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Abstract. Let Xm,d ⊂ PN , N :=
`m+d

m

´
−1, be the order d Veronese embed-

ding of Pm. Let τ(Xm,d) ⊂ PN , be the tangent developable of Xm,d. For each

integer t ≥ 2 let τ(Xm,d, t) ⊆ PN , be the joint of τ(Xm,d) and t− 2 copies of

Xm,d. Here we prove that if m ≥ 2, d ≥ 7 and t ≤ 1 + b
`m+d−2

m

´
/(m + 1)c,

then for a general P ∈ τ(Xm,d, t) there are uniquely determined P1, . . . , Pt−2 ∈
Xm,d and a unique tangent vector ν of Xm,d such that P is in the linear span

of ν ∪ {P1, . . . , Pt−2}, i.e. a degree d linear form f associated to P may be

written as

f = Ld−1
t−1Lt +

t−2X
i=1

Ld
i

with Li, 1 ≤ i ≤ t, uniquely determined (up to a constant) linear forms on
Pm.

1. Introduction

We work over an algebraically closed field K such that char(K) = 0. Fix integers
m ≥ 2 and d ≥ 3. Let jm,d : Pm → PN , N :=

(
m+d
m

)
− 1, be the order d Veronese

embedding of Pm. Set Xm,d := jm,d(Pm). We often write X instead of Xm,d.
For each integer t such that 1 ≤ t ≤ N let σt(X) denote the closure in PN of
the union of all (t − 1)-dimensional linear subspaces spanned by t points of X
(the t-secant variety of X). Let τ(X) ⊆ PN be the tangent developable of X,
i.e. the closure in PN of the union of all embedded tangent spaces TPX, P ∈ X.
Obviously τ(X) ⊆ σ2(X) and τ(X) is integral. Since d ≥ 3, the variety τ(X) is
a hypersurface of σ2(X) ([6], Proposition 3.2). Fix integral positive-dimensional
subvarieties A1, . . . , As ⊂ PN , s ≥ 2. The join [A1, A2] is the closure in PN of the
union of all lines spanned by a point of A1 and a different point of A2. If s ≥ 3 define
inductively the join [A1, . . . , As] by the formula [A1, . . . , As] := [[A1, . . . , As−1], As].
The join [A1, . . . , As] is an integral variety and dim([A1, . . . , As]) ≤ min{N, s− 1 +∑s
i=1 dim(Ai)}. The integer min{N, s − 1 +

∑s
i=1 dim(Ai)} is called the expected

dimension of the join [A1, . . . , As]. Obviously [A1, . . . , As] = [Aσ(1), . . . , Aσ(s)] for
any permutation σ : {1, . . . , s} → {1, . . . , s}. The secant variety σt(X), t ≥ 2, is
the join of t copies of X. For each integers t ≥ 3 let τ(X, t) ⊆ PN be the join of
τ(X) and σt−2(X) copies of X. We recall that min{N, t(m+1)−2} is the expected
dimension of τ(X, t), while min{N, t(m+1)−1} is the expected dimension of σt(X).
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In the range of triples (m, d, t) we will met in this paper both τ(X, t) and σt(X)
have the expected dimensions and hence τ(X, t) is a hypersurface of σt(X).

After [3] it is natural to ask the following question.

Question 1. Assume d ≥ 3 and τ(X, t) 6= PN . Is a general point of τ(X, t) in
the linear span of a unique set {P0, P1, . . . , Pt−2} with (P0, P1, . . . , Pt−2) ∈ τ(X)×
Xt−2?

For non weakly (t−1)-degenerate subvarieties of PN the corresponding question
is true by [7], Proposition 1.5. Here we answer it for a large set of triples of integers
(m, d, t) and prove the following result.

Theorem 1. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set β :=
b
(
m+d−2
m

)
/(m+ 1)c. Assume t ≤ β + 1. Let P be a general point of τ(X, t). Then

there are uniquely determined points P1, . . . , Pt−2 ∈ X and Q ∈ τ(X) such that
P ∈ 〈{P1, . . . , Pt−2, Q}〉, i.e. there are uniquely determined points P1, . . . , Pt−2 ∈ X
and a unique tangent vector ν of X such that P ∈ 〈{P1, . . . , Pt−2} ∪ ν〉.

