Before illustrating our proposal, we want to point out that one
natural possibility would be to recompute the centripetal parameterization at each level of refinement. However this
strategy is very expensive from a computational viewpoint and does not offer any remarkable advantage, due to the
fact that the visual appearance of the limit surface is established during the first refinement steps. Furthermore,
recomputing the parameterization gives rise to a non-linear and non-stationary process, which constitutes a big down
point, since the analysis of the resulting scheme is extremely difficult.
For all these reasons, in order to guarantee that the refinement rules identify a linear subdivision process, we will
use an updating strategy to deduce the k-level knot intervals from those computed at level 0. In particular, for all
k > 0, the knot intervals defined in correspondence to edges of the coarse mesh will be duplicated, while those in
correspondence to a new edge created inside a face will be obtained by averaging knot intervals on the opposite edges
of that face, as shown in Figure 5 for two successive refinement steps. In this way the k-level parameter values are
expressed by the updating formulas

7



dk
j = d0

j ,

dk
j+1 = d0

j+1,

dk
j+2 =

(

1 −
1
2k

)

d0
j +

1
2k

d0
j+2,

dk
j+3 =

(

1 −
1
2k

)

d0
j +

1
2k

d0
j+3, (5)

dk
j+4 =

(

1 −
1
2k

)

d0
j+18 +

1
2k

d0
j+4,

dk
j+5 =

(

1 −
1
2k

)

d0
j+18 +

1
2k

d0
j+5

with j = 1+6(s−1), s= 1, ..., 4 (the indices j should be intended cyclic of period 24), assuming that at each refinement
a new knot is inserted in correspondence to the mid-point of each parameter interval.
Although there are clearly many available methods for computing the new parameters, the strategy that we have
chosen turns out to be crucial when performing the continuity analysis of the subdivision scheme, as it will be evident
in the next section.
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Figure 5: Knot intervals for the initial configuration (k = 0) around the vertex p0
0 (left). Knot intervals of the first sector at refinement level k = 1

(center) and k = 2 (right).

4. Continuity analysis

The aim of this section is to provide an analysis algorithm for the non-uniform surface scheme considered in this
paper. We remark that, since the scheme is both non-stationary and non-uniform, it is not possible to exploit the avail-
able analysis tools for non-stationary schemes, like the well-established method of asymptotical equivalence [8], or the
most recent results based on the idea of proximity [11, 15, 16]. Thus we will follow a different approach that strongly
relies on the chosen parameters updating strategy. In particular, we will prove that, whenever the parameters are com-
puted through relation (5), any subdivision scheme originated by a reference scheme that satisfies the requirements
fixed in Section 2 generates continuous limit surfaces, independently of the initial parameters configuration.

4.1. Structure of the limit surface

To analyze the continuity of the scheme, it is fundamental to understand how the parameters along the edges in
the considered neighborhood evolve through subsequent refinements and how their behavior affects the structure of
the limit surface. Figure 5-left schematically presents the initial setting of parameters on the four faces meeting at p0

0
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and their values after the first two refinement steps (Figure 5 center and right, respectively). During all the subsequent
steps, the configuration of parameters evolves analogously, so it is straightforward to figure out the parameters con-
figuration at any level k > 2. In particular, after two steps of the subdivision algorithm three different kinds of regions
are identified (see Figure 6), which we refer to as:

1. Tensor-product regions, where parameters on each row and column can be scaled to the same value;
2. Regions augmented across one edge, where either parameters on each column or row can be scaled to the same

value;
3. Regions augmented around a vertex, where there is no possible scaling that brings back the knot intervals to the

same values either on each column or row.

Figure 6: The three different types of regions obtained after two subdivision steps: tensor-product region (left), region augmented across one edge
(center), region augmented around a vertex (right).

In the sequel we discuss the behavior of the mesh through successive refinement levels and in the different regions,
and, as a consequence, how the three cases above should be treated when analyzing the convergence of the scheme.

