SYMMETRIC TENSOR RANK WITH A TANGENT VECTOR: A GENERIC UNIQUENESS THEOREM

EDOARDO BALLICO, AND ALESSANDRA BERNARDI

Abstract

Let $X_{m, d} \subset \mathbb{P}^{N}, N:=\binom{m+d}{m}-1$, be the order d Veronese embedding of \mathbb{P}^{m}. Let $\tau\left(X_{m, d}\right) \subset \mathbb{P}^{N}$, be the tangent developable of $X_{m, d}$. For each integer $t \geq 2$ let $\tau\left(X_{m, d}, t\right) \subseteq \mathbb{P}^{N}$, be the joint of $\tau\left(X_{m, d}\right)$ and $t-2$ copies of $X_{m, d}$. Here we prove that if $m \geq 2, d \geq 7$ and $t \leq 1+\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$, then for a general $P \in \tau\left(X_{m, d}, t\right)$ there are uniquely determined $P_{1}, \ldots, P_{t-2} \in$ $X_{m, d}$ and a unique tangent vector ν of $X_{m, d}$ such that P is in the linear span of $\nu \cup\left\{P_{1}, \ldots, P_{t-2}\right\}$, i.e. a degree d linear form f associated to P may be written as $$
f=L_{t-1}^{d-1} L_{t}+\sum_{i=1}^{t-2} L_{i}^{d}
$$ with $L_{i}, 1 \leq i \leq t$, uniquely determined (up to a constant) linear forms on \mathbb{P}^{m}.

1. Introduction

We work over an algebraically closed field \mathbb{K} such that $\operatorname{char}(\mathbb{K})=0$. Fix integers $m \geq 2$ and $d \geq 3$. Let $j_{m, d}: \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}, N:=\binom{m+d}{m}-1$, be the order d Veronese embedding of \mathbb{P}^{m}. Set $X_{m, d}:=j_{m, d}\left(\mathbb{P}^{m}\right)$. We often write X instead of $X_{m, d}$. For each integer t such that $1 \leq t \leq N$ let $\sigma_{t}(X)$ denote the closure in \mathbb{P}^{N} of the union of all $(t-1)$-dimensional linear subspaces spanned by t points of X (the t-secant variety of X). Let $\tau(X) \subseteq \mathbb{P}^{N}$ be the tangent developable of X, i.e. the closure in \mathbb{P}^{N} of the union of all embedded tangent spaces $T_{P} X, P \in X$. Obviously $\tau(X) \subseteq \sigma_{2}(X)$ and $\tau(X)$ is integral. Since $d \geq 3$, the variety $\tau(X)$ is a hypersurface of $\sigma_{2}(X)$ ([6], Proposition 3.2). Fix integral positive-dimensional subvarieties $A_{1}, \ldots, A_{s} \subset \mathbb{P}^{N}, s \geq 2$. The join $\left[A_{1}, A_{2}\right]$ is the closure in \mathbb{P}^{N} of the union of all lines spanned by a point of A_{1} and a different point of A_{2}. If $s \geq 3$ define inductively the join $\left[A_{1}, \ldots, A_{s}\right]$ by the formula $\left[A_{1}, \ldots, A_{s}\right]:=\left[\left[A_{1}, \ldots, A_{s-1}\right], A_{s}\right]$. The join $\left[A_{1}, \ldots, A_{s}\right]$ is an integral variety and $\operatorname{dim}\left(\left[A_{1}, \ldots, A_{s}\right]\right) \leq \min \{N, s-1+$ $\left.\sum_{i=1}^{s} \operatorname{dim}\left(A_{i}\right)\right\}$. The integer $\min \left\{N, s-1+\sum_{i=1}^{s} \operatorname{dim}\left(A_{i}\right)\right\}$ is called the expected dimension of the join $\left[A_{1}, \ldots, A_{s}\right]$. Obviously $\left[A_{1}, \ldots, A_{s}\right]=\left[A_{\sigma(1)}, \ldots, A_{\sigma(s)}\right]$ for any permutation $\sigma:\{1, \ldots, s\} \rightarrow\{1, \ldots, s\}$. The secant variety $\sigma_{t}(X), t \geq 2$, is the join of t copies of X. For each integers $t \geq 3$ let $\tau(X, t) \subseteq \mathbb{P}^{N}$ be the join of $\tau(X)$ and $\sigma_{t-2}(X)$ copies of X. We recall that $\min \{N, t(m+1)-2\}$ is the expected dimension of $\tau(X, t)$, while $\min \{N, t(m+1)-1\}$ is the expected dimension of $\sigma_{t}(X)$.

[^0]In the range of triples (m, d, t) we will met in this paper both $\tau(X, t)$ and $\sigma_{t}(X)$ have the expected dimensions and hence $\tau(X, t)$ is a hypersurface of $\sigma_{t}(X)$.