The existence part is obvious by the definition of the join as a closure of unions
of certain linear subspaces, but the uniqueness part is non-trivial and interesting.
Each point of Veronese variety X is of the form Ld for a unique (up to a constant)
L ∈ K[x0, . . . , xm]1. Thus Theorem 1 may rephrased in the following way.

Theorem 2. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := b

(
m+d−2
m

)
/(m + 1)c. Assume t ≤ β + 1. Let P be a general point of τ(X, t)

and f the homogeneous degree d form in K[x0, . . . , xm] associated to P . Then f
may be written in a unique way

f = Ld−1
t−1Lt +

t−2∑
i=1

Ldi

with Li ∈ K[x0, . . . , xm]1, 1 ≤ i ≤ t.

In the statement of Theorem 2 the form f is uniquely determined only up to
a non-zero scalar, and (as usual in this topic) “ uniqueness ” may allow not only
a permutation of the forms L1, . . . , Lt−2, but also a scalar multiplication of each
Li. To prove Theorem 1 and hence Theorem 2 we adapt the notion and the results
on weakly defective varieties described in [4]. It is easy to adapt [4] to joins of
different varieties instead of secant varieties of a fixed variety if a general tangent
hyperplane is tangent only at one point ([5]). However, a general tangent space of
τ(X) is tangent to τ(X) along a line, not just at the point of tangency. Hence a
general hyperplane tangent to τ(X, t), t ≥ 2, is tangent to τ(X, t) at least along a
line. We prove the following result.

Theorem 3. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := b

(
m+d−2
m

)
/(m+1)c. Assume t ≤ β+1. Let P be a general point of τ(X, t). Let

P1, . . . , Pt−2 ∈ X and Q ∈ τ(X) be the points such that P ∈ 〈{P1, . . . , Pt−2, Q}〉.
Let ν be the tangent vector of X such that Q is a point of 〈ν〉 \ νred. Let H ⊂ PN
be a general hyperplane containing the tangent space TP τ(X, t) of τ(X, t). Then
H is tangent to X only at the points P1, . . . , Pt−2, νred, the scheme H ∩X has an
ordinary node at each Pi, and H is tangent to τ(X) \X only along the line 〈ν〉.
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2. Preliminaries

Notation 1. Let Y be an integral quasi-projective variety and Q ∈ Yreg. Let
{kQ, Y } denote the (k− 1)-th infinitesimal neighborhood of Q in Y , i.e. the closed
subscheme of Y with (IQ)k as its ideal sheaf. If Y = Pm, then we write kQ instead
of {kQ,Pm}. The scheme {kQ, Y } will be called a k-point of Y . We also say that a
2-point is a double point, that a 3-point is a triple point and a 4-point is a quadruple
point.

We give here the definition of a (2, 3)-point as it is in [6], p. 977.

Definition 1. Let q ⊂ K[x0, . . . , xm] be the reduced ideal of a simple point Q ∈ Pm,
and let l ⊂ K[x0, . . . , xm] be the ideal of a reduced line L ⊂ Pm through Q.
We say that Z(Q,L) is a (2, 3)-point if it is the zero-dimensional scheme whose
representative ideal is (q3 ∪ l2).

Remark 1. Notice that 2Q ⊂ Z(Q,L) ⊂ 3Q.

We recall the notion of weak non-defectivity for an integral and non-degenerate
projective variety Y ⊂ Pr (see [4]). For any closed subscheme Z ⊂ Pr set:

(1) H(−Z) := |IZ,Pr (1)|.

Notation 2. Let Z ⊂ Pr be a zero-dimensional scheme such that {2Q,Y } ⊆ Z
for all Q ∈ Zred. Fix H ∈ H(−Z) where H(−Z) is defined in (1). Let Hc be the
closure in Y of the set of all Q ∈ Yreg such that TQY ⊆ H.
The contact locus HZ of H is the union of all irreducible components of Hc con-
taining at least one point of Zred.
We use the notation HZ only in the case Zred ⊂ Yreg.

Fix an integer k ≥ 0 and assume that σk+1(Y ) doesn’t fill up the ambient space
Pr. Fix a general (k + 1)-uple of points in Y i.e. (P0, . . . , Pk) ∈ Y k+1 and set

(2) Z := ∪ki=0{2Pi, Y }.
The following definition of weakly k-defective variety coincides with the one given
in [4].