Tensor-product regions.The local configuration of parameters inside these regions implies that, when the parame-
ters are substituted in the refinement equations of the scheme, the positions of the new vertices in or on the boundary
of these regions, are exactly the same as if all the horizontal intervals had been equal and all the vertical intervals
equal likewise. Thus, in these regions, the scheme converges to the tensor-product surface generated by a C0, uni-
form, 4-point scheme. As a consequence the limit surface is trivially C0. Moreover, if the univariate reference scheme
generates C1 continuous limit curves, the limit surface inside these regions will be C1 continuous as well.

Regions augmented across one edge.The situation across edges of augmented faces can be seen as a special case
of the third kind of regions, that are augmented around a vertex. Therefore the analysis of continuity can be addressed
as in the more general case of vertices between augmented faces.

Regions augmented around a vertex.We say that a vertex is augmentedif, in its neighborhood, the parameteri-
zation of the mesh is non-uniform and does not have a tensor-product structure. Thus, to prove convergence of the
scheme at a given augmented vertex p0

0, we will show that, independently of the underlying parameterization, any
arbitrary initial configuration of points converges to p0

0. Before going into the details of our analysis, we observe that,
proving that all points in the neighborhood of an initial vertex converge to that vertex does not only imply pointwise
convergence, but also continuity of the limit surface. To understand why, we shall keep track of how the parameteri-
zation of the four initial faces meeting at the augmented vertex p0

0 evolves through successive iterations. In particular,
recalling relations (5), it can be easily seen that, after a few subdivision steps, the parameters configuration is such
that, up to proper rescaling, a tensor-product region arises in the interior of each of the four initial faces. We denote
this region as Tk

s, s = 1, ..., 4, since its extension depends on the subdivision level k (see Figure 7). From the k-th
refinement step onward, the points generated by the NULISS scheme inside the region Tk

s can be equivalently gener-
ated by applying the tensor-product scheme of the uniform 4-point subdivision scheme. Thus, in these regions, the
regularity of the limit surface is guaranteed by the properties of the univariate scheme.
In the region surrounding the boundary of the four initial faces, we have a strip of augmented faces, whose parameters
cannot be suitably rescaled to fit the definition of tensor-product. If all the initial points in the 3-ring of p0

0 converge
to p0

0, the tensor-product area extends to the boundary of each initial face and tends to cover the whole face area,
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while at each iteration the augmented strip shrinks, approximately halving its width. Moreover, by construction of
the scheme, the limit surface patches associated with neighboring initial faces have a common boundary, since their
boundary curves are limit curves of the non-uniform univariate scheme. As a consequence, if all the initial points in
the 3-ring of p0

0 converge to p0
0, the subdivision process generates a continuous limit surface.

T k−1
1

p0
0

T1

k

0p
0

1T k+1

0
p0

0
p0

1T k+2

Figure 7: Evolution through 4 subsequent refinement steps of the tensor-product region inside one face containing p0
0.

4.2. The local subdivision matrix

As the support of the subdivision scheme is of width 6 and symmetric with respect to p0
0, we can restrict our

analysis to the three rings of vertices surrounding p0
0 [19]. The points in the 3-neighborhood of p0

0 are partitioned into
4 sectors, where each sector is associated with an index s = 1, ..., 4. More precisely, at refinement level 0 we denote
by P0

s the vector of points P0
s := [p0

12(s−1)+1, p
0
12(s−1)+2, · · · , p

0
12(s−1)+12], with s = 1, ..., 4. The subdivision process can

now be formalized as

Pk+1
= MkPk, where Pk := [p0

0,P
k
1,P

k
2,P

k
3,P

k
4]T , ∀k ≥ 0. (6)

Since the scheme is interpolatory, the point p0
0 is a fixed point of the iterative process (6). The matrix Mk, that maps

the points from refinement level k to k+ 1 represents the refinement rules of the scheme, where the coefficients of Mk

depend on the local parameterization associated with k-level edges.
Moreover, from the updating formulas (5) we can easily see that, after two iterations of the scheme, the entries of
the subdivision matrix Mk depend only on the initial parameterization of the first ring of vertices around p0

0; in this
way, for any level k ≥ 2, the initial parameters involved in the subdivision process turn out to be d0

j , d0
j+2, d0

j+4,
j = 1 + 6(s− 1), with s = 1, ..., 4. It is therefore sufficient to analyze the convergence of the subdivision process
starting from the 2-nd refined control net.