After [3] it is natural to ask the following question.
Question 1. Assume $d \geq 3$ and $\tau(X, t) \neq \mathbb{P}^{N}$. Is a general point of $\tau(X, t)$ in the linear span of a unique set $\left\{P_{0}, P_{1}, \ldots, P_{t-2}\right\}$ with $\left(P_{0}, P_{1}, \ldots, P_{t-2}\right) \in \tau(X) \times$ X^{t-2} ?

For non weakly $(t-1)$-degenerate subvarieties of \mathbb{P}^{N} the corresponding question is true by [7], Proposition 1.5. Here we answer it for a large set of triples of integers (m, d, t) and prove the following result.

Theorem 1. Fix integers $m \geq 2$ and $d \geq 6$. If $m \leq 4$, then assume $d \geq 7$. Set $\beta:=$ $\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$. Assume $t \leq \beta+1$. Let P be a general point of $\tau(X, t)$. Then there are uniquely determined points $P_{1}, \ldots, P_{t-2} \in X$ and $Q \in \tau(X)$ such that $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle$, i.e. there are uniquely determined points $P_{1}, \ldots, P_{t-2} \in X$ and a unique tangent vector ν of X such that $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}\right\} \cup \nu\right\rangle$.

The existence part is obvious by the definition of the join as a closure of unions of certain linear subspaces, but the uniqueness part is non-trivial and interesting. Each point of Veronese variety X is of the form L^{d} for a unique (up to a constant) $L \in \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]_{1}$. Thus Theorem 1 may rephrased in the following way.

Theorem 2. Fix integers $m \geq 2$ and $d \geq 6$. If $m \leq 4$, then assume $d \geq 7$. Set $\beta:=\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$. Assume $t \leq \beta+1$. Let P be a general point of $\tau(X, t)$ and f the homogeneous degree d form in $\mathbb{K}\left[x_{0}, \ldots, x_{m}\right]$ associated to P. Then f may be written in a unique way

$$
f=L_{t-1}^{d-1} L_{t}+\sum_{i=1}^{t-2} L_{i}^{d}
$$

with $L_{i} \in \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]_{1}, 1 \leq i \leq t$.
In the statement of Theorem 2 the form f is uniquely determined only up to a non-zero scalar, and (as usual in this topic) " uniqueness " may allow not only a permutation of the forms L_{1}, \ldots, L_{t-2}, but also a scalar multiplication of each L_{i}. To prove Theorem 1 and hence Theorem 2 we adapt the notion and the results on weakly defective varieties described in [4]. It is easy to adapt [4] to joins of different varieties instead of secant varieties of a fixed variety if a general tangent hyperplane is tangent only at one point ([5]). However, a general tangent space of $\tau(X)$ is tangent to $\tau(X)$ along a line, not just at the point of tangency. Hence a general hyperplane tangent to $\tau(X, t), t \geq 2$, is tangent to $\tau(X, t)$ at least along a line. We prove the following result.

Theorem 3. Fix integers $m \geq 2$ and $d \geq 6$. If $m \leq 4$, then assume $d \geq 7$. Set $\beta:=\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$. Assume $t \leq \beta+1$. Let P be a general point of $\tau(X, t)$. Let $P_{1}, \ldots, P_{t-2} \in X$ and $Q \in \tau(X)$ be the points such that $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle$. Let ν be the tangent vector of X such that Q is a point of $\langle\nu\rangle \backslash \nu_{\text {red }}$. Let $H \subset \mathbb{P}^{N}$ be a general hyperplane containing the tangent space $T_{P} \tau(X, t)$ of $\tau(X, t)$. Then H is tangent to X only at the points $P_{1}, \ldots, P_{t-2}, \nu_{r e d}$, the scheme $H \cap X$ has an ordinary node at each P_{i}, and H is tangent to $\tau(X) \backslash X$ only along the line $\langle\nu\rangle$.

2. Preliminaries

Notation 1. Let Y be an integral quasi-projective variety and $Q \in Y_{\text {reg }}$. Let $\{k Q, Y\}$ denote the $(k-1)$-th infinitesimal neighborhood of Q in Y, i.e. the closed subscheme of Y with $\left(\mathcal{I}_{Q}\right)^{k}$ as its ideal sheaf. If $Y=\mathbb{P}^{m}$, then we write $k Q$ instead of $\left\{k Q, \mathbb{P}^{m}\right\}$. The scheme $\{k Q, Y\}$ will be called a k-point of Y. We also say that a 2 -point is a double point, that a 3 -point is a triple point and a 4 -point is a quadruple point.