Definition 2. A variety Y ⊂ Pr is said to be weakly k-defective if dim(HZ) > 0
for Z as in (2).

In [4], Theorem 1.4, it is proved that if Y ⊂ Pr is not weakly k-defective, then
HZ = Zred and that Sing(Y ∩ H) = (Sing(Y ) ∩ H) ∪ Zred for a general Z =
∪ki=0{2Pi, Y } and a general H ∈ H(−Z). Notice that Y is weakly 0-defective if and
only if its dual variety Y ∗ ⊂ Pr∗ is not a hypersurface.

In [5] the same authors considered also the case in which Y is not irreducible
and hence its joins have as irreducible components the joins of different varieties.

Lemma 1. Fix an integer y ≥ 2, an integral projective variety Y , L ∈ Pic(Y ) and
P ∈ Yreg. Set x := dim(Y ). Assume h0(Y, I(y+1)P ⊗ L) = h0(Y, L)−

(
x+y−1
x

)
. Fix

a general F ∈ |IyP ⊗ L|. Then P is an isolated singular point of F .

Proof. Let u : Y ′ → Y denote the blowing-up of P and E := u−1(P ) the exceptional
divisor. Since dim(Y ) = x, we have E ∼= Px−1. Set R := u∗(L). For each
integer t ≥ 0 we have u∗(R(−tE)) ∼= ItP ⊗ L. Thus the push-forward u∗ induces
an isomorphism between the linear system |R(−tE)| on Y ′ and the linear system
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|ItP ⊗ L| on Y . Set M := R(−yE). Since OY ′(E)|E ∼= OE(−1) (up to the
identification of E with Px−1), we have R(−tE)|E ∼= OE(t) for all t ∈ N. Look at
the exact sequence on Y ′:

(3) 0→M(−E)→M → OE(y)→ 0

By hypothesis h0(Y, IyP ⊗ L) = h0(Y,L)−
(
x+y−2
x

)
. Thus our assumption implies

h0(Y ′,M(−E)) = h0(Y ′,M) −
(
x+y−1
x

)
+
(
x+y−2
x−1

)
= h0(Y ′,M) − h0(E,OE(y)).

Thus (3) gives the surjectivity of the restriction map ρ : H0(Y ′,M)→ H0(E,M |E).
Since y ≥ 0, the line bundle M |E is spanned. Thus the surjectivity of ρ implies
that M is spanned at each point of E. Hence M is spanned in a neighborhood of
E. Bertini’s theorem implies that a general F ′ ∈ |M | is smooth in a neighborhood
of E. Since F is general and |M | ∼= |IyP ⊗ L|, P is an isolated singular point of
F . �

3. Weak non-defectivity of τ(X, t)

In this section we fix integers m ≥ 2, d ≥ 3 and set N =
(
m+d
m

)
− 1 and

X := Xm,d. The variety τ(X) is 0-weakly defective, because a general tangent
space of τ(X) is tangent to τ(X) along a line. Terracini’s lemma for joins implies
that a general tangent space of τ(X, t) is tangent to τ(X, t) at least along a line (see
Remark 3). Thus τ(X, t) is weakly 0-defective. To handle this problem and prove
Theorem 1 we introduce another definition, which is tailor-made to this particular
case. As in [6] we want to work with zero-dimensional schemes on X, not on τ(X)
or τ(X, t). We consider the corresponding notion in which Y := X, but Z is not
the general disjoint union of t double points of X, but now Z is the general disjoint
union of t − 2 double points of X := jm,d(Pm) and one (2, 3)-points of Pm in the
sense of [6] (see Definition 1). Also the double points will be seen as subschemes of
Pm. Notice that H(−∅) (seen on Pm) is just |OPm(d)|.

Remark 2. Fix P ∈ X and Q ∈ TPX \ {P}. Any two such pairs (P,Q) are
projectively equivalent for the natural action of Aut(Pm). We have Q ∈ τ(X)reg
and TQτ(X) ⊃ TPX. Set D := 〈{P,Q}〉. It is well-known that D \ {P} is the the
set of all O ∈ τ(X)reg such that TQτ(X) = TOτ(X) (e.g. use that the set of all
g ∈ Aut(Pm) fixing P and the line containing P associated to the tangent vector
induced by Q acts transitively on TPX \D).