Remark 4. Recalling the parameters updating equations(5), it can be easily observed that the entries of the infinite
sequence of matrices M0 = [m0

i, j], M1
= [m1

i, j], ..., that defines the subdivision process(6), converge as k tends to
infinity, i.e.

lim
k→∞

mk
i, j = mi, j

and in particular the sequence{Mk}k>0 converges to a matrix M whose entries are given by the tensor-product of
the univariate schemes along the two directions that intersect at p00. Due to our parameters updating method, from
the second iteration of the scheme onward, the entries of thelimit matrix M = [mi, j], i, j = 1, ..., 49, can thus be
obtained by substituting into relations(1) or (2) the sequences of parameters..., d0

13, d
0
13, d

0
1, d

0
1, ... in the horizontal

grid direction and..., d0
7, d

0
7, d

0
19, d

0
19, ... in the vertical one, that are piecewise uniform around p0

0.

Moreover, for any level k, the subdivision matrix related to the 3-neighborhood of p0
0 has the structure
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Mk
=













































































1 0 0 0 0

νk(1) Bk
1(1) Bk

2(1) Bk
3(1) Bk

4(1)

νk(2) Bk
4(2) Bk

1(2) Bk
2(2) Bk

3(2)

νk(3) Bk
3(3) Bk

4(3) Bk
1(3) Bk

2(3)

νk(4) Bk
2(4) Bk

3(4) Bk
4(4) Bk

1(4)













































































. (7)

where the blocks νk(s) and Bk
i (s) are respectively 12 × 1 and 12 × 12 real matrices, whose entries depend on the

sector s= 1, ..., 4 and can be derived by the refinement rules (3) and (4).

Remark 5. If the parameterization is uniform, the matrix obtained by removing the first row and column of Mk is
block circulant. Oppositely, in the case of the NULISS scheme, the entries of each block of Mk depend on the local
parameterization of each sector, thus we do not have this circulant structure.

4.3. Continuity around an augmented vertex

We can now exploit the local subdivision matrices Mk, k = 2, 3, ... to prove convergence of the scheme in the
neighborhood of the augmented vertex p0

0. As pointed out in the previous section, for the proposed scheme, conver-
gence also implies continuity of the limit surface.
In particular, any subdivision scheme of the kind considered in the previous section is convergent if the following
three statements hold:

1. The sequence {Mk}k>0 converges to M;

2. Each matrix Mk is non expansive;

3. The only fixed point of M is p0
0.

Items 1. to 3. provide an analysis algorithm that we can apply to any subdivision scheme to verify its convergence.
In the following we will show that these three steps imply the convergence of the subdivision scheme.

Let ‖ ‖ a vector norm in Cn. We introduce the following definition.

Definition 1. A matrix S∈ Cn×n is nonexpansive with respect to‖ ‖ if for any x∈ Cn

‖S x‖ ≤ ‖x‖.

Moreover the following result holds true, which is a generalization of the well known theory on matrix analysis (cfr.
[12], Sections 5.6.9 - 5.6.12).

Theorem 1. A matrix S ∈ Cn×n is non expansive with respect to a matrix norm onCn if and only if its spectral
radiusρ(S) is such thatρ(S) ≤ 1 and each eigenvalueλ of S such that|λ| = 1 has equal algebraic and geometric
multiplicities.

We observe now that, if the parameters are updated through relations (5), the sequence Mk satisfies condition 1.
above. Moreover, since the matrix M represents the tensor-product of a univariate convergent subdivision scheme
(see Remark 4), its eigenvalues λi must necessarily satisfy λ1 = 1 and λi < 1, ∀i , 1 (see e.g. [17]). In addition, the
following theorem ensures that, if the matrix M has 48 eigenvalues (counting with multiplicities) strictly smaller than
one by modulo, then each matrix Mk satisfies the hypothesis of Theorem 1 and thus is nonexpansive.