We give here the definition of a (2,3)-point as it is in [6], p. 977 .
Definition 1. Let $\mathfrak{q} \subset \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]$ be the reduced ideal of a simple point $Q \in \mathbb{P}^{m}$, and let $l \subset \mathbb{K}\left[x_{0}, \ldots, x_{m}\right]$ be the ideal of a reduced line $L \subset \mathbb{P}^{m}$ through Q. We say that $Z(Q, L)$ is a $(2,3)$-point if it is the zero-dimensional scheme whose representative ideal is $\left(\mathfrak{q}^{3} \cup l^{2}\right)$.
Remark 1. Notice that $2 Q \subset Z(Q, L) \subset 3 Q$.
We recall the notion of weak non-defectivity for an integral and non-degenerate projective variety $Y \subset \mathbb{P}^{r}$ (see [4]). For any closed subscheme $Z \subset \mathbb{P}^{r}$ set:

$$
\begin{equation*}
\mathcal{H}(-Z):=\left|\mathcal{I}_{Z, \mathbb{P}^{r}}(1)\right| \tag{1}
\end{equation*}
$$

Notation 2. Let $Z \subset \mathbb{P}^{r}$ be a zero-dimensional scheme such that $\{2 Q, Y\} \subseteq Z$ for all $Q \in Z_{\text {red }}$. Fix $H \in \mathcal{H}(-Z)$ where $\mathcal{H}(-Z)$ is defined in (1). Let H_{c} be the closure in Y of the set of all $Q \in Y_{\text {reg }}$ such that $T_{Q} Y \subseteq H$.
The contact locus H_{Z} of H is the union of all irreducible components of H_{c} containing at least one point of $Z_{\text {red }}$.
We use the notation H_{Z} only in the case $Z_{\text {red }} \subset Y_{\text {reg }}$.
Fix an integer $k \geq 0$ and assume that $\sigma_{k+1}(Y)$ doesn't fill up the ambient space \mathbb{P}^{r}. Fix a general $(k+1)$-uple of points in Y i.e. $\left(P_{0}, \ldots, P_{k}\right) \in Y^{k+1}$ and set

$$
\begin{equation*}
Z:=\cup_{i=0}^{k}\left\{2 P_{i}, Y\right\} . \tag{2}
\end{equation*}
$$

The following definition of weakly k-defective variety coincides with the one given in [4].
Definition 2. A variety $Y \subset \mathbb{P}^{r}$ is said to be weakly k-defective if $\operatorname{dim}\left(H_{Z}\right)>0$ for Z as in (2).

In [4], Theorem 1.4, it is proved that if $Y \subset \mathbb{P}^{r}$ is not weakly k-defective, then $H_{Z}=Z_{\text {red }}$ and that $\operatorname{Sing}(Y \cap H)=(\operatorname{Sing}(Y) \cap H) \cup Z_{\text {red }}$ for a general $Z=$ $\cup_{i=0}^{k}\left\{2 P_{i}, Y\right\}$ and a general $H \in \mathcal{H}(-Z)$. Notice that Y is weakly 0 -defective if and only if its dual variety $Y^{*} \subset \mathbb{P}^{r *}$ is not a hypersurface.

In [5] the same authors considered also the case in which Y is not irreducible and hence its joins have as irreducible components the joins of different varieties.

Lemma 1. Fix an integer $y \geq 2$, an integral projective variety $Y, L \in \operatorname{Pic}(Y)$ and $P \in Y_{\text {reg. }}$. Set $x:=\operatorname{dim}(Y)$. Assume $h^{0}\left(Y, \mathcal{I}_{(y+1) P} \otimes L\right)=h^{0}(Y, L)-\binom{x+y-1}{x}$. Fix a general $F \in\left|\mathcal{I}_{y P} \otimes L\right|$. Then P is an isolated singular point of F.
Proof. Let $u: Y^{\prime} \rightarrow Y$ denote the blowing-up of P and $E:=u^{-1}(P)$ the exceptional divisor. Since $\operatorname{dim}(Y)=x$, we have $E \cong \mathbb{P}^{x-1}$. Set $R:=u^{*}(L)$. For each integer $t \geq 0$ we have $u_{*}(R(-t E)) \cong \mathcal{I}_{t P} \otimes L$. Thus the push-forward u_{*} induces an isomorphism between the linear system $|R(-t E)|$ on Y^{\prime} and the linear system
$\left|\mathcal{I}_{t P} \otimes L\right|$ on Y. Set $M:=R(-y E)$. Since $\mathcal{O}_{Y^{\prime}}(E) \mid E \cong \mathcal{O}_{E}(-1)$ (up to the identification of E with \mathbb{P}^{x-1}), we have $R(-t E) \mid E \cong \mathcal{O}_{E}(t)$ for all $t \in \mathbb{N}$. Look at the exact sequence on Y^{\prime} :

$$
\begin{equation*}
0 \rightarrow M(-E) \rightarrow M \rightarrow \mathcal{O}_{E}(y) \rightarrow 0 \tag{3}
\end{equation*}
$$