Definition 3. Fix a general (O1, . . . , Ot−2, O) ∈ (Pm)t−1 and a general line L ⊂ Pm
such that O ∈ L. Set Z := Z(O,L) ∪

⋃t−2
i=1 2Oi. We say that the variety τ(X, t) is

not drip defective if dim(HZ) = 0 for a general H ∈ |IZ(d)|.

We are now ready for the following lemma.

Lemma 2. Fix an integer t ≥ 3 such that (m + 1)t < n. Let Z1 ⊂ Pm be a
general union of a quadruple point and t − 2 double points. Let Z2 be a general
union of 2 triple points and t − 2 double points. Fix a general disjoint union Z =
Z(O,L)∪(∪t−2

i=12Pi) , where Z(O,L) is a (2, 3)-point as in Definition 1 and O, L and
{P1, . . . , Pt−2} ⊂ Pm are general. Assume h1(Pm, IZ1(d)) = h1(Pm, IZ2(d)) = 0.
Then:

(i) h1(Pm, IZ(d)) = 0;
(ii) τ(X, t) is not drip defective;
(iii) a general H ∈ H(−Z) has an ordinary quadratic singularity at each Pi.
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Proof. SetW := 3O∪(∪t−2
i=12Pi). The definition of a (2, 3)-point gives that Z(O,L) ⊂

3O. Thus Z ⊂ W ⊂ Z2. Hence h1(Pm, IZ(d)) ≤ h1(Pm, IZ2(d)) = 0. Hence part
(i) is proven.

To prove part (ii) of the lemma we need to prove that dim(HZ) = 0 for a general
H ∈ H(−Z). Since W $ Z1 and h1(Pm, IZ1(d)) = 0, we have H(−W ) 6= ∅. Since
Wred = Zred and Z ⊂ W , to prove parts (ii) and (iii) of the lemma it is sufficient
to prove dim((HW )c) = 0 for a general HW ∈ H(−W ), where W is as above and
(HW )c is as in Notation 2. Assume that this is not true, therefore:

(1) either the contact locus (HW )c contains a positive-dimensional component
Ji containing some of the Pi’s, for 1 ≤ i ≤ t− 2,

(2) or the contact locus (HW )c contains a positive-dimensional irreducible com-
ponent T containing Q.

Set Z3 := ∪t−3
i=12Pi and Z ′ := 3O ∪ Z3.

(a) Here we assume the existence of a positive dimensional component Ji ⊂
(HW )c containing one of the Pi’s, say for example Jt−2 3 Pt−2. Thus a gen-
eral M ∈ |IW (d)| is singular along a positive-dimensional irreducible algebraic set
containing Pt−2. Let w : M → Pm denote the blowing-up of Pm at the points
O,P1, . . . , Pt−3. Set E0 := w−1(O) and Ei := w−1(Pi), 1 ≤ i ≤ t − 3. Let A
be the only point of M such that w(A) = Pt−2. For each integer y ≥ 0 we have
w∗(IyA⊗w∗(OPm(d))(−3E0−2E1−· · ·−2Et−3)) = IZ′∪yPt−2(d). Applying Lemma
1 to the variety M , the line bundle w∗(OPm(d))(−3E0 − 2E1 − · · · − 2Et−3), the
point A and the integer y = 2 we get a contradiction.

(b) Here we prove the non-existence of a positive-dimensional T ⊂ (HW )c
containing O. Let w1 : M1 → Pm denote the blowing-up of Pm at the points
P1, . . . , Pt−2. Set Ei := w−1

1 (Pi), 1 ≤ i ≤ t − 2. Let B ∈ M1 be the only
point of M1 such that w1(B) = O. For each integer y ≥ 0 we have w1∗(IyB ⊗
w∗1(OPm(d))(−2E1 − · · · − 2Et−2)) = IZ′∪yO(d). Since h1(Pm, IZ2(d)) = 0 and
|IZ2(d)| ⊂ |IZ(d)| , Lemma 1 applied to the integer y = 3 gives a contradiction. �

In [3], Lemmas 5 and 6, we proved the following two lemmas:

Lemma 3. Fix integers m ≥ 2 and d ≥ 5. If m ≤ 4, then assume d ≥ 6. Set
α := b

(
m+d−1
m

)
/(m + 1)c. Let Zi ⊂ Pm, i = 1, 2, be a general union of i triple

points and α− i double points. Then h1(IZi
(d)) = 0.