Theorem 2. All the matrices Mk are non expansive.
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Proof. We recall that, being e = [1, 1, ..., 1]T, then Me = e and Mke = e, ∀k. Thus the matrices Mk and M have a
common eigenvector ewith associated eigenvalue 1. Let λ1, λ2, ..., λ49 be the eigenvalues of M ordered by decreasing
module, namely |λ1| ≥ |λ2| ≥ ... ≥ |λ49|. All eigenvalues are taken with their multiplicities. We know that λ1 = 1.
Similarly, for any matrix Mk, we denote by λk

1, λ
k
2, ..., λ

k
49 its eigenvalues, and |λk

1| ≥ |λk
2| ≥ ... ≥ |λk

49|. Since 1 is an
eigenvalue of Mk, it follows that |λk

1| ≥ 1 for any k. Denote q = |λ2| and qk
= |λk

2|. Since eigenvalues continuously
depend on the entries of matrices, it follows that limk→∞ qk

= q. Assume that q < 1. In this case there exists N such
that, for any k > N, we have qk < 1, form which it follows |λk

i | < 1,∀i = 2, ..., 49. Now, since 1 is an eigenvalue of
Mk, it should necessarily be 1 = λk

1 and as a consequence ρ(Mk) = 1, ∀k > N.

The following theorem states that, given a sequence of matrices satisfying conditions 1. and 2., the refinement process
(6) converges to a fixed point for M.

Theorem 3. Let {Mk}∞k=0 a sequence of matrices inCn×n that are non expansive with respect to the same vector norm
‖ ‖. Suppose also that

lim
k→∞

Mk
= M.

Then, for any x0 ∈ Cn, the sequence
xk+1
= Mk xk, k = 0, 1, 2, ... (8)

converges and in additionlimk→∞ xk is a fixed point for M.

Proof. Let x0 ∈ C
n a vector. Since the matrix Mk is non expansive, the sequence of iterates {xk}k>0 generated by the

process (8) satisfies
‖xk+1‖ = ‖Mkxk‖ ≤ ‖xk‖ ≤ ... ≤ ‖x0‖

i.e. it is a monotonic and bounded sequence and thus converges.
Let

lim
k→∞

xk
= ξ (9)

its limit. We thus need to prove that ξ is a fixed point of M. To this aim, we have

lim
k→∞

{Mξ − Mkxk} = lim
k→∞

{(M − Mk)ξ + Mk(ξ − xk)} = 0

and therefore limk→∞ Mkxk
= Mξ. This last relation, together with (9) implies Mξ = ξ.

If we now indicate with e the vector e = [1, 1, ..., 1]T, from (7) we see that λ = 1 is an eigenvalue of M. Moreover,
from (3) and (4) it can be easily verified that for any parameters configuration the rows of M sum to one, and as a
consequence the null space of I − M is generated by e (here I is the identity matrix). By Theorem 3, the limit of the
sequence of iterates generated by the refinement process in the neighborhood of p0

0 belongs to the space generated
by e. Moreover, since p0

0 is a fixed point of the iterative process, we can conclude that all the initial points in the
neighborhood of p0

0 converge to p0
0 as k → ∞.

As a concluding remark, we let the reader notice that the presented analysis method allows us to prove convergence
for any given subdivision scheme. As discussed, the chosen parameters updating strategy makes it easy to verify that
conditions 1. to 3. are satisfied, thus, in this setting, any subdivision scheme converges to a continuous limit surface.
Using a different parameters updating method implies proving that conditions 1. to 3. hold, which is in general
possible but not trivial.