By hypothesis $h^{0}\left(Y, \mathcal{I}_{y P} \otimes L\right)=h^{0}(Y, L)-\binom{x+y-2}{x}$. Thus our assumption implies $h^{0}\left(Y^{\prime}, M(-E)\right)=h^{0}\left(Y^{\prime}, M\right)-\binom{x+y-1}{x}+\binom{x+y-2}{x-1}=h^{0}\left(Y^{\prime}, M\right)-h^{0}\left(E, \mathcal{O}_{E}(y)\right)$. Thus (3) gives the surjectivity of the restriction map $\rho: H^{0}\left(Y^{\prime}, M\right) \rightarrow H^{0}(E, M \mid E)$. Since $y \geq 0$, the line bundle $M \mid E$ is spanned. Thus the surjectivity of ρ implies that M is spanned at each point of E. Hence M is spanned in a neighborhood of E. Bertini's theorem implies that a general $F^{\prime} \in|M|$ is smooth in a neighborhood of E. Since F is general and $|M| \cong\left|\mathcal{I}_{y P} \otimes L\right|, P$ is an isolated singular point of F.

3. WEAK NON-DEFECTIVITY OF $\tau(X, t)$

In this section we fix integers $m \geq 2, d \geq 3$ and set $N=\binom{m+d}{m}-1$ and $X:=X_{m, d}$. The variety $\tau(X)$ is 0 -weakly defective, because a general tangent space of $\tau(X)$ is tangent to $\tau(X)$ along a line. Terracini's lemma for joins implies that a general tangent space of $\tau(X, t)$ is tangent to $\tau(X, t)$ at least along a line (see Remark 3). Thus $\tau(X, t)$ is weakly 0 -defective. To handle this problem and prove Theorem 1 we introduce another definition, which is tailor-made to this particular case. As in [6] we want to work with zero-dimensional schemes on X, not on $\tau(X)$ or $\tau(X, t)$. We consider the corresponding notion in which $Y:=X$, but Z is not the general disjoint union of t double points of X, but now Z is the general disjoint union of $t-2$ double points of $X:=j_{m, d}\left(\mathbb{P}^{m}\right)$ and one $(2,3)$-points of \mathbb{P}^{m} in the sense of [6] (see Definition 1). Also the double points will be seen as subschemes of \mathbb{P}^{m}. Notice that $\mathcal{H}(-\emptyset)$ (seen on \mathbb{P}^{m}) is just $\left|\mathcal{O}_{\mathbb{P}^{m}}(d)\right|$.

Remark 2. Fix $P \in X$ and $Q \in T_{P} X \backslash\{P\}$. Any two such pairs (P, Q) are projectively equivalent for the natural action of $\operatorname{Aut}\left(\mathbb{P}^{m}\right)$. We have $Q \in \tau(X)_{\text {reg }}$ and $T_{Q} \tau(X) \supset T_{P} X$. Set $D:=\langle\{P, Q\}\rangle$. It is well-known that $D \backslash\{P\}$ is the the set of all $O \in \tau(X)_{\text {reg }}$ such that $T_{Q} \tau(X)=T_{O} \tau(X)$ (e.g. use that the set of all $g \in \operatorname{Aut}\left(\mathbb{P}^{m}\right)$ fixing P and the line containing P associated to the tangent vector induced by Q acts transitively on $\left.T_{P} X \backslash D\right)$.
Definition 3. Fix a general $\left(O_{1}, \ldots, O_{t-2}, O\right) \in\left(\mathbb{P}^{m}\right)^{t-1}$ and a general line $L \subset \mathbb{P}^{m}$ such that $O \in L$. Set $Z:=Z(O, L) \cup \bigcup_{i=1}^{t-2} 2 O_{i}$. We say that the variety $\tau(X, t)$ is not drip defective if $\operatorname{dim}\left(H_{Z}\right)=0$ for a general $H \in\left|\mathcal{I}_{Z}(d)\right|$.

We are now ready for the following lemma.
Lemma 2. Fix an integer $t \geq 3$ such that $(m+1) t<n$. Let $Z_{1} \subset \mathbb{P}^{m}$ be a general union of a quadruple point and $t-2$ double points. Let Z_{2} be a general union of 2 triple points and $t-2$ double points. Fix a general disjoint union $Z=$ $Z(O, L) \cup\left(\cup_{i=1}^{t-2} 2 P_{i}\right)$, where $Z(O, L)$ is a $(2,3)$-point as in Definition 1 and O, L and $\left\{P_{1}, \ldots, P_{t-2}\right\} \subset \mathbb{P}^{m}$ are general. Assume $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z_{1}}(d)\right)=h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z_{2}}(d)\right)=0$. Then:
(i) $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z}(d)\right)=0$;
(ii) $\tau(X, t)$ is not drip defective;
(iii) a general $H \in \mathcal{H}(-Z)$ has an ordinary quadratic singularity at each P_{i}.