Lemma 4. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := b

(
m+d−2
m

)
/(m + 1)c. Let Z ⊂ Pm be a general union of one quadruple point

and β − 1 double points. Then hi(IZ(d)) = 0.

We will use the following set-up.

Notation 3. Fix any Q ∈ τ(X) \ X. The point Q uniquely determines a point
E ∈ X and (up to a non-zero scalar) a tangent vector ν of X with νred = {E}.
We have Q ∈ 〈ν〉 \ {E} and TQτ(X) is tangent to τ(X) \ X exactly along the
line 〈ν〉 = 〈{E,Q}〉. Let O ∈ Pm be the only point such that jn,d(O) = E. Let
uO : X̃ → Pm be the blowing-up of O. Let E := u−1

O (O) denote the exceptional
divisor. For all integers x, e set O eX(x, eE) := u∗(OPm(x))(eE). Let H denote the
linear system |O eX(d,−3E)| on X̃.
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Remark 3. Since d ≥ 4, the line bundleO eX(d,−3E) is very ample, u∗(O eX(d,−3E)) =
I3O(1), h0(X̃,O eX(d,−3E)) =

(
m+d
m

)
−
(
m+2

3

)
and hi(X̃,O eX(d,−3E)) = 0 for all

i > 0.

Lemma 5. The linear system H on X̃ is not (t−3)-weakly defective. For a general
O1, . . . , Ot−2 ∈ X̃ a general H ∈ |H(−2O1 − · · · − 2Ot−2)| is singular only at the
points O1, . . . , Ot−2 which are ordinary double points of H.

Proof. Fix general O1, . . . , Ot−2 ∈ X̃. Fix j ∈ {1, . . . , t − 2} and set Z ′ := 3Oj ∪⋃
i 6=j 2Oi, Z ′′ := ∪t−2

i=12Oi and W := 3Oj ∪
⋃
i 6=j 2Oi. We have u∗(IZ′(d,−3E)) ∼=

IW∪3O(1). The case i = 2 of Lemma 3 gives h1(IZ(d,−3E)) = 0. Lemma 1 applied
to a blowing-up of Pm at {O,O1, . . . , Ot−2}\{Oj} shows that a general H ∈ H(−Z)
has as an isolated singular point at Oj . Since this is true for all j ∈ {1, . . . , t− 2},
H is not (t − 3)-weakly defective (just by the definition of weak defectivity). The
second assertion follows from the first one and [4], Theorem 1.4. �

Now we can apply Lemmas 2, 3, 4 and 5 and get the following result.

Theorem 4. Fix integers m ≥ 2 and d ≥ 6. If m ≤ 4, then assume d ≥ 7. Set
β := b

(
m+d−2
m

)
/(m+ 1)c. Fix an integer t such that 2 ≤ t ≤ β + 1. Then τ(X, t) is

not drip defective.

Proof. Fix general P1, . . . , Pt−2, O ∈ Pm and a general line L ⊂ Pm such that
O ∈ L. Set Z := Z(O,L) ∪

⋃t−2
i=1 2Pi, W := 3O ∪

⋃t−2
i=1 2Pt−2, W ′ := 3O ∪

3O1 ∪
⋃t−2
i=2 2Pt−2 and W ′′ := 4O ∪

⋃t−2
i=1 2Pt−2. Take Oi ∈ X̃ such that uO(Oi) =

Pi, 1 ≤ i ≤ t − 2. Since uO∗(I2O1∪···∪2Ot−2(d,−4E)) ∼= IW (d), Lemma 2 gives
h1(I2O1∪···∪2Ot−2(d,−4E)) = 0. Since Z(O,L) ⊂ 3O, the case y = 3 of Lemma 1
applied to the blowing-up of Pm at O1, . . . , Ot−2 shows that a general H ∈ |IW (d)|
has an isolated singularity at O with multiplicity at most 3. �

Recall that Sing(τ(X)) = X and that for each Q ∈ τ(X) \X there is a unique
O ∈ X and a unique tangent vector ν to X at O such that Q ∈ 〈ν〉 and that
〈ν〉 \ {O} is the contact locus of the tangent space TQτ(X) with τ(X) \X.