5. Numerical results

In this section we present some numerical experimentation about the NULISS subdivision scheme. Our tests have
two main purposes: 1) examine the quality of NULISS surfaces and compare it with other non uniform interpolation
methods, 2) conjecture that, if the reference scheme is C1, the limit surfaces generated by NULISS are G1 continuous.
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5.1. Surface quality

The surfaces shown in the following figures have been generated using the scheme 1 as reference scheme, with
centripetal parameterization and, if open, through linear extrapolation along the cross-boundary direction. We start
with two simple, yet effective examples. We modified the regular torus mesh, so as to obtain an initial mesh whose
section curves have corresponding edges of remarkably different lengths (Fig. 8 (a)). In such meshes, the uniform
parameterization introduces a significant distortion with respect to the parameterization of the individual initial section
polylines. As a consequence an unwanted artifact appears in the limit surface of the uniform scheme (Fig. 8 (b) and
(d)), which is not present in the NULISS surfaces generated from the same initial meshes (Fig. 8 (c) and (e)). The
kind of artifact highlighted by this example is particularly evident if we look at one section curve of the uniform and
NULISS limit surfaces as illustrated in Fig. 9 for the upper-row mesh. While in the uniform case each section curve
has the same parameterization in both directions, in the latter one each section curve maintains its own (centripetal)
parameterization.

(a) Initial mesh (b) Uniform, 3 steps (c) NULISS, 3 steps (d) Uniform limit (e) NULISS limit

Figure 8: Comparison between uniform tensor product bicubic spline surface and NULISS.

(a) (b) (c)

Figure 9: Starting polyline corresponding to a section of the initial mesh on the top row of Figure 8 (a) ; Corresponding section curve of the uniform
subdivision surface (b) and of NULISS (c).

To give a general idea of the quality of the NULISS surfaces, we provide in Figure 10 the results that we got by
applying NULISS to a variety of initial meshes. The lamp mesh is obtained by revolution of a profile curve with
extremely short and long edges, and thus it is essentially uniform in one grid direction and highly non uniform in the
other. The middle row mesh represents the upper part of a fire hydrant, it is not a revolution surface and it evidently
presents highly non uniform section curves in both grid directions. Finally, the vase mesh is obtained by scaled ver-
sions of one section curve, shifted along the vertical axis with long and short shift steps. The considered meshes are
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Figure 10: NULISS surfaces and the related initial meshes.

characterized by highly non uniform initial section polylines, so that the uniform scheme fails on all of them.
We have also tested NULISS on a wide set of data, acquired through a needle scanning device. We have reconstructed
the data by means of NULISS and non uniform tensor product bicubic spline surfaces. As shown in Figure 11 NULISS
gives us a faithful reconstruction, preserving the details present in the data. Oppositely, in some areas - see e.g. along
the top border of the wings or top of head - tensor product splines generate more undulations than the ones present in
the acquired data.
Finally, an application of the NULISS subdivision scheme was presented in [2]. In that work, the NULISS subdivision
scheme was used to generate a surface starting from some of its feature curves, acquired through an interactive pen-
like device. While the user interactively scans the feature curves, the surface underneath needs to change accordingly,
so, in such a situation, it is fundamental to have at disposal a quick method that at the same time allows for updating
the surface shape and interpolating all the given data with satisfactory quality. In the time of the work presented in [2],
although NULISS proved to be optimal on the side of surface behavior, none of its analytic properties were known,
especially it was not clear whether the limit surfaces were continuous for any parameters configuration.

5.2. G1 continuity

In Section 4 it was proved that the NULISS scheme generates continuous limit surfaces for any set of initial
parameters, supposed that the associated reference scheme generates at least continuous limit curves. Moreover,
analyzing the pattern of knot intervals through the successive refinements, it was shown that away from the boundary
of each initial face, the knot vectors can be scaled to uniform; thus, if the reference scheme is C1, NULISS will
generate a C1 limit surface in the interior of each initial face. Around the border of an augmented face, G1 continuity
can be only conjectured and proven by numerical testing.
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(a) Initial data grid (32 × 57
vertices )

(b) NULISS (c) Tensor product

(d) Initial data grid (65 × 114
vertices )

(e) NULISS (f) Tensor product

Figure 11: Reconstruction of scanned data through NULISS and non uniform cubic tensor product splines.