Proof. Set $W:=3 O \cup\left(\cup_{i=1}^{t-2} 2 P_{i}\right)$. The definition of a $(2,3)$-point gives that $Z(O, L) \subset$ $3 O$. Thus $Z \subset W \subset Z_{2}$. Hence $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z}(d)\right) \leq h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z_{2}}(d)\right)=0$. Hence part (i) is proven.

To prove part (ii) of the lemma we need to prove that $\operatorname{dim}\left(H_{Z}\right)=0$ for a general $H \in \mathcal{H}(-Z)$. Since $W \varsubsetneqq Z_{1}$ and $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z_{1}}(d)\right)=0$, we have $\mathcal{H}(-W) \neq \emptyset$. Since $W_{\text {red }}=Z_{\text {red }}$ and $Z \subset W$, to prove parts (ii) and (iii) of the lemma it is sufficient to prove $\operatorname{dim}\left(\left(H_{W}\right)_{c}\right)=0$ for a general $H_{W} \in \mathcal{H}(-W)$, where W is as above and $\left(H_{W}\right)_{c}$ is as in Notation 2. Assume that this is not true, therefore:
(1) either the contact locus $\left(H_{W}\right)_{c}$ contains a positive-dimensional component J_{i} containing some of the P_{i} 's, for $1 \leq i \leq t-2$,
(2) or the contact locus $\left(H_{W}\right)_{c}$ contains a positive-dimensional irreducible component T containing Q.
Set $Z_{3}:=\cup_{i=1}^{t-3} 2 P_{i}$ and $Z^{\prime}:=3 O \cup Z_{3}$.
(a) Here we assume the existence of a positive dimensional component $J_{i} \subset$ $\left(H_{W}\right)_{c}$ containing one of the P_{i} 's, say for example $J_{t-2} \ni P_{t-2}$. Thus a general $M \in\left|\mathcal{I}_{W}(d)\right|$ is singular along a positive-dimensional irreducible algebraic set containing P_{t-2}. Let $w: M \rightarrow \mathbb{P}^{m}$ denote the blowing-up of \mathbb{P}^{m} at the points $O, P_{1}, \ldots, P_{t-3}$. Set $E_{0}:=w^{-1}(O)$ and $E_{i}:=w^{-1}\left(P_{i}\right), 1 \leq i \leq t-3$. Let A be the only point of M such that $w(A)=P_{t-2}$. For each integer $y \geq 0$ we have $w_{*}\left(\mathcal{I}_{y A} \otimes w^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(d)\right)\left(-3 E_{0}-2 E_{1}-\cdots-2 E_{t-3}\right)\right)=\mathcal{I}_{Z^{\prime} \cup y P_{t-2}}(d)$. Applying Lemma 1 to the variety M, the line bundle $w^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(d)\right)\left(-3 E_{0}-2 E_{1}-\cdots-2 E_{t-3}\right)$, the point A and the integer $y=2$ we get a contradiction.
(b) Here we prove the non-existence of a positive-dimensional $T \subset\left(H_{W}\right)_{c}$ containing O. Let $w_{1}: M_{1} \rightarrow \mathbb{P}^{m}$ denote the blowing-up of \mathbb{P}^{m} at the points P_{1}, \ldots, P_{t-2}. Set $E_{i}:=w_{1}^{-1}\left(P_{i}\right), 1 \leq i \leq t-2$. Let $B \in M_{1}$ be the only point of M_{1} such that $w_{1}(B)=O$. For each integer $y \geq 0$ we have $w_{1 *}\left(\mathcal{I}_{y B} \otimes\right.$ $\left.w_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(d)\right)\left(-2 E_{1}-\cdots-2 E_{t-2}\right)\right)=\mathcal{I}_{Z^{\prime} \cup y O}(d)$. Since $h^{1}\left(\mathbb{P}^{m}, \mathcal{I}_{Z_{2}}(d)\right)=0$ and $\left|\mathcal{I}_{Z_{2}}(d)\right| \subset\left|\mathcal{I}_{Z}(d)\right|$, Lemma 1 applied to the integer $y=3$ gives a contradiction.

In [3], Lemmas 5 and 6, we proved the following two lemmas:
Lemma 3. Fix integers $m \geq 2$ and $d \geq 5$. If $m \leq 4$, then assume $d \geq 6$. Set $\alpha:=\left\lfloor\binom{ m+d-1}{m} /(m+1)\right\rfloor$. Let $Z_{i} \subset \mathbb{P}^{m}, i=1,2$, be a general union of i triple points and $\alpha-i$ double points. Then $h^{1}\left(\mathcal{I}_{Z_{i}}(d)\right)=0$.