Let P be a general point of τ(X, t), i.e. fix a general (P1, . . . , Pt−2, Q) ∈ Xt−2×
τ(X) and a general P ∈ 〈{P1, . . . , Pt−2, Q}〉.

Proof of Theorem 1. If t = 2, then Theorem 1 is true, because in this case
the join is the join of a unique factor and dim(τ(X)) = 2n (since d ≥ 2). Thus we
may assume t ≥ 3. Fix a general P ∈ τ(X, t), say P ∈ 〈{P1, . . . , Pt−2, Q}〉 with
(P1, . . . , Pt−2, Q) general in Xt−2×τ(X). Terracini’s lemma for joins ([1], Corollary
1.10) gives TP τ(X, t) = 〈TO1X ∪ · · ·TOt−2X ∪ TQτ(X)〉. Let O be the point of Pm
such that Q ∈ Tjm,d(O)X. Let H′ (resp. H′′) be the set of all hyperplane H ⊂ PN
containing TQτ(X) (resp. TP τ(X, t)). We may see H′ and H′′ as linear systems on
the blowing-up X̃ of Pm at O. We have H′′ = H′(−2P1−· · ·−2Pt−2) and H ⊆ H′,
where H is defined in Notation 3. Take Oi ∈ X̃, 1 ≤ i ≤ t−2, such that Pi = u(Oi)
for all i. Since (P1, . . . , Pt−2) is general in Xt−2 for a fixed Q and H ⊆ H′, Lemma
5 gives that a general H ∈ H′′ intersects X in a divisor which, outside O, is
singular only at P1, . . . , Pt−2 and with an ordinary node at each Pi. Now assume
P ∈ 〈{P ′1, . . . P ′t−2, Q

′}〉 for some other (P ′1, . . . , P
′
t−2, Q

′) ∈ Xt−2 × τ(X). Since
P is general in τ(X, t) and τ(X, t) has the expected dimension, the (t − 1)-ple
(P ′1, . . . , P

′
t−2, Q

′) is general in Xt−2 × τ(X). Hence H is singular at each P ′i ,
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1 ≤ i ≤ t − 2, and with an ordinary node at each P ′i . Since O is not an ordinary
node of H ∩X, we get {P1, . . . , Pt−2} = {P ′1, . . . , P ′t−2}. Thus O = O′. Hence H
is tangent to τ(X)reg exactly along the line 〈{Q,O}〉 \ {O}. Hence Q′ ∈ 〈{Q,O}〉.
Assume Q 6= Q′. Since P is general in τ(X, t), then P /∈ τ(X, t − 1). Hence
Q′ /∈ 〈{O1, . . . , Ot−2}〉 and Q /∈ 〈{O1, . . . , Ot−2}〉. Thus 〈{P1, . . . , Pt−2, Q}〉 ∩
〈{P1, . . . , Pt−2, Q

′}〉 = 〈{P1, . . . , Pt−2}〉 if Q 6= Q′. Since P ∈ 〈{P1, . . . , Pt−2, Q}〉 ∩
〈{P1, . . . , Pt−2, Q

′}〉, we got a contradiction. �

Proof of Theorem 3. The case t = 2 is well-known and follows from the
following fact: for any O ∈ X and any Q ∈ TOX \ {O} the group GO := {g ∈
Aut(Pn) : g(O) = O} acts on TOX and the stabilizer GO,Q of Q for this action is
the line 〈{O,Q}〉, while TOX \ 〈{O,Q}〉 is another orbit for GO,Q. Thus we may
assume t ≥ 3. Fix a general P ∈ τ(X, t) and a general hyperplane H ⊃ TP τ(X, t).
If H is tangent to τ(X) at a point Q′ ∈ τ(X) \ X, then it is tangent along a
line containing Q′. Let E ∈ X be the only point such that Q′ ∈ TEX. We get
TEX ⊂ τ(X, t) and that H∩TEX is larger than the double point 2E ⊂ X. Theorem
1 gives that Q, Q′ and E are collinear, i.e H is tangent only along the line ν. �
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