Without loss of generality, we can confine our analysis to the neighborhood of one of the initial vertices, which is at
the intersection of four augmented faces. The limit surface has a tangent plane at the considered vertex if it is regular
in the neighborhood of the vertex and the normals to the four faces meeting at it converge in the limit to a unique
normal vector. Thus we have verified that the maximum angle between the normals to the four faces meeting at a
prescribed vertex tends to 0 as the subdivision level k goes to infinity.
The normal vector to each face is computed by splitting each face into two triangles, the first of them determined by
the examined vertex and the two adjacent vertices of the face and the second being its obvious complimentary. The
face normal vector is then obtained by averaging the normals to these two triangles.
We performed the above numerical analysis considering a wide variety of meshes, analyzed around vertices with
different local configurations of surrounding points. We used as reference scheme for NULISS both schemes with
coefficients (1) and (2) and all the numerical tests indicate convergence of normals, confirming the conjecture that the
NULISS scheme be G1.
An example of the results obtained through the proposed analysis is given in Table 1, where we have considered the
meshes in Figure 8. We chose the test vertices are among those vertices that are surrounded by augmented faces and
refined the meshes with the uniform subdivision scheme, which is known to generate everywhere C1 limit surfaces,
and with NULISS. Table 1 compares the maximum angles θmax (in radians) between the normals to the four faces
meeting at the selected vertices at the first 25 subdivision levels.
In the case of NULISS, θmax progressively decreases to zero and, at the same subdivision step k, its values have the
same (or lower) magnitude order as those of the corresponding uniform setting. We also computed the maximum
distance δmax from the considered vertex and the vertices in its one neighborhood. As proven analytically in Section 4
this distance tends to zero as k tends to infinity; in addition the following tables show that the convergence rate in the
case of NULISS is similar to that of the uniform scheme.

6. Summary and future work

Non-uniform tensor-product interpolants often give rise to significant undulation artifacts, due to the strict structure
of the underlying parameterization. For this reason, the centripetal parameterization, that is proven to be optimal in
the univariate case, does not significantly improve the visual appearance of the surface in the tensor-product bivariate
setting.
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Table 1: Numerical analysis in the neighborhood of selected test vertices. Numbers on the edges represent the initial knot intervals computed
according to the centripetal parameterization. The red circle indicates the vertex taken into exam.

TP uniform NULISS augmented

k θmax δmax θmax δmax

3 7.58889e-01 7.50140e-02 3.26623e-02 7.50736e-02
5 3.84622e-01 1.83510e-02 2.62558e-02 1.83898e-02

10 2.52885e-02 5.69647e-04 2.10802e-03 5.71154e-04
15 1.19628e-03 1.77983e-05 1.05870e-04 1.78457e-05
20 5.00678e-05 5.56193e-07 4.55890e-06 5.57675e-07
25 1.98420e-06 1.73810e-08 2.14908e-07 1.74273e-08

TP uniform NULISS augmented

k θmax δmax θmax δmax

3 1.18652e+00 2.42100e-02 1.60553e-01 2.53548e-02
5 5.91877e-01 5.89203e-03 4.39939e-02 6.32675e-03

10 3.97887e-02 1.83151e-04 1.81903e-03 1.97671e-04
15 1.89073e-03 5.72337e-06 7.42709e-05 6.17722e-06
20 7.93129e-05 1.78855e-07 2.91541e-06 1.93038e-07
25 3.07538e-06 5.58923e-09 1.89074e-07 6.03244e-09

In this paper, we have presented a novel class of non-uniform local interpolatory subdivision surfaces that generalize
the family of non-uniform interpolatory 4-point schemes to quadrilateral meshes. This new proposal generates limit
surfaces with a better visual appearance than the well-established tensor-product (spline) representation. To a large
extent, the advantage of this new construction is that the whole local parameterization is used, instead of a global
average of the parameters. One of the consequences of this flexibility with respect to the parameterization, is that each
section curve is interpolated together with its parameters, thus maintaining its own centripetal parameterization.
The resulting limit surfaces are C0-continuous and proving C1 continuity will be one of our future research objectives.
Another challenge would be finding a parameterization algorithm for NULISS surfaces, in such a way that they will
become fully comparable with interpolation methods based on non uniform splines. Another step forward will be
the generalization of the proposed edge and face point rules to meshes with extraordinary vertices. We believe that
the advantages of a non-uniform parameterization would be significant also when interpolating meshes of arbitrary
topology.
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