Lemma 4. Fix integers $m \geq 2$ and $d \geq 6$. If $m \leq 4$, then assume $d \geq 7$. Set $\beta:=\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$. Let $Z \subset \mathbb{P}^{m}$ be a general union of one quadruple point and $\beta-1$ double points. Then $h^{i}\left(\mathcal{I}_{Z}(d)\right)=0$.

We will use the following set-up.
Notation 3. Fix any $Q \in \tau(X) \backslash X$. The point Q uniquely determines a point $E \in X$ and (up to a non-zero scalar) a tangent vector ν of X with $\nu_{\text {red }}=\{E\}$. We have $Q \in\langle\nu\rangle \backslash\{E\}$ and $T_{Q} \tau(X)$ is tangent to $\tau(X) \backslash X$ exactly along the line $\langle\nu\rangle=\langle\{E, Q\}\rangle$. Let $O \in \mathbb{P}^{m}$ be the only point such that $j_{n, d}(O)=E$. Let $u_{O}: \widetilde{X} \rightarrow \mathbb{P}^{m}$ be the blowing-up of O. Let $E:=u_{O}^{-1}(O)$ denote the exceptional divisor. For all integers x, e set $\mathcal{O}_{\widetilde{X}}(x, e E):=u^{*}\left(\mathcal{O}_{\mathbb{P}^{m}}(x)\right)(e E)$. Let \mathcal{H} denote the linear system $\left|\mathcal{O}_{\tilde{X}}(d,-3 E)\right|$ on \widetilde{X}.

Remark 3. Since $d \geq 4$, the line bundle $\mathcal{O}_{\widetilde{X}}(d,-3 E)$ is very ample, $u_{*}\left(\mathcal{O}_{\widetilde{X}}(d,-3 E)\right)=$ $\mathcal{I}_{3 O}(1), h^{0}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}(d,-3 E)\right)=\binom{m+d}{m}-\binom{m+2}{3}$ and $h^{i}\left(\widetilde{X}, \mathcal{O}_{\tilde{X}}(d,-3 E)\right)=0$ for all $i>0$.
Lemma 5. The linear system \mathcal{H} on \widetilde{X} is not $(t-3)$-weakly defective. For a general $O_{1}, \ldots, O_{t-2} \in \widetilde{X}$ a general $H \in\left|\mathcal{H}\left(-2 O_{1}-\cdots-2 O_{t-2}\right)\right|$ is singular only at the points O_{1}, \ldots, O_{t-2} which are ordinary double points of H.

Proof. Fix general $O_{1}, \ldots, O_{t-2} \in \widetilde{X}$. Fix $j \in\{1, \ldots, t-2\}$ and set $Z^{\prime}:=3 O_{j} \cup$ $\bigcup_{i \neq j} 2 O_{i}, Z^{\prime \prime}:=\cup_{i=1}^{t-2} 2 O_{i}$ and $W:=3 O_{j} \cup \bigcup_{i \neq j} 2 O_{i}$. We have $u_{*}\left(\mathcal{I}_{Z^{\prime}}(d,-3 E)\right) \cong$ $\mathcal{I}_{W \cup 3 O}(1)$. The case $i=2$ of Lemma 3 gives $h^{1}\left(\mathcal{I}_{Z}(d,-3 E)\right)=0$. Lemma 1 applied to a blowing-up of \mathbb{P}^{m} at $\left\{O, O_{1}, \ldots, O_{t-2}\right\} \backslash\left\{O_{j}\right\}$ shows that a general $H \in \mathcal{H}(-Z)$ has as an isolated singular point at O_{j}. Since this is true for all $j \in\{1, \ldots, t-2\}$, \mathcal{H} is not $(t-3)$-weakly defective (just by the definition of weak defectivity). The second assertion follows from the first one and [4], Theorem 1.4.

Now we can apply Lemmas 2, 3, 4 and 5 and get the following result.
Theorem 4. Fix integers $m \geq 2$ and $d \geq 6$. If $m \leq 4$, then assume $d \geq 7$. Set $\beta:=\left\lfloor\binom{ m+d-2}{m} /(m+1)\right\rfloor$. Fix an integer t such that $2 \leq t \leq \beta+1$. Then $\tau(X, t)$ is not drip defective.
Proof. Fix general $P_{1}, \ldots, P_{t-2}, O \in \mathbb{P}^{m}$ and a general line $L \subset \mathbb{P}^{m}$ such that $O \in L$. Set $Z:=Z(O, L) \cup \bigcup_{i=1}^{t-2} 2 P_{i}, W:=3 O \cup \bigcup_{i=1}^{t-2} 2 P_{t-2}, W^{\prime}:=3 O \cup$ $3 O_{1} \cup \bigcup_{i=2}^{t-2} 2 P_{t-2}$ and $W^{\prime \prime}:=4 O \cup \bigcup_{i=1}^{t-2} 2 P_{t-2}$. Take $O_{i} \in \widetilde{X}$ such that $u_{O}\left(O_{i}\right)=$ $P_{i}, 1 \leq i \leq t-2$. Since $u_{O_{*}}\left(\mathcal{I}_{2 O_{1} \cup \ldots \cup 2 O_{t-2}}(d,-4 E)\right) \cong \mathcal{I}_{W}(d)$, Lemma 2 gives $h^{1}\left(\mathcal{I}_{2 O_{1} \cup \cdots \cup 2 O_{t-2}}(d,-4 E)\right)=0$. Since $Z(O, L) \subset 3 O$, the case $y=3$ of Lemma 1 applied to the blowing-up of \mathbb{P}^{m} at O_{1}, \ldots, O_{t-2} shows that a general $H \in\left|\mathcal{I}_{W}(d)\right|$ has an isolated singularity at O with multiplicity at most 3 .

Recall that $\operatorname{Sing}(\tau(X))=X$ and that for each $Q \in \tau(X) \backslash X$ there is a unique $O \in X$ and a unique tangent vector ν to X at O such that $Q \in\langle\nu\rangle$ and that $\langle\nu\rangle \backslash\{O\}$ is the contact locus of the tangent space $T_{Q} \tau(X)$ with $\tau(X) \backslash X$.

Let P be a general point of $\tau(X, t)$, i.e. fix a general $\left(P_{1}, \ldots, P_{t-2}, Q\right) \in X^{t-2} \times$ $\tau(X)$ and a general $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle$.

Proof of Theorem 1. If $t=2$, then Theorem 1 is true, because in this case the join is the join of a unique factor and $\operatorname{dim}(\tau(X))=2 n$ (since $d \geq 2$). Thus we may assume $t \geq 3$. Fix a general $P \in \tau(X, t)$, say $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle$ with $\left(P_{1}, \ldots, P_{t-2}, Q\right)$ general in $X^{t-2} \times \tau(X)$. Terracini's lemma for joins ([1], Corollary 1.10) gives $T_{P} \tau(X, t)=\left\langle T_{O_{1}} X \cup \cdots T_{O_{t-2}} X \cup T_{Q} \tau(X)\right\rangle$. Let O be the point of \mathbb{P}^{m} such that $Q \in T_{j_{m, d}(O)} X$. Let \mathcal{H}^{\prime} (resp. $\left.\mathcal{H}^{\prime \prime}\right)$ be the set of all hyperplane $H \subset \mathbb{P}^{N}$ containing $T_{Q} \tau(\underset{\widetilde{X}}{ })$ (resp. $T_{P} \tau(X, t)$). We may see \mathcal{H}^{\prime} and $\mathcal{H}^{\prime \prime}$ as linear systems on the blowing-up \widetilde{X} of \mathbb{P}^{m} at O. We have $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime}\left(-2 P_{1}-\cdots-2 P_{t-2}\right)$ and $\mathcal{H} \subseteq \mathcal{H}^{\prime}$, where \mathcal{H} is defined in Notation 3. Take $O_{i} \in \widetilde{X}, 1 \leq i \leq t-2$, such that $P_{i}=\bar{u}\left(O_{i}\right)$ for all i. Since $\left(P_{1}, \ldots, P_{t-2}\right)$ is general in X^{t-2} for a fixed Q and $\mathcal{H} \subseteq \mathcal{H}^{\prime}$, Lemma 5 gives that a general $H \in \mathcal{H}^{\prime \prime}$ intersects X in a divisor which, outside O, is singular only at P_{1}, \ldots, P_{t-2} and with an ordinary node at each P_{i}. Now assume $P \in\left\langle\left\{P_{1}^{\prime}, \ldots P_{t-2}^{\prime}, Q^{\prime}\right\}\right\rangle$ for some other $\left(P_{1}^{\prime}, \ldots, P_{t-2}^{\prime}, Q^{\prime}\right) \in X^{t-2} \times \tau(X)$. Since P is general in $\tau(X, t)$ and $\tau(X, t)$ has the expected dimension, the $(t-1)$-ple $\left(P_{1}^{\prime}, \ldots, P_{t-2}^{\prime}, Q^{\prime}\right)$ is general in $X^{t-2} \times \tau(X)$. Hence H is singular at each P_{i}^{\prime},
$1 \leq i \leq t-2$, and with an ordinary node at each P_{i}^{\prime}. Since O is not an ordinary node of $H \cap X$, we get $\left\{P_{1}, \ldots, P_{t-2}\right\}=\left\{P_{1}^{\prime}, \ldots, P_{t-2}^{\prime}\right\}$. Thus $O=O^{\prime}$. Hence H is tangent to $\tau(X)_{\text {reg }}$ exactly along the line $\langle\{Q, O\}\rangle \backslash\{O\}$. Hence $Q^{\prime} \in\langle\{Q, O\}\rangle$. Assume $Q \neq Q^{\prime}$. Since P is general in $\tau(X, t)$, then $P \notin \tau(X, t-1)$. Hence $Q^{\prime} \notin\left\langle\left\{O_{1}, \ldots, O_{t-2}\right\}\right\rangle$ and $Q \notin\left\langle\left\{O_{1}, \ldots, O_{t-2}\right\}\right\rangle$. Thus $\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle \cap$ $\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q^{\prime}\right\}\right\rangle=\left\langle\left\{P_{1}, \ldots, P_{t-2}\right\}\right\rangle$ if $Q \neq Q^{\prime}$. Since $P \in\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q\right\}\right\rangle \cap$ $\left\langle\left\{P_{1}, \ldots, P_{t-2}, Q^{\prime}\right\}\right\rangle$, we got a contradiction.

Proof of Theorem 3. The case $t=2$ is well-known and follows from the following fact: for any $O \in X$ and any $Q \in T_{O} X \backslash\{O\}$ the group $G_{O}:=\{g \in$ $\left.\operatorname{Aut}\left(\mathbb{P}^{n}\right): g(O)=O\right\}$ acts on $T_{O} X$ and the stabilizer $G_{O, Q}$ of Q for this action is the line $\langle\{O, Q\}\rangle$, while $T_{O} X \backslash\langle\{O, Q\}\rangle$ is another orbit for $G_{O, Q}$. Thus we may assume $t \geq 3$. Fix a general $P \in \tau(X, t)$ and a general hyperplane $H \supset T_{P} \tau(X, t)$. If H is tangent to $\tau(X)$ at a point $Q^{\prime} \in \tau(X) \backslash X$, then it is tangent along a line containing Q^{\prime}. Let $E \in X$ be the only point such that $Q^{\prime} \in T_{E} X$. We get $T_{E} X \subset \tau(X, t)$ and that $H \cap T_{E} X$ is larger than the double point $2 E \subset X$. Theorem 1 gives that Q, Q^{\prime} and E are collinear, i.e H is tangent only along the line ν.

References

[1] B. Ådlandsvik, Joins and higher secant varieties. Math. Scand. 61 (1987), no. 2, 213-222.
[2] E. Ballico, On the weak non-defectivity of Veronese embeddings of projective spaces, Cent. Eur. J. Math. 3 (2005), no. 2, 183-187.
[3] E. Ballico and A. Bernardi, Partial stratification of secant varieties of Veronese varieties via curvilinear subschemes, arXiv: 1010.3546v1 [math.AG].
[4] L. Chiantini and C. Ciliberto, Weakly defective varieties. Trans. Amer. Math. Soc. 454 (2002), no. 1, 151-178.
[5] L. Chiantini and C. Ciliberto, On the dimension of secant varieties, J. Eur. Math. Soc. 12 (2010), no. 5, 1267-1291.
[6] M. V. Catalisano, A. V. Geramita and A. Gimigliano, On the secant varieties to the tangential varieties of a Veronesean. Proc. Amer. Math. Soc. 130 (2002), no. 4, 975-985.
[7] C. Ciliberto and F. Russo, Varieties with minimal secant degree and linear systems of maximal dimension on surfaces. Adv. Math. 206 (2006), no. 1, 1-50.
[8] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.
[9] M. Mella, Singularities of linear systems and the Waring problem. Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.
[10] M. Mella, Base loci of linear systems and the Waring problem. Proc. Amer. Math. Soc. 137 (2009), no. 1, 91-98.

Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy
E-mail address: ballico@science.unitn.it
InRIA (Institut National de Recherche en Informatique et en Automatique) Project Galaad 2004 route del Lucioles, B.P. 9306902 Sophia Antipolis Cedex FRANCE

E-mail address: alessandra.bernardi@inria.fr

[^0]: 1991 Mathematics Subject Classification. 14N05; 14M17.
 Key words and phrases. Veronese variety; tangential variety; join; weak defectivity.
 The first author was partially supported by MIUR and GNSAGA of INdAM (Italy); the second author was partially supported by CIRM-FBK (TN-Italy), Marie-Curie FP7-PEOPLE-2009-IEF, INRIA Sophia Antipolis Mediterranée, Project Galaad (France) and Mittagh-Leffler Institut (Sweden).

